An Evidence-based Approach to Laser Therapy around Ailing/Failing Dental Implants

Course Author(s): Maria L. Geisinger, DDS, MS
CE Credits: 2 hours
Intended Audience: Dentists, Dental Hygienists, Dental Students, Dental Hygiene Students
Date Course Online: 02/01/2019
Last Revision Date: N/A
Course Expiration Date: 01/31/2022
Cost: Free
Method: Self-instructional
AGD Subject Code(s): 10, 135, 690

Online Course: www.dentalcare.com/en-us/professional-education/ce-courses/ce564

Disclaimer: Participants must always be aware of the hazards of using limited knowledge in integrating new techniques or procedures into their practice. Only sound evidence-based dentistry should be used in patient therapy.

Conflict of Interest Disclosure Statement
- Dr. Geisinger has been or is currently a co-investigator and/or principal investigator on research funded entirely or in part by The Procter & Gamble Company. All funds were used for research endeavors and not for personal gain. Dr. Geisinger has not accepted any payment from dentalcare.com for participation in this continuing education course.

Introduction – Implant Laser Therapy
An Evidence-based Approach to Laser Therapy seeks to evaluate the use of laser therapy as an adjunctive means of implant surface detoxification in conjunction with surgical and non-surgical therapies.
Course Contents

- Overview
- Learning Objectives
- Introduction
- Epidemiology of Peri-implant Diseases
 - Peri-implant Mucositis
 - Peri-implantitis
- Risk Factors for Peri-implant Diseases
 - Systemic Diseases
 - Smoking Status and or Tobacco Cessation
 - Periodontal Health
 - Plaque Control and Adherence to Regular Supportive Implant Therapy
- Prosthetic Design and Occlusal Load
- Retained Cement
- Peri-implant Soft Tissue Quality Quantity
- Current Treatment Strategies for Peri-implant Diseases
- Laser therapy around ailing failing dental implants
 - Types of Laser Therapy Utilized for Peri-implant Therapy
 - Lasers as an Adjunct to Non-surgical and Surgical Peri-implant Therapy
- Clinical Decision Making for Treatment of Patients with Peri-implant Diseases
- Summary
- Course Test
- References
- About the Author

Overview

The placement of endosseous dental implants is a well-accepted treatment option for edentulism as implants have demonstrated high survival rates over long periods of time. While dental implant survival rates remain high, reports indicate that a significant proportion of dental implants, a mean of 43% and 22%, will develop peri-implant mucositis and peri-implantitis, respectively. There are several risk factors that can lead to inflammation, peri-implant mucositis, and, later, peri-implantitis. Systemic and environmental factors may play a secondary role in disease progression and susceptibility, but peri-implant diseases are initiated by accumulation of bacterial biofilm. As bacterial plaque is the primary etiology for peri-implant disease, current therapies for peri-implantitis focus upon dental plaque removal and implant surface detoxification as a critical step to surgical and/or nonsurgical treatment of peri-implantitis. This surface detoxification has been accomplished with physical, chemical, and/or other means, including laser therapy. A variety of laser types have been used for implant surface detoxification including: Er:YAG, Nd:YAG, carbon dioxide, diode lasers, and photodynamic therapy. As of yet, there are no definitive data on superiority of laser type or treatment modality in conjunction with either surgical or nonsurgical therapy. Additionally, a recent consensus statement from the American Academy of Periodontology confirmed evidence for limited, short-term benefits to adjunctive laser use for peri-implant lesions, but no current definitive evidence regarding the long-term efficacy of this type of therapy. At present, there is insufficient evidence for the use of lasers of any type used as a monotherapy for the surgical or nonsurgical treatment of peri-implantitis. As the number of endosseous dental implants placed continues to increase, the cumulative incidence of peri-implantitis is also increasing. This course seeks to evaluate the use of laser therapy as an adjunctive means of implant surface detoxification in conjunction with surgical and nonsurgical therapies.

Learning Objectives

Upon completion of this course, the dental professional should be able to:

- Understand the current scientific literature about the prevalence, etiology, and stages of peri-implant diseases.
- Recognize, assess, and develop treatment and preventative strategies for peri-implant diseases.
- Evaluate the available evidence regarding the efficacy of adjunctive laser therapy in combination with surgical and nonsurgical treatment modalities for peri-implant disease and choose the appropriate treatment based upon the patient’s presentation.
- Discuss risks, benefits and therapeutic options with patients prior to implant therapy or with peri-implant diseases.

