GRACE SENSE^M

The Four Keys to a Successful IIoT Solution for Predictive Maintenance

Andy Zimmerman, CTO

1. You spend your time dealing with industrial controls, safety, maintenance, and/or reliability

2. You see the potential for connected smart devices (IIoT) to improve reliability, maintenance, or safety practices

3. You are concerned or uncertain about what happens when new and legacy technologies collide

Introduction

How does Grace approach IIoT?

- 1. Grace approaches IoT from the industrial perspective
 - Founded in 1991 by Phil Allen
 - 2nd Generation Family Business (Drew Allen, CEO)
 - 25+ years as a Rockwell Encompass Partner
 - Industry leader in electrical safety

Global distribution

How does Grace approach IIoT?

- 2. Grace approaches IoT from the application perspective
 - Our core IoT technology developed with funds from:
 - DoD (ONR, Air Force)
 - NSF
 - DHS
 - USDOT (Union Pacific)
 - Our core IoT technology has been applied to:
 - Long-span bridges
 - Wind turbines
 - Burning or damaged structures
 - Industrial equipment

Why do you need lloT? What is lloT?

Industrial Internet of Things can be defined as a network of machines, computers and people enabling intelligent industrial operations using advanced data analytics for transformational business outcomes.

An ecosystem that is comprised of:

a. Machines

b.Computers

c. People & Processes

All three working in Harmony towards a common goal!

Other fancy names include: Big Data, Digital Transformation, Digital Experience, Digital Journey, Digital Disruption, Industry 4.0, etc.

Why do you need lloT? Why is lloT attractive right now?

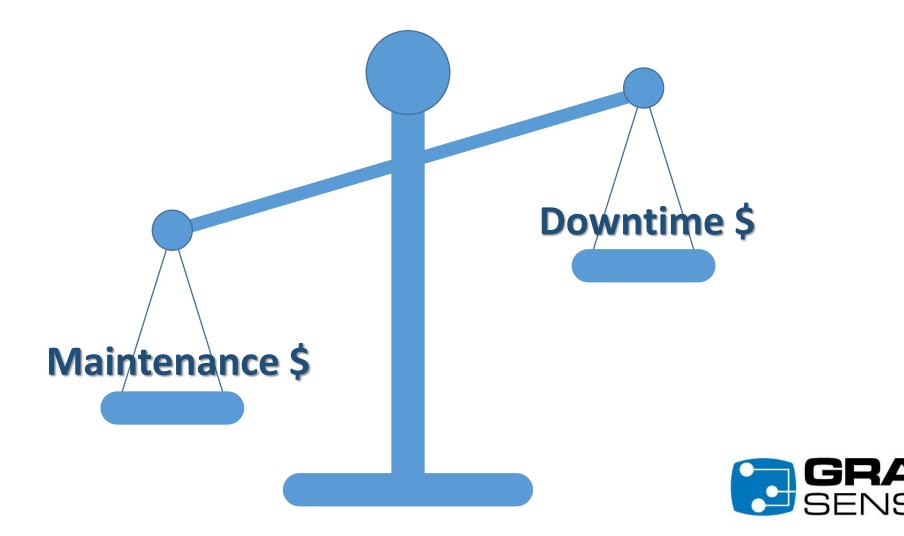
1. IIoT promises to reduce plant downtime

- In most verticals, downtime is incredibly costly (~\$20B in process industries)
- Legacy equipment is often old and in need of constant maintenance
- Route-based inspections cannot be done daily, IIoT offers route prioritization
- 2. IIoT can replace or augment skilled maintenance personnel
 - Skilled maintenance workforce is retiring
 - College graduates focused on innovation over maintenance
 - IIoT can allow expertise to be stored and transferred

- Underlying IIoT technologies are ready for prime-time
 - Easy-to-deploy sensors are available and affordable
 - Wireless and network communication options are robust
 - Cloud hosting is pervasive, affordable, and trusted

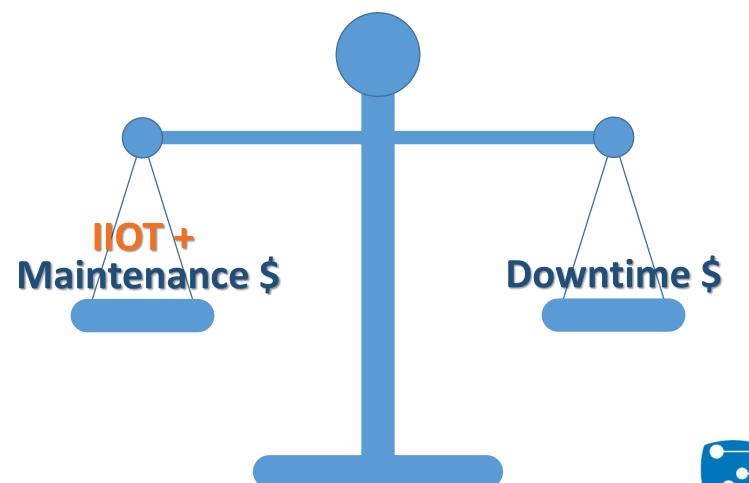
Why do you need lloT?

