Prosthesis Retention and Effective Use of Denture Adhesive in Complete Denture Therapy

Course Author(s): David R. Cagna, DMD, MS; Joseph J. Massad, DDS
CE Credits: 2 hours
Intended Audience: Dentists, Dental Hygienists, Dental Assistants, Dental Students, Dental Hygiene Students, Dental Assistant Students
Date Course Online: 03/06/2010 Last Revision Date: 07/17/2017 Course Expiration Date: 07/16/2020
Cost: Free Method: Self-instructional AGD Subject Code(s): 670
Online Course: www.dentalcare.com/en-us/professional-education/ce-courses/ce360

Disclaimer: Participants must always be aware of the hazards of using limited knowledge in integrating new techniques or procedures into their practice. Only sound evidence-based dentistry should be used in patient therapy.

Introduction
This continuing education course will review epidemiologic data on the growing older adult population and its impact on the need for complete denture therapy today and in the future. The challenges faced by the profession with respect to managing edentulism in this older adult population will also be considered. Finally, the therapeutic utility of denture adhesives, appropriate adhesive application to denture bases, and recommendations for denture and oral hygiene will be discussed and illustrated.

Conflict of Interest Disclosure Statement
• Dr. David R. Cagna reports no conflicts of interest associated with this course.
• Dr. Joseph J. Massad has done consulting work for P&G.

ADA CERP
The Procter & Gamble Company is an ADA CERP Recognized Provider.

ADA CERP is a service of the American Dental Association to assist dental professionals in identifying quality providers of continuing dental education. ADA CERP does not approve or endorse individual courses or instructors, nor does it imply acceptance of credit hours by boards of dentistry.

Concerns or complaints about a CE provider may be directed to the provider or to ADA CERP at: http://www.ada.org/cerp

Approved PACE Program Provider
The Procter & Gamble Company is designated as an Approved PACE Program Provider by the Academy of General Dentistry. The formal continuing education programs of this program provider are accepted by AGD for Fellowship, Mastership, and Membership Maintenance Credit. Approval does not imply acceptance by a state or provincial board of dentistry or AGD endorsement. The current term of approval extends from 8/1/2013 to 7/31/2021. Provider ID# 211886
Course Contents
• Overview
• Learning Objectives
• Edentulism
• Complete Denture Stability and Retention
• Adhesives in Complete Denture Therapy
 • Appropriate Application of Denture Adhesive
 • Technique for Denture Adhesive Removal
• Conclusion
• Course Test
• References
• About the Authors

Overview
With an ever increasing elderly edentulous population, the dental profession is tasked to become more proficient in providing complete denture therapy, even in the face of significant residual ridge resorption. Once optimal complete denture fabrication has been achieved, the prescription of conservative and appropriate denture adhesive application can substantially aid prosthesis retention and stability, as well as facilitate patient psychological well-being. This course presents epidemiologic information detailing this needy patient population, the biomechanical phenomena of complete denture stability and retention, and the prescription and management of denture adhesive to supplement stability and retention in well-fabricated complete dentures.

Learning Objectives
Upon completion of this course, the dental professional should be able to:
• Appreciate the impact of a growth elderly edentulous population on the day-to-day practice of dentistry.
• Understand objectives of complete denture therapy for patients affected by progressive resorption of edentulous ridges.
• Better understand expected changes in edentulous soft and hard tissues over time.
• Appreciate the complex biophysical processes involved in complete denture retention and stability.
• Gain basic comprehension of improved complete denture retention and stability associated with the proper use of denture adhesives.
• Understand appropriate methods for conservatively applying adhesive and placing complete dentures to achieve optimal adhesive performance.
• Comprehend recommended methods for cleaning adhesive from complete denture upon removal from the mouth.
• Comprehend appropriate methods for accomplishing personal oral hygiene following removal of adhesive assisted complete dentures.