Introduction

Peri-implantitis has been defined as an inflammatory process that affects the soft and hard tissues surrounding an osseointegrated implant.
implant in function demonstrating loss of supporting marginal bone.3,20 Peri-implantitis is, in many ways, an analogous disease to periodontitis, in that it affects the hard and soft tissues around implants3 and is initiated by oral bacterial biofilms.6,21,22 The definitive treatment of peri-implantitis may be more challenging than that of periodontitis. In a recent review of studies examining peri-implantitis treatment with at least a one-year follow up, peri-implantitis was shown to be difficult to fully resolve with up to 100% of cases recurring with some treatment modalities.11 This indicates that frequent monitoring and retreatment of this chronic disease may be necessary. Furthermore, a practitioner’s ability to effectively treat peri-implantitis may differ based upon the severity of the presenting levels of attachment loss and the treatment modality used for treatment.8,11,24

Based upon this, early intervention and preventive therapy of peri-implant diseases should be an integral part of therapy to maintaining implants in health and function.8,25

There are several risk factors that can lead to inflammation, peri-implant mucositis, and, later, peri-implantitis.3,6,5 These include dental plaque accumulation, smoking, patients’ systemic health conditions, implant design, surgical technique, prosthetic design/procedures, and occlusal forces.6-8 While these systemic and environmental factors certainly play a role in disease progression and susceptibility, peri-implant diseases are initiated by accumulation of bacterial biofilm.3,9,10 Therapies to treat peri-implant diseases have focused upon dental plaque removal and implant surface detoxification as a part of surgical and/or nonsurgical treatments.4,12 Many methods have been used to remove bacteria from dental implant surfaces and the surrounding inflamed tissues. These include: mechanical debridement, chemical detoxification, and laser therapy.13,26-28 Laser is an acronym for “light amplification by stimulation of emission radiation.” The energy generated from the laser is delivered to the target, in this case bacteria, and the components of target tissues are vaporized. Lasers that have been used to perform implant surface detoxification include: Er:YAG, Nd:YAG, carbon dioxide, and diode lasers with or without photodynamic therapy. Currently, however, the data are not robust enough at this juncture to fully assess the efficacy all of these laser treatment modalities.3,11,13,14,18-20

While human clinical studies have investigated the use of laser therapy as an adjunct to non-surgical and surgical therapies to treat peri-implantitis, recent reviews do not draw a definitive conclusion about the long-term efficacy of laser therapy.13,14 As the number of endosseous dental implants placed continues to increase, the cumulative incidence of peri-implantitis is also increasing. It is thus critical to evaluate the current literature, scientific method of action, and determine adjunctive benefits of laser therapy in patients with peri-implantitis who may seek treatment.

Epidemiology of Peri-implant Diseases

Missing teeth and supporting structures lost to dental diseases and trauma have been replaced in myriad ways through fixed and/or removable dental prostheses. In 1977, Dr. P.I. Brånemark demonstrated that bone will integrate into the surface of endosseous titanium dental implants,29 and the modern era of root form endosseous dental implantology arose. It is estimated that up to 5 million dental implants are placed in the United States each year.30 While longitudinal survival rates of osseointegrated dental implants range between 90-95%,8,31 these numbers represent implants that are present and in function, but may not fully capture rates of peri-implant disease and or health. It is estimated that rates of peri-implantitis range from 10-47%32-34 and rates of peri-implant mucositis have been observed in up to 65% of subjects with dental implants.33 Furthermore, it has also been demonstrated that these peri-implant diseases are increased in patients who smoke and have a history of periodontal disease, which may increase the difficulty in treating these implants.35

Given the high prevalence of peri-implant diseases, surveillance, early identification of disease, and intervention is critical. A key factor in long-term success of implants is proper maintenance of their surrounding soft and hard tissues. It has been shown that
bacterial accumulation induces inflammatory changes in the tissues surrounding implants.38 Furthermore, it has been estimated that a monitoring program including regular examination and supportive implant therapy to identify and intercept peri-implant mucositis is highly cost-effective and the economic advantage is increased in high risk patients.39 In order to determine proper treatment steps to intervene for an implant with signs of peri-implant disease, it is essential to distinguish between “ailing” and “failing”/“failed” implants and progression of disease.