Not enough maintenance budget...



Why do you need lloT?

Wasteful maintenance spend...



8

Why do you need lloT? Optimizing your maintenance dollars

\$20 Billion

The cost of unplanned downtime in process industries per year

https://www.arcweb.com/blog/reducing-unplanned-downtime-and-helping-future-proof-automation-system-assets

70% of All Workplace Injuries Happen During Reactive Maintenance

Recent data (Figure 2), presented by Wim Vancauwenberghe [1] of the Belgian Maintenance Association (BEMAS) at last year's SMRP (Society for Maintenance and Reliability Professionals) annual conference shows the jobs on the rate of accidents with injuries; and subsequent reduction in injuries as the percentage of planned work increases.

Why do so many IIoT projects fail?

- 74% of all IoT projects fail to meet expectations
 - 2017 Cisco survey of 1,845 decision makers
- Three reasons why Industrial IoT projects fail:
 - 1. Solutions often solve single-issue problems in isolation
 - 2. Solutions often lack scalability
 - 3. Solutions often fail to integrate with legacy systems or networks

Challenge 1: Solutions often solve problems in isolation

- Many IIoT systems are designed to solve one problem
 - Vibration analysis, for example
 - Often, a second system is required to solve a second problem
- This leads to user confusion and poor adoption
 - Too many different dashboards, no unified data architecture
- IIoT needs systems that can ingest data from a wide variety of sources and reliably and seamlessly share data & analysis with a wide variety of new *and* legacy systems

Challenge 2: Solutions often lack scalability

- Many IIoT systems make it easy to do a simple proof of concept, but difficult to scale to a plant-wide rollout
- Spiraling and confusing cost structures, IT concerns, and inability to address multiple applications impede scaling
- IIoT needs systems that can guickly and easily scale from proof of concept to full-plant rollout by using existing and trusted methods to connect devices in-plant

Challenge 3: Solutions don't integrate with legacy systems

- Many IIoT systems require users to learn new methods for collecting, processing, and displaying data and information
- Most facilities have millions of dollars invested in legacy automation equipment (PLC, SCADA, HMI, etc.)
- IIoT needs systems that can natively integrate with control systems in both new and old facilities

Solution: Flexible Data + Intelligence + Seamless Integration

- A successful IIoT solution will hinge on:
 - Data that's easy to gather
 - Analysis that makes for easy decisions
 - Technology that is easily integrated with legacy systems
- What this solution can bring to your facility:
 - 1. Ability to tackle almost any application
 - 2. Ability to scale as sensing needs or business drivers change
 - 3. Ability to integrate with both legacy and cutting-edge systems

GraceSense™ Predictive Maintenance

We enable asset managers to monitor critical equipment:

- Robust wireless sensor hardware handles nearly all industrial applications
- Cloud-based data storage, analysis, and visualization
- Real-time alerts contain customizable remediation instructions

We save our customers money by minimizing unplanned downtime and enabling optimal maintenance budget allocation

GraceSense™ Predictive Maintenance

Hot Spot Monitor

Non-conductive temperature

Field Mount Vibration & Temperature

Panel Mount Customizable nodes and gateways

Maintenance Hub

Data visualization, analysis, and alerting

How can sensor technology drive better maintenance?

- Four Keys to a Successful IIoT Solution:
 - 1. *Comprehensive* data collection capabilities
 - 2. Ability to produce *actionable* information
 - 3. Ability to deliver *meaningful* alarms and alerts
 - 4. Seamless integration with existing control systems

Key #1: Comprehensive data collection capabilities

- Each asset requires a different sensing approach
 - Electrical systems: voltage, frequency, current, power quality
 - Rotating equipment: vibration, current, temperature
 - Structural systems (cranes/etc): strain, vibration
 - Air handlers: temperature, differential pressure, air flow
 - Conveyors, presses, robots, etc: sensors vary by application

• A single, flexible system creates best chance for success

Key #1: Comprehensive data collection capabilities

Panel Mount Nodes

- Familiar, easy-to-install K size GracePort[®] housing or other enclosures
- Replaceable long-life battery (5+ year life), 24VDC, 120VAC
- Completely customizable transducer options (via rear terminal block)
 - Accelerometers, RTD, CT, Rogowski Coils, Flow, Pressure, Strain, Humidity, Fluid Level
- IP65, UL Type 4, 4X, 12 & 13

Panel Mount Gateways

• Can add LTE, WiFi, EtherNet/IP, Modbus TCP/IP for data delivery

Key #1: Comprehensive data collection capabilities

Sensor Interface Option 2-

	Sensor Interface Options: (Choose up to two)
CODE	OPTION
XX	No Application Interface (CloudGate only)
AA1	(2) 10kΩ inputs (thermistor) and(4) 0-10 VDC Inputs, 12 bit
AA2	(2) 10kΩ inputs (thermistor) and(4) 0-10 VDC Inputs, 16 bit
AB2	(4) 4-20 mA 16 bit
AC2	(4) 3-Wire RTD's 16 bit
AD2	(3) 4-Wire RTD's 16 bit
AE2	(6) Thermocouples, 16 bit
AF3	(2) Triaxial Accelerometers, 16 bit + Stream Processing
AG3	(4) Single Axis Accelerometers,16 bit + Stream Processing
DA0	(1) I2C Port, (1) RS 485 Port, (1) SPI Port
EIP	EtherNet/IP™

Multiple sensor procurement options available. Please call us at 1-800-280-9517 for details.