Edentulism
The number of people in the United States requiring removable prosthodontic therapy has increased dramatically over the past twenty years. Current predictions suggest that over the next two decades, the declining incidence of edentulism will be more than compensated by a 79% increase in adults over 55 years of age. Demographic trends for adults 80 years and older suggest an increase from 9.3 million in 2000 to 19.5 million in 2030. Though only 10% of adults 18 years and older are edentulous, this rate increases to approximately 33% for adults 65 years and older. In the United States alone, the number of adults requiring complete denture therapy is expected to increase from 33.6 million in 1991 to 37.9 million in 2020. Considering a projected decrease in edentulism, an expected increase in the number of older individuals, and the need for complete denture therapy by many patients, it has been estimated the 56.5 million complete dentures made in the United States in 2000 will increase to more than 61 million complete dentures in 2020.

Marked atrophy of alveolar bone following tooth loss complicates prosthodontic rehabilitation. This phenomenon has been termed “reduction of residual ridges” by Atwood, who considered it a major oral disease entity. Resorptive changes in residual edentulous ridges appear to be influenced by a multitude of poorly defined factors and the volume and rate of osseous changes vary dramatically between patients. Although consensus regarding etiology is lacking, alveolar bone and oral soft tissue changes observed in denture wearers may be an inevitable consequence of the loss of natural
teeth, tissue remodeling, occlusal factors, and/or prolonged denture wear. Alveolar bone loss subsequent to long-term edentulism may be severe and the process may progress throughout life. Although generally more pronounced in the mandible and characterized by individual variability in volume and rate, advanced residual ridge resorption presents a significant prosthetic challenge. This oral condition complicates both the dentists' ability to fabricate adequate complete dentures, and the patients' ability to successfully manage their dental prostheses. In the authors' experience, after 5 to 7 years of clinical service, a significant percentage of conventional complete dentures require re-adaptation to the denture-bearing tissues using standard reline or remake procedures.

Over 50 years ago it was suggested local factors are primarily responsible for edentulous ridge resorption. Schlosser implicated ill-fitting dentures and the associated trauma to oral tissues as the primary causes of rapid deterioration of the denture-bearing structures. He lists faulty impressions, excessive occlusal vertical dimension, inaccurate centric jaw relationships, and occlusal disharmony as major contributing factors. Lammie suggested a detrimental external molding force may adversely impact the residual bony ridges as overlying oral soft tissues contract or atrophy with time. This molding force may, in turn, accelerate resorption of the edentulous ridges.

In a review of 18 complete denture patients, Atwood remarked the deterioration of edentulous ridges is a complex biophysical process involving functional factors (i.e., the intensity and duration of applied forces), prosthetic factors (i.e., techniques and materials used in denture construction), and metabolic factors (i.e., systemic influences on bone formation and resorption). For example, occlusal parafunction may adversely affect the denture-bearing tissues. It is likely many complete denture wearers limit both separation of the denture teeth and mandibular movement in order to avoid unintentional prosthesis movement or dislodgement. If this habit occurs over extended periods of time and with sufficient force, damage to the denture-bearing hard and soft tissues may result. Others support Atwood's conclusions suggesting that despite careful prosthetic management and apparent short-term success, aggressive reduction of residual edentulous ridges may still occur. Consequently, the impact of systemic factors must be considered when deciphering the etiology of alveolar resorption. Though difficult to substantiate, an association may exist between residual ridge reduction and osteoporosis.

Complete Denture Stability and Retention

For edentulous patients, successful denture therapy is influenced by the biomechanical phenomena of support, stability, and retention. Retention, or the resistance to movement of the denture away from the supporting tissues, is critical. Unfortunately, the physical, physiologic, and mechanical factors associated with denture retention are not completely understood. Physical forces influencing denture retention are believed to include adhesion, cohesion, capillary attraction, surface tension, fluid viscosity, atmospheric pressure, and external forces imparted to the prostheses by oral-facial musculature. Of these, interfacial surface tension associated with the saliva layer between the denture base and supporting soft tissues is quite important. This is particularly true for maxillary prostheses. Retention is realized as this saliva layer maximizes contact with approximating prosthetic and mucosal surfaces. Therefore, xerostomic patients who experience a quantitative or qualitative reduction in saliva may have reduced complete denture retention due to decreased interfacial surface tension.