The primary etiology for both peri-implant and periodontal diseases is virulent bacterial plaque.38,40 While the inflammatory process that occurs around implants is similar to that around natural teeth, progression of disease is quicker in the peri-implant environment and the histologic peri-implant inflammatory lesions are larger and may prove more difficult to resolve at implant sites.41 This may relate to the peri-implant attachment apparatus and lack of a periodontal ligament as well as the unique implant-soft tissue interface.41 Multiple systematic reviews and randomized controlled trials have evaluated the efficacy of various treatment strategies for peri-implant diseases and identification of one ideal treatment strategy has proven elusive.42-44 Ideal therapy of peri-implantitis would result in active disease resolution (no suppuration, bleeding on probing, no further bone loss) and the establishment and maintenance of healthy hard and soft peri-implant tissues in a patient and clinical environment where plaque removal was feasible over time.42 Studies have shown that many therapies may be used to achieve these goals including nonsurgical and surgical interventions, alone or combined, including mechanical debridement, pharmaceutical therapy, laser therapy, and open flap debridement with either resective or regenerative procedures.45 This discussion will focus on laser interventions as an adjunct to improve overall implant health.

Peri-implant Mucositis

Peri-implant mucositis is an inflammatory lesion confined to the soft tissues surrounding an endosseous dental implant without loss of supporting bone loss (Figure 1). While this stage of disease may still be reversible, it has been noted that the inflammatory lesion seen in experimental peri-implant mucositis is larger than that seen in experimental gingivitis of the same chronicity and that resolution of the clinical signs of peri-implant mucositis requires a longer time period than the 21-day time period required for resolution of experimental gingivitis.46 This may indicate that more aggressive and/or invasive treatment may be indicated for such cases to allow for complete resolution of the defects; some authors have advocated earlier intervention, ideally as soon as disease is identified to prevent progression to bone loss and peri-implantitis.46,47 Several factors have been identified as risk factors and/or potential risk factors for peri-implant mucositis, including plaque biofilm accumulation, smoking, head

![Figure 1. Peri-implant mucositis clinical and radiographic presentation.](image-url)
if defects can be repaired. Additionally, assessment of the best treatment option for the individual patient and site should be undertaken. This assessment should include an evaluation of the implant and/or prosthetic component mobility, peri-implant defect dimensions, and condition of the implant should be undertaken to allow for optimal customization of the treatment protocol.

Risk Factors for Peri-implant Diseases

In clinical practice, achieving optimal oral health and esthetic results of implant procedures is dependent upon the patient, site, and treatment-related factors. Several risk factors are known to affect the development of peri-implant diseases. Factors that can negatively impact implant health and treatment outcomes include: systemic diseases, smoking status, plaque control, maintenance adherence, prosthetic design and occlusal overload, retained cement, soft tissue quality/quantity, and periodontal health. Due to these risk factors, proper patient selection, site development, and treatment planning are key to achieving high success rates and identification of early clinical signs of disease is critical to successful intervention for peri-implant diseases (Figure 3).

Peri-implantitis

Peri-implantitis is characterized by inflammation of peri-implant soft tissues and progressive loss of supporting bone that is often circumferential in nature (Figure 2). Histologically, peri-implant lesions with similar clinical characteristics often have larger inflammatory lesions than periodontitis lesions around teeth. At an implant presenting with clinical signs of inflammation and radiographic bone loss, systemic, oral and local risk factors should be assessed to determine all possible underlying etiologic factors. Initial therapy should include elimination of the etiologic factors to ensure success of reparative treatment, if necessary. Establishing ideal overall health, plaque control, and compliance with professional maintenance is critical to the long-term success of therapy. Once it is established that it is possible for the patient to maintain good oral health, site-specific assessment should be performed to determine if defects can be repaired.