Communication Interface Option 2—

Communication Interface Options: (Choose up to two)				
OPTION				
No Wireless Communication				
802.15.4 (Zigbee compatible)				
WiFi 802.11 b/g/n				
Ethernet				
AT&T [®] LTE (standard)				
Verizon® LTE				

	Housing Options: (Choose one)
ODE	OPTION
K2	Type 4X, Panel-Mount Housing
K3	Type 4, Panel-Mount Housing
K4	Type 12, Panel-Mount Housing

Housing Option

Battery Type

	Battery Type Options: (Choose one)
ODE	OPTION
XX	No Battery
B1	2800mAh Non-Rechargeable Lithium Metal Battery

Key #1: Comprehensive data collection capabilities

HotSpot Monitor (HSM)

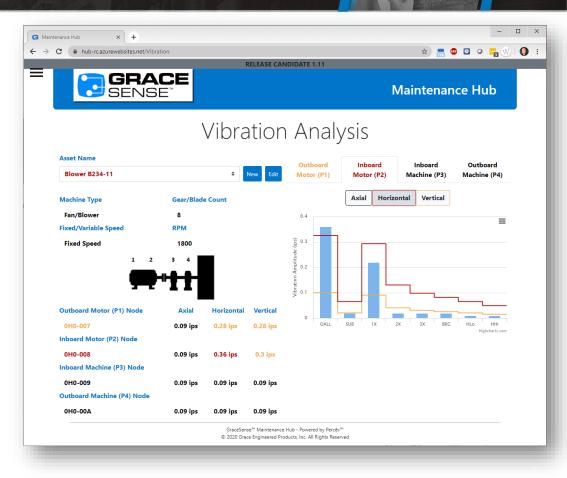
- Power is your most critical asset (no power = no motion)
- Non-conductive, fiber-optic temperature sensing
- Low / medium / high voltage systems
- Continuous monitoring
- Inaccessible locations
- Reduced risk
- Better maintenance planning

Key #1: Comprehensive data collection capabilities

• Wireless Vibration & Temperature Sensor (VBT1 & VBT2)

- 3 axis acceleration and/or temperature
- Replaceable long-life battery (3-5 year life)
- ZigBee-compatible wireless connectivity
- Stud, epoxy, fin and magnetic mounts
- Wireless range 30m LOS
- 1.5"x 1.5"x 2.5"
- VBT1: 800Hz bandwidth
- VBT2: 4.6kHz (X,Y), 2.2kHz (Z)

Key #2: Ability to produce *actionable* information


- Data often needs to be in one place to be actionable
 - We don't want separate systems for power monitoring, vibration monitoring, high value asset monitoring
 - Necessary to look at multiple data trends to make decision

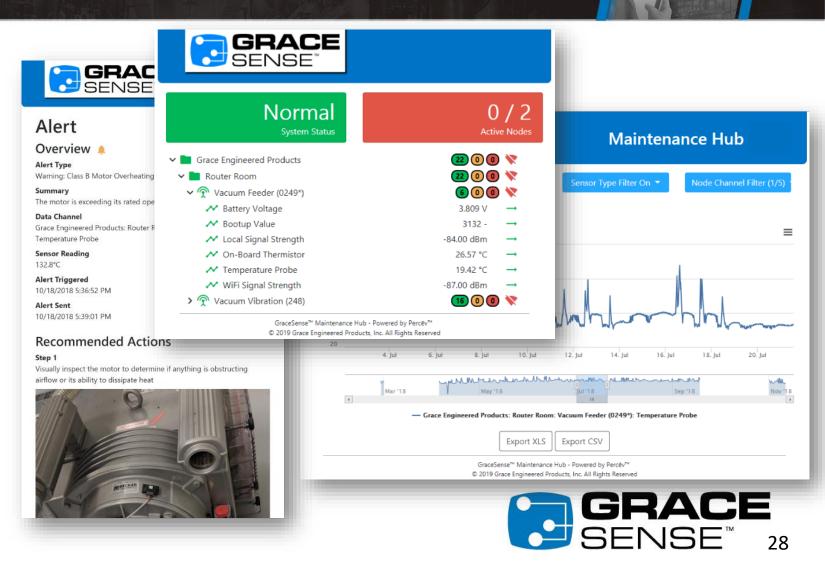
- Data often needs to be processed to be actionable
 - Data glut can lead to system indifference or general distrust
 - Systems need to enhance raw sensor data with domain expertise