In the maxilla, alveolar resorption may obscure anatomic landmarks required to identify an effective postpalatal seal area. An ineffective or improperly located postpalatal seal may compromise denture retention. Therefore, reduced vertical alveolar height in a severely atrophic edentulous maxilla may result in poor denture stability and inadequate denture retention.

The typical pattern of residual ridge resorption results in the medial-lateral and anterior-posterior narrowing the maxillary denture foundation and a perceived widening of the mandibular denture
Resultant changes in horizontal maxillomandibular ridge crest relationships may necessitate setting posterior denture teeth in cross-bite. This arrangement may complicate force distribution to the denture bearing tissues. If cross-bite posterior denture occlusion is not carefully developed and managed in patients with severe residual ridge resorption, denture instability may result.\(^{63}\)

The objective of complete denture therapy for patients with severe reduction of residual ridges is not solely the replacement of missing teeth. Rather, complete dentures must be designed to replace both the missing dentition and associated supporting tissues. In doing so, the denture base may occupy a substantial volume. Since denture base coverage of the hard palate is necessary to satisfy mechanical requirements of the prosthesis, and not to replace missing anatomic structures, care must be taken to limit denture base thickness in this area. In addition to replacing missing oral tissues, complete dentures structurally redefine potential spaces within the oral cavity. Inappropriate denture tooth positioning and physiologically unacceptable denture base contour or volume may result in compromised phonetics,\(^{64}\) inefficient tongue posture and function,\(^{59,65}\) and hyperactive gagging.\(^{66-69}\) Carefully designed external denture contours (i.e., cameo or polished denture surfaces) may contribute substantially to prosthesis stability and retention.\(^{70}\) Successful denture wearers master patterns of oral-facial muscular activity serve to retain, rather than displace, their prostheses. When optimally contoured, complete dentures occupy space in the oral cavity defined by the physiologic limits of acceptable muscular function, thus acquiring stability and retention during mastication, deglutition, and phonation.\(^{71,72}\) Conversely, poorly designed prostheses that do not accommodate anticipated muscular function may yield compromised denture stability and reduced retention. Complete denture retention is, in part, influenced by denture occlusion. Most denture wearers consciously or subconsciously perform random, empty-mouth occlusal contacts throughout the day.\(^{73}\) These contacts may result from functional activity (e.g., swallowing) or parafunction (e.g., bruxism or clenching). A bilaterally balanced denture occlusion is intended to minimize the adverse consequences of functional and parafunctional empty-mouth loading by widely distributing these forces to the denture bearing structures.\(^{74}\) Therefore, a properly balanced denture occlusion may serve to dampen potentially detrimental occlusal forces acting to disrupt denture stability. A balanced occlusion is dependent on effective clinical and laboratory procedures. Accurate and precise registration of maxillomandibular relationships, meticulous articulation of master casts, careful positioning of denture teeth, and correct processing of denture bases must be accomplished. Both laboratory and clinical remount procedures are essential if optimal occlusal balance is to be achieved prior to delivery of the prostheses. Finally, periodic recall of all edentulous patients allows reevaluation of the denture occlusion; a clinical remount can be performed when correction is indicated.

Complete maxillary and mandibular dentures have long been considered the standard of care for treating edentulous patients. While most edentulous patients express relative satisfaction with their maxillary complete dentures, many do not enjoy equally successful mandibular denture comfort and function.\(^{75,76}\) The use of endosseous dental implants to assist in the support, stability, and retention of removable prostheses is now considered an effective treatment modality for the edentulous patient. Individuals wearing implant-assisted overdentures typically report improved oral comfort and function when compared to conventional, mucosa-supported prostheses.\(^{77-82}\) Except when contraindicated due to financial or surgical considerations, implant-assisted overdentures are usually the treatment of choice. A symposium held at McGill University addressed the efficacy of implant-assisted overdentures for treatment of edentulism. After thorough review of existing information, the following consensus statement was formulated:
“The evidence currently available suggests that the restoration of the edentulous mandible with a conventional denture is no longer the most appropriate first choice prosthodontic treatment. There is now overwhelming evidence that a two-implant overdenture should become the first choice of treatment for the edentulous mandible.”