Figure 2. Peri-implantitis clinical and radiographic presentation.
It has been shown that implant failure rates were similar for patients with well-controlled diabetes (HbA1C < 8%) and patients without diabetes; with failure rates in patients with Type 2 diabetes overall demonstrating a marginally significant increase in failures.\(^5\) Patients with uncontrolled diabetes may be poor implant and surgical candidates and demonstrate higher levels of early and late implant failures.\(^5\) In humans, hyperglycemia is known to impair wound healing, impair host defense against pathogens, prolong the inflammatory response to injury, and impair new bone formation and bone repair.\(^5\) The recommended osseointegration periods may be extended in diabetics due to this delay in wound healing caused by hyperglycemia.\(^5\) Future studies are needed to identify distinct cut-off points and quantify the risks, if any, associated with diabetes and development of peri-implantitis.

Osteoporosis may also potentially affect implant survival. Osteoporosis and osteopenia are diseases characterized by low bone mass and micro-architectural deterioration with a consequent increase in bone fragility and susceptibility to fracture.\(^5\) Osteoporosis is diagnosed when bone mineral density (BMD) is 2.5 standard deviations or more below mean for age and gender-matched individuals and osteopenia is characterized as BMD between 1 and 2.5 standard deviations.\(^5\) While osteoporosis/osteopenia have common risk factors with periodontal and peri-implant diseases, including cigarette smoking, dietary factors, and medications, periodontal disease has been independently associated with osteoporotic status.\(^5\) Peri-implantitis, periodontal disease and osteoporosis are mediated by similar dysfunction in the bone remodeling process and the interaction between these diseases may be expected. Patients with osteoporosis demonstrated decreased alveolar and axial bone density and mass and thinner cortical bone than healthy counterparts.\(^5\) To date, studies have not shown a definitive association of peri-implantitis with osteoporosis or osteopenia, although implant placement and use of bisphosphonate medications have been shown to potentially mitigate alveolar bone loss in osteoporotic patients.\(^3,61-63\)

Smoking Status and/or Tobacco Cessation

Smoking has been shown to have many negative effects on the oral cavity and wound healing after procedures, such as...
reduction in neutrophil chemotactic response, vasoconstriction, alterations in innate and adaptive immune response, an increase in number or proportion of periopathogenic bacteria, and a decrease in fibroblast number and collagen production. These effects of smoking can lead to chronic inflammation at periodontal and peri-implant tissues. Patients who smoke have been shown to have up to two times the failure rate of implants compared to non-smokers. Smoking itself, independent of periodontal health, is a predisposing factor in implant failure and development of peri-implant diseases. Smoking cessation is an important contributing factor to implant success; even though cessation cannot reverse past effects it can increase implant success rates to that of nonsmokers. Supportive implant therapy in patients who smoke has also shown a benefit in reducing rates of peri-implantitis that is of larger magnitude than that seen in non-smokers.

Periodontal Health
Periodontal diseases affecting teeth can similarly affect implants. A history of periodontitis is a risk factor for peri-implantitis. The primary cause of inflammation around peri-implant tissues is the presence of anaerobic bacteria and their byproducts. Findings suggest that bacteria associated with periodontal disease and peri-implant diseases are similar and the principal pathogens in peri-implant disease are *P. gingivalis* and *A. actinomycetemcomitans*. Colonization of dental implants with these bacterial species has been shown to occur within the first 28 days after exposure to the oral environment and bacteria can be transferred from distant reservoirs at tooth sites within a patient's mouth. Given the high prevalence of periodontal disease and the rate of tooth loss due to periodontal disease in adult patients, treatment of active periodontal disease and maintenance therapy of both natural dentition and/or dental implants is critical to overall implant success.

Plaque Control and Adherence to Regular Supportive Implant Therapy
Plaque control for the prevention and management of peri-implant mucositis is essential in the long-term maintenance of implants in health. Both patient-performed and professional plaque control can result in a reduction in clinical signs of peri-implant inflammation. Additionally, partially edentulous patients demonstrate higher rates of periopathogenic bacteria compared to fully edentulous patients likely resulting from transfer of bacteria and, in particular, pathogenic bacterial species from tooth sites to dental implant sites. Therefore, regular maintenance protocols which reduce overall bacterial loads are critical to reduce the transmission of periodontal pathogenic bacteria from active periodontal sites to implant sites in same mouth. Adherence to regular professional maintenance is key to detect and manage implants that are ailing or failing. A lack of adherence to supportive peri-implant therapies results in significantly higher frequencies of sites with mucosal inflammation and peri-implant bone loss. Therefore, tailored supportive peri-implant therapies, such as reinforcement of personalized oral hygiene instructions combined with professional implant and/or tooth cleaning, should be an integral part of implant therapy.