Key #2: Ability to produce *actionable* information

- Patented Stream Processing Engine (SPE) for embedded analysis on the edge
 - Statistical Oversampling converts high-rate data into low bandwidth actionable information
 - Programmable edge processor can provide application specific intelligence (frequency analysis, damage identification, etc).
- Edge Processing = Longer battery life, lower bandwidth

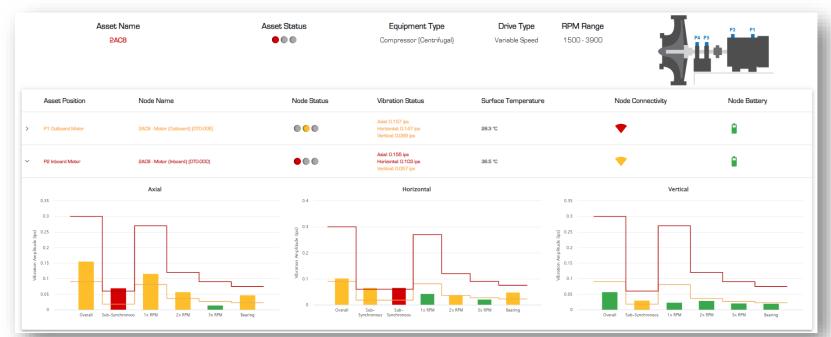
Key #3: Ability to deliver *meaningful* alarms and alerts

- Notifications need to do more than alert to a threshold crossing
 - Transfer asset-specific knowledge to recipient
 - Provide indication of actual problem with suggested solutions
- Needs to target labor and management in different ways
 - SMS / CMMS for those maintaining equipment
 - E-mail, visualizations, and high-level reports for managers
 - API availability for integration with existing maintenance software



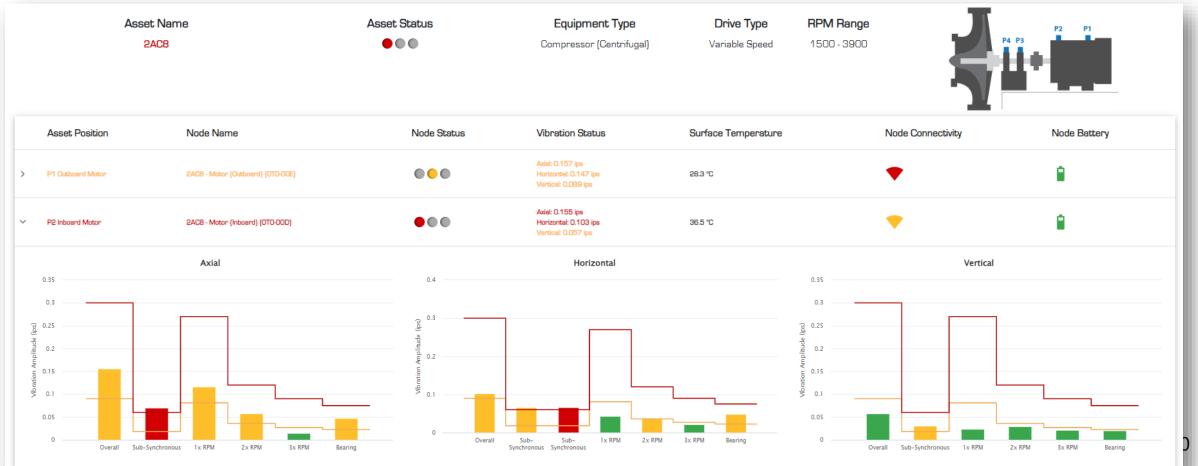
Key #3: Ability to deliver *meaningful* alarms and alerts

Maintenance Hub

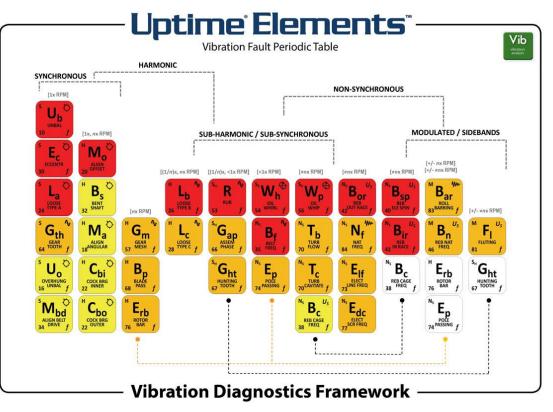

- Data Visualization
- Alerts/Alarming
- Secure Transmission
- Scalable Architecture
- Custom Dashboards
- RESTful API
- On-Premise Options

Key #3: Ability to deliver *meaningful* alarms and alerts

Vibration Analysis


- Present data like a vibration analyst (but hourly not monthly)
- Tie alarms and alerts to physical assets (not individual sensors)
- Provide easy to decipher banded vibration plots

Key #3: Ability to deliver *meaningful* alarms and alerts


Vibration Analysis

The lloT Solution Key #3: Ability to deliver *meaningful* alarms and alerts

Defect Classification (Q2 2023)