Adhesives in Complete Denture Therapy
Successful complete denture therapy must involve both technical excellence during prosthesis fabrication and effective patient management prior to and following complete denture placement. Satisfying the expectations of all patients for optimal denture retention and stability is often beyond the technical skills of even the most accomplished practitioners. A substantial number of complete denture wearers remedy perceived inadequacies in denture retention and stability with denture adhesives. Discussing and implementing the judicious use of denture adhesives may help to satisfy the expectations of specific patients and achieve their intended treatment goals.

It is appropriate to prescribe a denture adhesive to augment retention and stability of conventional complete dentures. Adhesives are indicated for routine use when appropriately fabricated complete dentures do not satisfy stability and retention expectations of the patient. Denture adhesives may also prove psychologically beneficial when the patient requires supplemental retention and stability, particularly during times of public interaction. Denture adhesives are not indicated to provide retention for ill-fitting prostheses, nor are excessive amounts of adhesive indicated under any circumstances.

When properly managed, adhesives enhance the interfacial surface tension between the denture base and supporting soft tissues by:

1. improving the adhesive, cohesive, and viscosity characteristics of the interfacial film layer, particularly in saliva-deficient patients, and
2. eliminating voids occurring in the interfacial space due to inaccurate adaptation of the denture base to the denture-bearing tissues.

In addition to improved retention and stability, denture adhesives have been shown to reduce mucosal irritation, reduce food debris accumulation beneath the denture base, improve chewing efficiency, increase bite force, improve functional load distribution across the denture-bearing tissues, and facilitate the psychological well-being of the patient.

For patients with xerostomia, the use of a well-hydrated denture adhesive provides a cushioning or lubricating effect, reducing frictional irritation of the supporting soft tissues and preventing further tissue dehydration.

The composition of most modern denture adhesives includes constituents that promote bioadhesion via carboxyl groups once the adhesive is hydrated. Two commonly employed active ingredients in denture adhesives are poly [vinyl methyl ether maleate] and carboxymethylcellulose. The physical chemistry of these adhesive constituents is discussed in detail elsewhere. Once placed on the intaglio surface of the denture, the adhesive material must be substantially hydrated in order to achieve optimal performance.

Following complete denture fabrication and prior to definitive placement of the prostheses, it is prudent to reemphasize to the patient the anticipated outcome of therapy. For patients with favorable anatomic, physiologic, and psychological factors, including extensive denture wearing experience, the anticipated outcome of complete denture therapy may be favorable. Conversely, for individuals who display compromised anatomic oral conditions, poor muscular control, psychological indifference, or a lack of successful denture experience, a fair or guarded prognosis is likely more realistic. Discussing reasonable expectations with the patient prior to placing complete dentures may prepare them for an otherwise disappointing experience.

It is appropriate to prescribe adhesive to augment retention and stability of conventional complete dentures. Anticipating suboptimal stability and retention in the presence of compromised patient factors, e.g., xerostomia, is justified. Informing patients the proper use of a limited amount of denture adhesive can
supplement existing denture stability and retention is both clinically acceptable and a prudent patient management technique. The need for denture adhesive is not necessarily an indication of suboptimal therapy, or admission of failure by either the dentist or patient.

Most denture wearers, at one time or another, have attempted to use adhesive to facilitate comfortable denture wear and function. Unfortunately, the concept that “more is better” does not hold true for denture adhesives. Table 1 presents an approach to appropriate denture adhesive application and prosthesis placement the authors find useful. It is equally important to educate patients regarding an effective method for adhesive removal from denture surfaces and oral tissues on a regular basis. Appropriate denture and oral hygiene should be accomplished by edentulous patients at least two times each day, as described and illustrated in Table 2.