Prosthetic Design and Occlusal Load
It has been postulated that mechanical overloading is a contributing factor to many instances of peri-implant bone loss and late implant failures. Occlusal load is influenced by prosthetic design but hard to study due to lack of quantification of overload. Some studies indicate that micromotion at the implant-abutment interface compromises the establishment of implant osseointegration during early healing and that implants that have off-axis forces, such as a cantilever design demonstrate more peri-implant bone loss after loading. Despite being difficult to quantify occlusal overload in the literature, a systematic review concluded that occlusal overloading was associated with peri-implant marginal bone loss caused by microtrauma concentrated at the marginal bone. It follows that prosthetically-driven and biologically executed treatment planning as well as assessment of occlusal load, including inspection of implant prostheses for signs of potential grinding and other parafunctional habits and occlusal adjustment or prosthetic replacement when premature
contacts or interferences are present should be undertaken during the maintenance phase to insure optimal dental implant health.31

\textbf{Retained Cement}
Retained cement has been indicated in a large number of peri-implant disease cases. Many dental implant cements are radiolucent and residual cement may not be detected radiographically, particularly if present on the buccal and/or lingual of the fixture. Residual cement may be rough and allow bacterial attachment and, subsequently, peri-implant inflammation.79 Prosthesis design in combination with the additional irritant of subgingival cement may promote incomplete plaque removal due to the creation of non-cleansable sites.40 Peri-implant disease prevalence is significantly higher at fixtures with cement-retained versus screw-retained restorations79,81 and in a case-control study, within a group of implants with diagnosed peri-implantitis, 81\% had excess cement present compared to no retained cement found at healthy, control implants.82 Due to excess cement being a possible risk factor for peri-implant disease, it may be advisable to use screw-retained restorations when possible, practice techniques to avoid excess cement, allow for adequate soft tissue healing prior to seating of a permanent restoration, and allow for early follow up after initial restorative cementation to detect any early signs of cement retention.

\textbf{Peri-implant Soft Tissue Quality/Quantity}
While current evidence on the importance of keratinized and/or attached mucosa around teeth and implants for their health and survival is equivocal, it has been proposed that the establishment of a circumferential seal of tightly packed collagen around the implant-oral cavity interface may improve long-term implant success.83 Implant survival rates have been shown to be equivalent for implants placed in keratinized and alveolar mucosa, but increased radiographic bone loss and higher levels of gingival inflammation are associated with a lack of keratinized mucosa.84 While there are no definitive studies to conclude that there is a benefit when implants have an adequate band of fixed and/or keratinized mucosa, in patients with other risk factors, including increased plaque accumulation and previous history of periodontitis, increased keratinized and/or fixed mucosa may be protective to allow for personal and professional plaque removal.84

\textbf{Current Treatment Strategies for Peri-implant Diseases}
Peri-implant mucositis is a reversible condition of the soft tissues around an implant and implants exhibiting inflammation limited to soft tissue and implants with peri-implant mucositis are sometimes described as “ailing” implants.31 Clinical signs of peri-implant mucositis include presence of bleeding on probing, swelling of the peri-implant mucosa, increase of probing depth (pseudopockets), and/or erythema of surrounding tissues.85 Peri-implantitis is a bacterially-initiated, inflammatory condition of the tissues around osseointegrated implants characterized by progressive loss of supporting bone that is verified by radiographs and clinical signs of inflammation (bleeding and/or suppuration on probing).86 Implants with peri-implantitis are often categorized as “failing” implants and when these implants are refractory to treatment and/or present with clinical mobility they are classified as “failed.”87 Implants can fail at various stages in treatment and function. When implants fail due to lack of initial osseointegration, this is referred to as early implant failure. Early failures are influence by patient-specific impaired healing responses, acute infection, premature loading, and/or surgical trauma.88 Late failure of implants occurs after the initial phase of osseointegration, remodeling and loading. Late failures are associated with occlusal overload, fixture or prosthetic fracture, and peri-implant disease.89 Peri-implantitis has been seen in a mean of 22\% of implants in place and has been noted in 10\% of implants and 20\% of implant patients within 10 years of surgical implant placement.2,5,86 When either peri-implant mucositis or peri-implantitis is detected, it is imperative to initiate therapeutic intervention as soon as possible.42