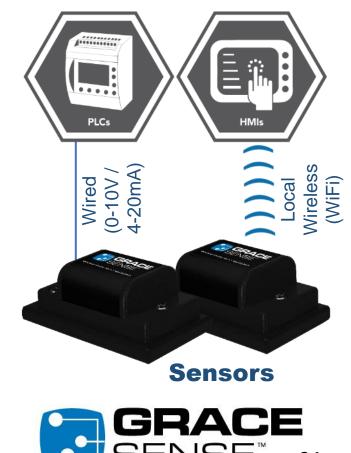
- Present likely equipment faults that are causing alarming data trends
- Present alarm color first, defect expectation second, data third

Reprinted with permission from NetexpressUSA Inc. dt/ka Reliabilityweb.com and its affiliates. Copyright © 2017. All rights reserved. No part of this graphic may be reproduced or transmitted in any form or by any means without the prior express written consent of NetexpressUSA Inc. Reliabilityweb.com* and Uptime* Elements** are trademarks and registered trademarks of NetexpressUSA Inc. in the U.S. and several other countries. reliabilityweb.com • maintenance.org • reliabilityleadership.com

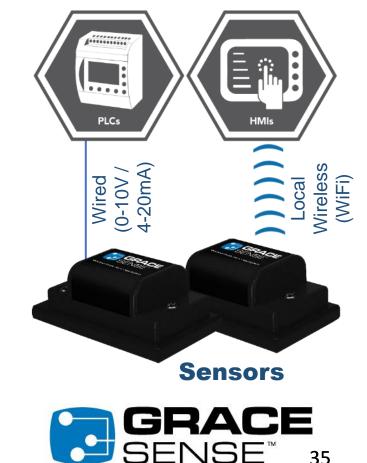
Key #4: Seamless integration with existing control systems

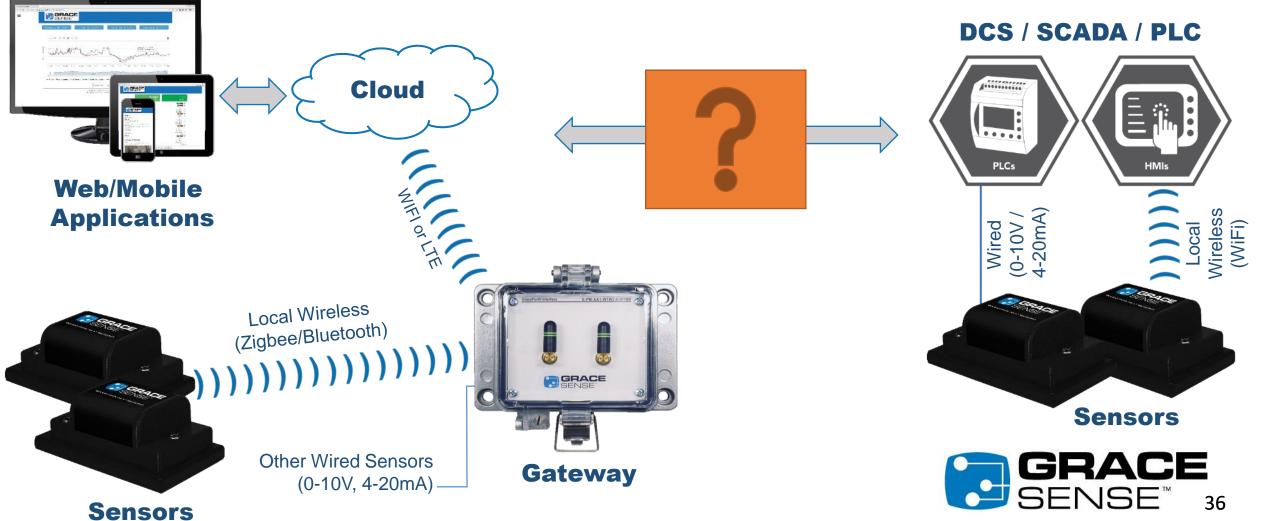
- In the industrial market, 75%+ of IoT users want integration
 - Tremendous amount of legacy automation equipment
 - Enormous investment in existing PLC/SCADA/DCS systems
 - Comfort working with distributors and system integrators
 - Hesitancy to work with "disruptive" technologies