Conclusion
The phenomenon of residual ridge reduction following the loss of natural teeth, and its impact on successful complete denture therapy, have been reviewed. Anatomic,

<table>
<thead>
<tr>
<th>Table 1. Appropriate Application of Denture Adhesive.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Inform the patient that, due to existing conditions, achieving optimal complete denture retention and stability may not be possible. Also suggest the proper use of denture adhesive is an acceptable means of augmenting the stability and retention of a new prosthesis. Honest and realistic communication of the anticipated results of therapy may ease future patient management problems.</td>
</tr>
<tr>
<td>2. The use of small amounts of hydrated paste adhesives works well due to favorable adhesive, cohesive, and viscosity characteristics.</td>
</tr>
<tr>
<td>3. A small amount of the paste should be dispensed onto the clean and dry intaglio surface of the denture. The use of excessive adhesive will likely interfere with proper placement of the denture on the bearing tissues. For the maxillary denture, adhesive should be dispensed in the midpalatal region (Figure 1), while for the mandibular denture very small amounts can be placed in two or three locations along the ridge crest (Figure 2).</td>
</tr>
</tbody>
</table>

Figure 1. Adhesive application to maxillary denture.

Figure 2. Adhesive application to the mandibular denture.
Table 1. Appropriate Application of Denture Adhesive. (continued)

4. Once dispensed onto the dentures, the patient should evenly disperse the paste over the entire intaglio surface of the prosthesis with a clean, dry finger (Figure 3). This will result in a thin, even layer of adhesive.

5. The denture is submersed in a container of cool water to maximally hydrate the adhesive (Figure 4). The denture should remain submersed in water for approximately 20 to 30 seconds.

6. The denture is then placed in the mouth and firmly seated with finger pressure for approximately 10 seconds (Figure 5). Maintenance of seating pressure will cause the adhesive to flow throughout the interfacial space between the denture base and the denture bearing soft tissues.

7. The patient may be provided with the sample container of adhesive used during the demonstration. Suggesting local stores that carry this product will emphasize that adhesive use is a component of regular denture use. The patient should be told that the use of excessive adhesive may indicate an inadequate fit, necessitating denture reline or remake procedures.
Table 2. Technique for Denture Adhesive Removal.

1. Use of an electric toothbrush can enhance thorough cleaning of both denture surfaces and denture bearing oral tissues (Figure 6). Inexpensive, battery powered brushes are now widely available to consumers. A small amount of toothpaste on the electric toothbrush will serve to freshen the patient's breath and improved taste (Figure 7).

2. Remove the dentures from the mouth, and thoroughly scrub the entire intagio surface of the dentures with the electric toothbrush (Figure 8). This procedure is not intended to eliminate adhesive from the dentures. Rather, this initial scrubbing will loosen residual adhesive material, facilitating subsequent removal.

3. The denture is then held submerged in a container of warm water and simultaneously scrubbed using the electric toothbrush (Figure 9). Firm pressure should be applied to the brush in order to eliminate adhesive from the denture surface. Particles or clumps of adhesive material will be seen rising to the surface of the water (Figure 10). This procedure is continued until the entire denture surface is free of residual adhesive.
4. To clean and stimulate the oral tissues, the electric toothbrush may again be used. A small amount of toothpaste is applied to the brush. All denture bearing soft tissues and tissues that contact the cameo surfaces of the dentures, including the tongue, are gently massaged (Figure 11). At first, this may cause a tingling sensation for the patient. This sensation will disappear with repeated use.