Successful therapy to treat peri-implant disease can be assessed in a number of ways. Ideally, resolution of disease would mean absence of clinical inflammation (bleeding on probing) and a lack of progressive bone loss and/or regeneration of lost tissues.44 A systematic
review examining various methods to treat peri-implant disease included studies that reported on implant loss, mean probing depth, % of sites or implants with bleeding and/or suppuration on probing, and radiographic bone levels at 12 months (or longer) following treatment. Successful treatment outcomes were defined as: implant survival with no mean probing depths ≥ 5 mm and no further bone loss 12 months after treatment. Non-surgical treatment included debridement using manual or ultrasonic instruments, laser treatments in conjunction with local debridement, and adjunctive systemic or local application of antimicrobial agents. Successful treatment outcomes for nonsurgical therapy ranged from 0%-84%. Generally, these therapies were not successful at sites with initial peri-implantitis demonstrating extensive bone loss and/or deep probing depths. At these sites, additional surgical intervention has been demonstrated to be necessary. Surgical treatment of peri-implantitis included regenerative protocols, access surgery, and resective surgery. The success rates for regenerative surgery ranged from 0-100% and included treatments of bone grafting without membrane using xenograft, autograft, or combination, using non-resorbable membranes alone, resorbable membrane in combination with bone graft materials, or bone grafting in combination with subepithelial connective tissue graft. Non-resorbable membranes included in this analysis had a high rate of exposure and did not demonstrate significant clinical improvements. Access surgery using curettes for debridement of implant surface and saline soaked gauze for surface decontamination had success rate of 88% in achieving implant stability over time. Resective surgery alone demonstrated success rate of 0% due to bone loss over 3 years, while implantoplasty with resective surgery had success rate of 100% and bone level remained unchanged over 3 years. However, few implants were included in each group of treatment modalities and definitive identification of a superior therapy cannot be made from the current data.

Laser Therapy around Ailing/Failing Dental Implants

Although the long-term success of dental implants is relatively high and their function and utility have been widely documented, peri-implant diseases, including peri-implant mucositis and peri-implantitis, are common and can prove to be a clinical conundrum for practitioners. Laser, which is an acronym for “light amplification through stimulation of emission radiation”, therapy may be one of the therapeutic approaches to treat peri-implant disease as an adjunct to nonsurgical or surgical periodontal therapy. Commercially available lasers that have been used for implant surface disinfection include: carbon dioxide (CO₂), diode, erbium yttrium aluminum garnet (Er:YAG), and neodymium yttrium aluminum garnet (Nd:YAG). Each laser generally has a fixed wavelength that determined the properties of the laser beam and its effects on tissues, materials, and microbes (Figure 4). For example, certain laser types are utilized and designed to target certain substances or tissues, known as

Figure 4. Laser beam wavelength is one complete oscillation of the wave above the velocity axis. The most common range of wavelengths for lasers used in periodontology and implant dentistry ranges from 400 – 10,600 nm.
chromophores.104 These may include: water, blood, pigmentation, cell types, collagen, bone, minerals, and/or bacteria (Table 1).

Positive treatment outcomes have been recorded in many investigations of laser therapy for peri-implant diseases, confounding risk factors, short follow up periods, and lack of homogeneity and/or transparency in the laser therapy protocols may not allow generalizability of the current data. Current evidence also demonstrates inconsistent data regarding laser reduction of bacterial loads on tooth surfaces beyond that achieved with nonsurgical periodontal therapy alone.105,106 While further controlled, long-term studies are necessary to determine the overall efficacy of laser therapy in the treatment of peri-implant diseases, there is data regarding the short-term benefit of laser therapy.15,16

Types of Laser Therapy Utilized for Peri-implant Therapy

<table>
<thead>
<tr>
<th>Laser Type</th>
<th>Wavelength</th>
<th>Chromophore</th>
<th>Classification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diode</td>
<td>450-1064 nm</td>
<td>Melanin, hemoglobin</td>
<td>Hot; soft tissue</td>
</tr>
<tr>
<td>Neodymium yttrium aluminum garnet (Nd:YAG)</td>
<td>1064 nm</td>
<td>Melanin, hemoglobin</td>
<td>Hot; soft tissue</td>
</tr>
<tr>
<td>Erbium yttrium aluminium garnet (Er:YAG)</td>
<td>2940 nm</td>
<td>Water, hydroxyapatite</td>
<td>Cold; hard or all tissue</td>
</tr>
<tr>
<td>Carbon dioxide (CO\textsubscript{2})</td>
<td>9300 to 10,600 nma</td>
<td>Water, hydroxyapatite</td>
<td>Hot or cold; soft or all tissue</td>
</tr>
</tbody>
</table>