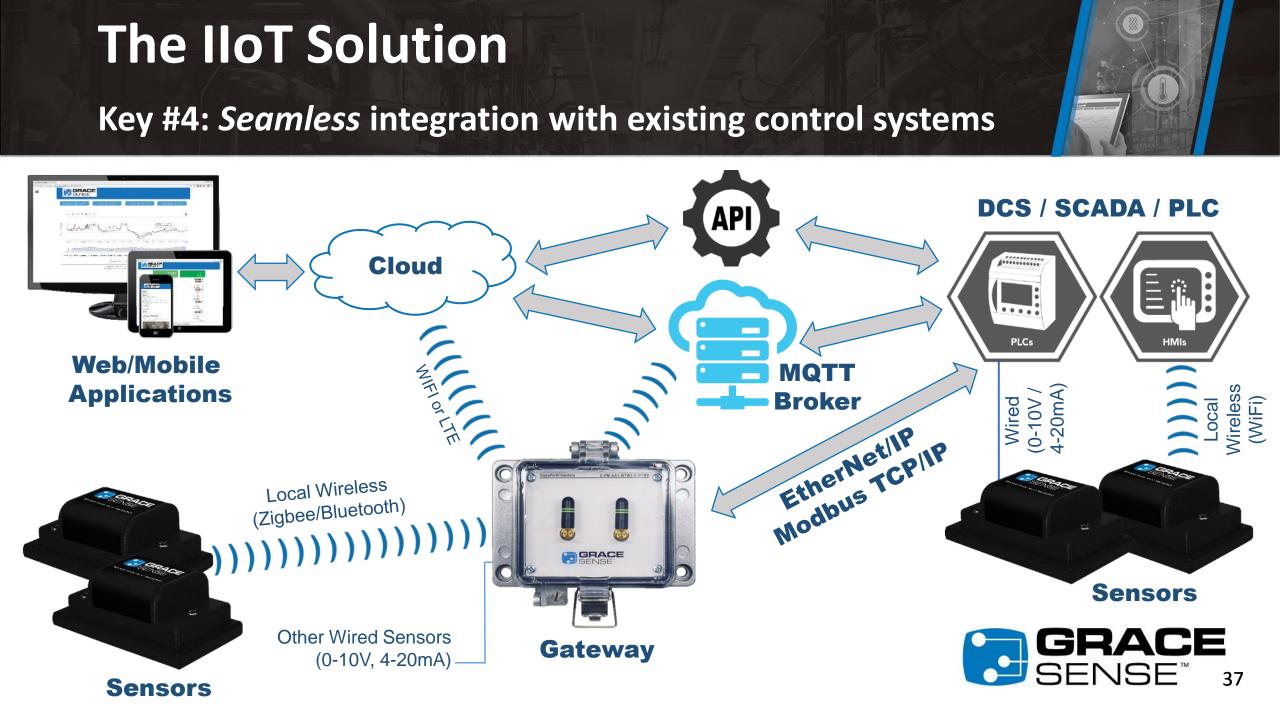
Key #4: Seamless integration with existing control systems



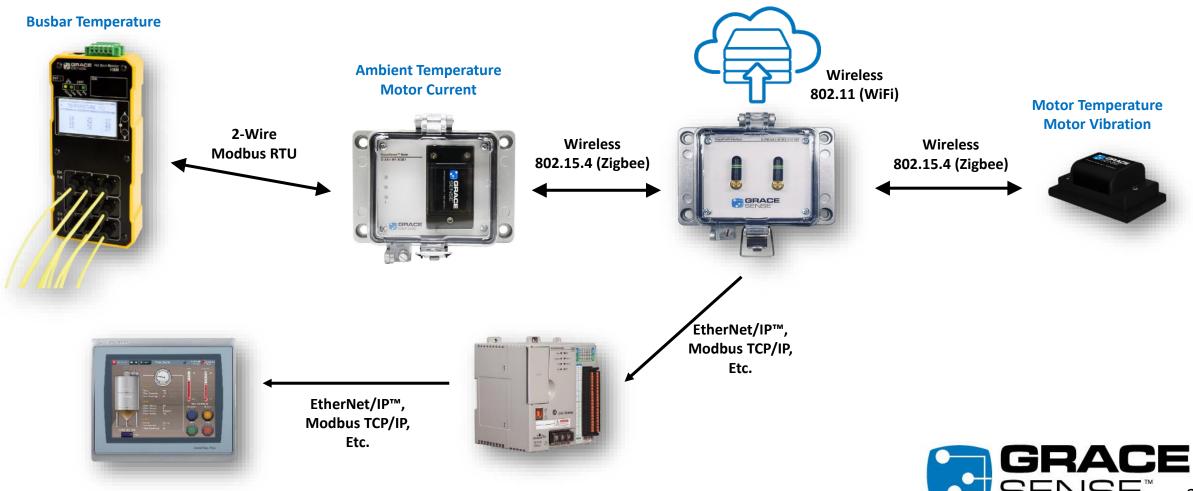
Key #4: Seamless integration with existing control systems


DCS / SCADA / PLC


Key #4: Seamless integration with existing control systems



DCS / SCADA / PLC



Key #4: Seamless integration with existing control systems

Key #4: Seamless integration with existing control systems

- IIoT Systems are by their very nature distributed and hard to describe with a standard memory map
 - The Gateway (EtherNet/IP device) needs to hold configuration and data for all connected sensors, even if sensor network changes
 - Each Gateway, therefore, must support a completely unique map and set of tags

- In the Rockwell Automation environment, configuration space is limited
 - CompactLogix[™] PLCs only have 400 bytes of space per device
- Add-on Profile is one option
 - But a fully featured AOP is static and difficult to update for new IIoT features that are frequently brought online
- IIoT Systems must find a way to allow PLCs to host configurations & data without sacrificing IIoT modularity

- Step 1: Set up each vibration node
 - Asset/Location Name
 - X,Y,Z Axis Alignment
 - Acceleration Range
 - Sampling Rate
 - Desired Analysis
 - Banded amplitudes, etc.