5. Following thorough massaging of the oral soft tissues, warm water is introduced into the patient's mouth (Figure 12). Holding this water in the mouth, the electric toothbrush is again used to massage all oral soft tissues (Figure 13). The patient is then instructed to expectorate the water and residual debris into a sink, leaving the oral tissue free of adhesive.
physiologic, and biomechanical factors associated with the stability and retention of complete dentures impact optimal therapeutic results. The proper use of denture adhesive to supplement, not substitute for, sound complete denture therapy should be carefully and thoroughly presented to patients prior to placement of new prostheses. Denture adhesives can be effectively used to augment denture stability and retention in well-fitting complete dentures leading to improved denture performance, patient comfort, and patient satisfaction. Inappropriate use of denture adhesive, outside the recommendations provided here, may adversely impact denture performance, patient health and overall treatment satisfaction.
Course Test Preview
To receive Continuing Education credit for this course, you must complete the online test. Please go to: www.dentalcare.com/en-us/professional-education/ce-courses/ce360/start-test

1. **Over the past twenty years, what change has occurred in the number of people in the United States requiring removable prosthodontics therapy?**
 a. The number has basically stayed the same.
 b. The number has declined slightly.
 c. The number has increased dramatically.
 d. Data are unavailable to answer this question.

2. **Over the next two decades, what is projected with respect to the incidence of edentulism?**
 a. The incidence is expected to increase significantly.
 b. The incidence is expected to decline.
 c. The incidence may increase but data are unavailable to support any conclusions.
 d. The incidence will likely remain unchanged.

3. **What was the phrase proposed by Douglas Atwood (1971) to describe marked atrophy of alveolar bone following tooth loss?**
 a. Residual ridge resorption
 b. Ridge atrophy
 c. Alveolar bone atrophy
 d. Reduction of residual ridges

4. Although consensus regarding etiology is lacking, alveolar bone and soft tissue changes observed in complete denture wearers over time may be associated with all of the following EXCEPT:
 a. Bisphosphonate related osteonecrosis of bone
 b. Tissue remodeling
 c. Inevitable consequence of natural teeth loss
 d. Occlusal factors

5. In 1962, Dr. Atwood reported on factors that likely contributed to the complex biophysical deterioration of edentulous ridges over time. Which of the following factors was not discussed by Dr. Atwood?
 a. Functional factors
 b. Prosthetic factors
 c. Metabolic factors
 d. Environmental factors

6. The biomechanical phenomena that substantially influence complete denture success include all of the following EXCEPT:
 a. Support
 b. Leverage
 c. Stability
 d. Retention

7. Physical forces influencing complete denture retention are believed to include all of the following EXCEPT:
 a. Cohesion and capillary attraction
 b. Adhesion and surface tension
 c. Fluid viscosity and atmospheric pressure
 d. Preload and wear resistance
8. Inappropriate denture tooth positioning and physiologically unacceptable denture base contour or volume may result in all of the following EXCEPT:
 a. Sleep apnea
 b. Hyperactive gag reflex
 c. Compromised phonetics
 d. Inefficient tongue posture and function

9. What is the primary intended benefit of bilaterally balanced occlusion in complete dentures?
 a. Maximize the esthetic outcome of complete denture therapy during smile analysis.
 b. Improve oropharyngeal opening to minimize sleep apnea.
 c. Minimize adverse consequences related to functional and parafunctional, empty-mouth, occlusal contacts.
 d. Reduce adverse biocompatibility issues with denture tooth resins.

10. When are adhesives indicated for routine use by complete denture patients?
 a. When reline or rebase procedures are otherwise required.
 b. When the complete dentures have been appropriately fabricated.
 c. When the prostheses satisfy stability and retention expectations of the patient.
 d. When the patient is confident that retention is adequate for public speaking engagements.

11. When properly managed, adhesives satisfy all of the following EXCEPT:
 a. Enhanced interfacial surface tension between the denture base and supporting soft tissue.
 b. Improved adhesive, cohesive, and viscosity characteristic of the interfacial film layer.
 c. Elimination of voids occurring in the interfacial space due to inaccurate intaglio surface contact.
 d. Chemical alteration of the polymeric nature of the denture resin to foster better adaptation.