Diode lasers operate in the 800-1064 nm wavelength range. Diode laser mediums are semiconductor crystals and they target pigment in tissues and materials. Diode lasers may have to be “activated” using pigmented materials.16 Diode lasers have been used in combination with phenothiazine chloride dye, sometimes referred to as photodynamic therapy, to treat peri-implant diseases.104

Erbium yttrium aluminum garnet (Er:YAG) lasers operate at 2940 nm and have solid crystal mediums. These lasers are primarily absorbed in water and may be used as both hard and soft tissue lasers. Absorption of the laser beams occurs in hard tissues and titanium, which could lead to increased temperatures and/or surface melting if used at certain settings.104

Neodymium yttrium aluminum garnet (Nd:YAG) lasers use a solid crystal medium and have a wavelength of 1064 nm. Nd:YAG lasers are poorly absorbed by water and penetrate into soft tissues, allowing for their use in the peri-implant soft tissues.104
Lasers as an Adjunct to Non-surgical and Surgical Peri-implant Therapy

A variety of peri-implant treatments have been proposed including: nonsurgical therapy, open flap debridement, resective and regenerative procedures, implantoplasty, lasers for implant surface decontamination, and a combination of these therapies. It has been shown that peri-implant mucositis can be treated using nonsurgical treatment, but peri-implantitis generally requires surgical interventions. Adjunctive use of laser therapy has been shown to result in decreases in bleeding on probing at six months after treatment, but the effect on other clinical parameters demonstrated minimal benefit, if any. While the preponderance of the current literature body presented does not present definitive findings demonstrating a clinical or microbiological improvement after adjunctive laser therapy, laser therapy with appropriate wavelength and settings can be used effectively to detoxify titanium surfaces without alteration of the surface morphology. Additionally, some of the risks of laser therapy may be mitigated by the use of photodynamic therapy (PDT), which uses low-level laser therapy to perform surface decontamination. Recent in vitro studies have indicated that PDT may be more efficient than standard laser disinfection protocols without many of the associated risks. Additionally, given the current evidence, only Er:YAG, diode, and CO₂ lasers can be reliably assessed. Given the decreased risk of damage to tissues and implants with the use of appropriate time, wavelength, presence of cooling and laser power and the ability of the lasers to detoxify titanium surfaces, they may be a viable adjunctive therapy with nonsurgical and surgical implant treatment, although additional investigations are necessary to standardize protocols and classify expected outcomes.

Clinical Decision Making for Treatment of Patients with Peri-implant Diseases

Complications affecting implants are common and of concern for patients and practitioners alike. Proper maintenance of implants to insure health as well as identification and treatment of prosthetic and biologic complications is critical to the long-term function, esthetics, phonetics, and health of patients who have received endosseous dental implants for tooth replacement. It has been a great challenge of clinicians to properly manage and treat peri-implant disease. The decision tree presented here (Figure 5) was fabricated to guide treatment of these diseases and to possibly intervene at an earlier time point. It was found that other decision trees and case reports in the literature had shortcomings of starting their initial treatment at later steps of the disease process, like mobility. The goal of this course is to stress the importance of recognizing peri-implant disease at the earlier “ailing” phases and to start treatment immediately. Another goal is to outline clinical decisions for surgical intervention of “failing” implants. The decision tree in Figure 5 may help guide the management of clinical complications with implant therapy, such as peri-implant mucositis, peri-implantitis, and complete failure.