Rename Node ×	<
Dld Name	
Demo VFD System: VFD System - Near Bearing (0R0-006)	
lew Name	
New Node Name	
Close Save Changes	

Configure								×
Axis Alignment								
X: Axial, Y: Vertical,	, Z: Horizontal							\$
Acceleration Ran	ge							
±4g's								\$
Vibration Samplir	ng Rate							
5 Minute								÷
Analysis Type								
Advanced Analysis	5							÷
	OALL ?	SUB ?	1x ?	2x ?	3x ?	BRG ?	HLo 🕜	нні ?
X Amplitude								
X Frequency								
Y Amplitude								
Y Frequency								
Z Amplitude								
Z Frequency								
	Pha	ase	GB	F x1	GB	F x2	GB	F x3
X Axis))
Z Axis)			C)
Y Axis)	C		C		C)
						Clo	se Save	e Changes

- Step 2: Map Vibration Nodes To Control Gateways
 - Drag and drop makes this step easy

- Step 3: Export Appropriate Files
 - For Allen Bradley PLCs (Studio 5000), either AOP XML or EDS and L5X
 - For other PLCs, Modbus TCP/IP memory map and config tool

GRACE SENSE	Maintenance Hub	ClUsersAndyZlDownloads\BlowerB23411_ControlGate(DH0-000).15x - Notepad++ - - X File Edit Search View Encoding Language Settings Tools Macro Run Plugins Window ? X BowerB23411_ControlGate(DH0-000).15x - - Image: Clusters
ControlGate Config		Targetiame="MainRoutine" Targetiype="Routine" TargetSubType="RLU" ContainsContext="true" Owner="Mindows User, Grace Engineered Products" ExportOptions="References NoRwohat StRutz Beeronderikes ForeProtectedOing AllProjDocTrans"> Controller User"Context" Name="MainController"> (abstrype) (abstrype) (controller User"Context" Name="MainController"> (abstrype) (controller User"Context" Name="MainController"> (abstrype) (controller User"Context" Name="MainController"> (controller User"Context" Name="StatusInfo" Tanily="NoTanily" Class="User")> (context) (context) (context) (contex
Assigned	Unassigned	Neas/Nrite /> 10
EXDORT EUS	Unassigned Grace Technologies Onsite Deployments Order # 1 Order # 20006887 Order # 21002637 red by Perolv ^{Men} hts Reserved	11

- Step 4: Import downloaded files into Studio 5000
 - This will map the gateway memory map to vibration-specific tags, regardless of the network or node configurations

Controller Tags - IIoT_or_PLC_Webin	nar(controller) 🖞 Module Properties: Local (GraceSense ^{te} Co	ntrolGate 2.001) ×	Module Definition	×
General Connection Module Info Internet Protocol Port Configuration Vendor	General Type: GraceSense [™] ControlGate EtherNet/IP [™] Gatewa Vendor: Grace Technologies Parent: Local Name: Webinar_ControlGate Description:	ay for GraceSense Predictiv Ethernet Address Private Network: 192.168.1. IP Address: 10 , 0 , 75 , 12 Host Name:	Revision: 2 D01 Electronic Keying: Connection Mode: GraceSense Maintenance Hub XML Upload Tag XML File Name C:\Users\mattab\pownloads\pemoSystem_G-EIP-W1C3+K3XX(1D0-00) Prowse	
Status: Offine		OK Cancel Apply Help	OK	Cancel Help

The GraceSense[™] Approach – Easy Cloud Configuration

• Step 5: Use custom tags in your program!