12. Which of the following benefits are not associated with the use of denture adhesive?
 a. Reduce food debris accumulation beneath the denture base
 b. Improved chewing efficiency
 c. Improved coloration of the denture base material
 d. Reduced mucosal irritation

13. What are the advantages of prescribing well-hydrated denture adhesive for xerostomic complete denture patients?
 a. Facilitates cleansability of the denture.
 b. Increases frictional stability of the prosthesis.
 c. Provides a cushioning or lubricating effect.
 d. Permits ease of prosthesis placement and removal.

14. Which of the following constituents are commonly found in most modern denture adhesives?
 a. Silicone
 b. Carboxymethylcellulose
 c. Polysulfide
 d. Polyvinylsiloxane

15. Given which of the following circumstances would unsuccessful complete denture therapy be anticipated?
 a. Favorable physiologic factors.
 b. Extensive denture wearing experience.
 c. Favorable anatomic factors.
 d. Unrealistic patient expectation.
16. An appropriate technique for applying denture adhesive to the intaglio surface of a denture includes which of the following actions?
 a. Thoroughly hydrated the denture base resin.
 b. Start with a denture surface that is clean and dry.
 c. In the maxillary denture dispense a large amount of adhesive along the ridge crest area.
 d. Limit adhesive application to the anterior aspect of the mandibular denture.

17. Once dispensed onto the denture’s intaglio surface, how should the adhesive be manipulated?
 a. Simply seat the denture using heavy pressure.
 b. Allow time for the adhesive to warm on the denture surface to facilitate adhesion.
 c. Evenly disperse the adhesive over the entire intaglio surface with a clean, dry finger.
 d. No additional manipulation is necessary.

18. After applying adhesive to the denture’s intaglio surface and immediately prior to placing the denture in the mouth, what step(s) should be accomplished?
 a. Place the denture in a warm, dry place for 20-25 minutes.
 b. Submerge the denture in cool water to hydrate the adhesive.
 c. Allow warm water from a faucet to flow over the adhesive for 4-5 seconds.
 d. No additional steps are necessary prior to denture placement.

19. With regard to appropriate denture hygiene, which of the following represents a step in the recommended process?
 a. Use an electric toothbrush to enhance thorough cleaning of all denture surfaces.
 b. Apply a highly abrasive cleanser to a stiff bristle brush and scrub the denture thoroughly.
 c. Mechanical cleaning of the denture is not recommended.
 d. Soak the denture in hot, diluted (50%) solution of stain and tarter remover.

20. With regard to personal oral hygiene for complete denture patients, which of the following represents a step in the recommended process?
 a. Oral hygiene is not necessary in the absence of natural teeth.
 b. Use cold water to rinse residual adhesive from the oral tissues.
 c. Use a cold, wet face cloth to wipe residual adhesive from the denture bearing soft tissues.
 d. Using an electric toothbrush and a small amount to toothpaste, gently message and clean all denture bearing soft tissues including the tongue.
References
52. Chen MS, Daly TE. Xerostomia and complete denture retention. Tex Dent J. 1979 Sep;97(9):6-9.

About the Authors

David R. Cagna, DMD, MS
University of Tennessee Health Science Center, College of Dentistry, Memphis TN
Professor, Department of Prosthodontics
Associate Dean, Postgraduate Affairs
Director, Advanced Prosthodontics Program
Diplomate & Director, American Board of Prosthodontics
Fellow, American College of Prosthodontists
Email: dcagna@uthsc.edu

Joseph J. Massad, DDS
Private practice, Tulsa, OK
Associate Professor, Department of Prosthodontics, University of Tennessee Health Center, Memphis, Tennessee, School of Dentistry, Memphis TN
Adjunct Associate Professor, Department of Prosthodontics and Operative Dentistry, Tufts University School of Dental Medicine, Boston MA
Adjunct Associate Professor, Department of Comprehensive Dentistry, University of Texas Health Science Center, School of Dentistry, San Antonio TX
Adjunct Associate Professor, Department of Restorative Dentistry, Loma Linda University School of Dentistry, Loma Linda CA
Clinical Assistant Professor, University of Oklahoma College of Dentistry, Oklahoma City OK
Website: joemassad.com
Email: joe@joemassad.com