0	Controller Tags - lloT_or_PLC_Webinar(controller) × Scope: @lloT_or_PLC_W v Show: All Tags v T_Deter Name Filter							
Controller IIoT_or_PLC_Webinar	Name	El A Value Force Mask	+ Style	Data Type	Description	Constant		
Controller Tags Controller Fault Handler	Local:1:0		{}	AB:Embedded_Discre	Description	constant		
Power-Up Handler	Webinar_ControlGate:C	{}	{}	GT:GraceSense DF538				
a 🗐 Tasks								
🔺 🗘 Main Task	Webinar_ControlGate:	{}	{}	GT:GraceSense_7CC1				
MainProgram	Webinar_ControlGate:11.ConnectionFaulted	0	Decimal	BOOL				
Unscheduled	 Webinar_ControlGate:11.GEIPW1C3K3XX1D0008 	{}	{}	GT:NodeData1D0008				
Generation Groups	Webinar_ControlGate:11.GEIPW1C3K3XX1D0008.Status	{}	{}	GT:StatusInfo_96FA00	Current Status			
Assets	Webinar_ControlGate:I1.GEIPW1C3K3XX1D0008.Status.StatusRegister	16#00	Hex	SINT	Current Status			
Add-On Instructions	Webinar_ControlGate:11.GEIPW1C3K3XX1D0008.Status.ConnectionFaulted	0	Decimal	BOOL	Current Status			
🔺 🚍 Data Types	Webinar_ControlGate:11.GEIPW1C3K3XX1D0008.Status.ErrorCode	271	Decimal	INT	Current Status			
User-Defined	Webinar_ControlGate:11.GEIPW1C3K3XX1D0008.Status.BatteryVoltage	5.1004395	Float	REAL	Current Status			
1 Strings	Webinar_ControlGate:11.GEIPW1C3K3XX1D0008.Connectivity	{}	{}	GT:ConnectivityInfo	Wireless Data			
Add-On-Defined	▲ Webinar ControlGate:12	()	{}	GT:GraceSense_A36D				
Module-Defined	Webinar_ControlGate:12.ConnectionFaulted	0	Decimal	BOOL				
Trends	Webinar ControlGate:I2:GFMVBT11D0007	()	{}	GT:NodeType5Data_F	Node Data			
hts Logical Model	Webinar_ControlGate:I2.GFMVBT11D0007.Status	()	() {)	GT:StatusInfo_96FA00				
GIVO Configuration								
PointIO [0] 1769-L18ERM-BB1B IIoT_or_PLC_Webinar	Webinar_ControlGate:12.GFMVBT11D0007.Connectivity	{}	{}	GT:ConnectivityInfo				
✓ Embedded I/O	Webinar_ControlGate:12.GFMVBT11D0007.SurfaceTemperature	22.289062	Float	REAL	Node Data			
[1] Embedded Discrete_IO	Webinar_ControlGate:I2.GFMVBT11D0007.DetectedRPM	1687.0	Float	REAL	Node Data			
📁 Expansion I/O, 0 Modules	Webinar_ControlGate:12.GFMVBT11D0007.XOverallAmplitude	5.18798828e-003	Float	REAL	Node Data			
▲ 器 Ethernet	Webinar_ControlGate:12.GFMVBT11D0007.XSubSynchronousAmplitude	0.003967285	Float	REAL	Node Data			
C 1769-L18ERM-BB1B IIoT_or_PLC_Webinar	Webinar_ControlGate:I2.GFMVBT11D0007.X1xRPMAmplitude	1.52587891e-003	Float	REAL	Node Data			
GraceSense [™] ControlGate Webinar_ControlGate	Webinar_ControlGate:12.GFMVBT11D0007.X2xRPMAmplitude	1.52587891e-003	Float	REAL	Node Data			
	Webinar_ControlGate:12.GFMVBT11D0007.X3xRPMAmplitude	1.83105469e-003	Float	REAL	Node Data			
	Webinar_ControlGate:12.GFMVBT11D0007.XBearingAmplitude	1.22070312e-003	Float	REAL	Node Data			
	Webinar_ControlGate: 12.GFMVBT11D0007.YOverallAmplitude	7.32421875e-003	Float	REAL	Node Data			
	Webinar_ControlGate:12.GFMVBT11D0007.YSubSynchronousAmplitude	0.007019043	Float	REAL	Node Data			
	Webinar_ControlGate:12.GFMVBT11D0007.Y1xRPMAmplitude	1.52587891e-003	Float	REAL	Node Data			
	Webinar_ControlGate:I2.GFMVBT11D0007.Y2xRPMAmplitude	1.22070312e-003	Float	REAL	Node Data			
	Webinar_ControlGate:12.GFMVBT11D0007.Y3xRPMAmplitude	6.10351562e-004	Float	REAL	Node Data			
	Webinar_ControlGate:12.GFMVBT11D0007.YBearingAmplitude	9.15527344e-004	Float	REAL	Node Data			
	Webinar_ControlGate:12.GFMVBT11D0007.ZOverallAmplitude	0.007019043	Float	REAL	Node Data			
	Webinar_ControlGate:12.GFMVBT11D0007.ZSubSynchronousAmplitude	6.40869141e-003	Float	REAL	Node Data			
Controller Organizer	Webinar_ControlGate:12.GFMVBT11D0007.Z1xRPMAmplitude	1.52587891e-003	Float	REAL	Node Data			

Conclusion

Presentation Summary

- IIoT has massive potential in the automation space
 - Augment the gap in the skilled maintenance
 - Help prevent the expense of unexpected downtime
- IIoT decisions are complex and multi-faceted
 - Poor integration with legacy systems may hinder project success
 - Reinforcing existing habits much easier than forming new ones
- Successful IIoT Systems must find a way to:
 - Flexibly collect data
 - Intelligently turn that data into information
 - Make that information available to the right people
 - Integrate seamlessly with existing technologies

Grace Technologies Andy Zimmerman, PhD, CTO andyz@gracetechnologies.com

563.823.5511

1515 East Kimberly Road Davenport, IA 52807

www.gracesense.com