Summary

Peri-implant diseases have been classified into clinically distinct types based upon underlying etiology and disease progression. These distinct types of peri-implant disease have differing microbiota. Utilizing targeted implant wavelengths Early recognition of clinical signs and symptoms of peri-implant disease are critical to the overall success of treatment and allow for the most cost-efficient method of treatment. To facilitate diagnosis and treatment of peri-implant diseases, a decision matrix was formulated to allow for identification and treatment for ailing/failing implants. More studies are needed to quantify best treatment options in the varying clinical scenarios seen in practice.
Figure 5. Decision matrix for peri-implant conditions.
Course Test Preview
To receive Continuing Education credit for this course, you must complete the online test. Please go to: www.dentalcare.com/en-us/professional-education/ce-courses/ce564/start-test

1. The mean incidence of peri-implantitis has been reported to affect __________ % of all implants.
 A. 10
 B. 16
 C. 22
 D. 35

2. Definitive treatment of peri-implantitis has proven difficult and disease has been shown to recur in up to ________% of cases, depending upon the treatment modality used.
 A. 50%
 B. 60%
 C. 80%
 D. 100%

3. It is estimated that up to ________ dental implants are placed each year in the United States.
 A. 500,000
 B. 1 million
 C. 5 million
 D. 20 million

4. Peri-implant mucositis is defined as an inflammatory lesion confined to __________ without __________.
 A. The soft tissues; loss of supporting bone
 B. The coronal one-third of the implant; extension beyond the 4th thread
 C. A single implant in one patient; involvement of other sites in the mouth
 D. Demonstrating erythema and/or edema; bleeding or suppuration

5. Histologically, peri-implant lesions with similar clinical characteristics often have larger inflammatory lesions than periodontitis lesions around teeth.
 A. True
 B. False

6. All of the following have been associated with an increased risk of peri-implantitis, EXCEPT:
 A. smoking status,
 B. plaque control,
 C. maintenance adherence
 D. periodontal health
 E. All are associated with peri-implantitis

7. Failure rates for dental implants are increased in smokers up to ________ times.
 A. 1.5
 B. 2
 C. 5
 D. 10
8. How long does it take for periopathogenic bacteria to colonize dental implant components after their exposure to the oral environment?
 A. 14 days
 B. 28 days
 C. 3-6 months
 D. 12-24 months

9. In a case-control study, ________% of healthy implants and ________% of those diagnosed with peri-implantitis demonstrated retained cement upon surgical evaluation?
 A. 7%; 76%
 B. 25%; 88%
 C. 0%; 81%
 D. 14%; 94%

10. LASER is an acronym for:
 A. Light Amplification through Stimulation of Emission Radiation
 B. Light Augmentation Secondary to Emitted Radiation
 C. Light Agitation with Stagnation of Emission Radiation
 D. Light Alteration through Shifting of Emitted Radiation

11. Target tissues for lasers are also known as:
 A. Wavelengths
 B. Elements
 C. Chromophores
 D. Radiophores

12. Laser beam wavelength is one complete oscillation of the wave above the velocity axis. The most common range of wavelengths for lasers used in periodontology and implant dentistry ranges from 400 – 10,600 nm.
 A. Both statements are true.
 B. The first statement is true, the second statement is false.
 C. The first statement is false, the second statement is true.
 D. Both statements are false.

13. The term “photodynamic therapy” refers to:
 A. The use of two different types of lasers at once
 B. The use of lasers in combination with antimicrobial topical medicaments
 C. The use of CO₂ laser therapy during surgical debridement
 D. The use of diode lasers in combination phenothiazine chloride dye

14. Which of the following statements is true about Nd:YAG lasers:
 A. Absorption of the laser beam from Nd:YAG lasers occurs in hard tissues and titanium
 B. Nd:YAG lasers are poorly absorbed by water and penetrate into soft tissues
 C. The medium to create the laser beam is a gas that is cooled with either air or water
 D. All of the above

15. Adjunctive use of laser therapy has been shown to result in decreases in bleeding on probing at six months after treatment, but the effect on other clinical parameters demonstrated minimal benefit, if any.
 A. True
 B. False
References

Additional Resources
• No Additional Resources Available
About the Author

Maria L. Geisinger, DDS, MS

Dr. Geisinger is an Associate Professor at the University of Alabama at Birmingham (UAB) in the Department of Periodontology where she teaches a broad range of classes and serves as the Director of the Advanced Education in Periodontology Program. She received her Bachelor's of Science in Biology from Duke University graduating cum laude and completed her dental training at Columbia University College of Dental Medicine. She completed her Certificate in Periodontology and Master's of Clinical Science at the University of Texas Health Science Center in San Antonio. Dr. Geisinger is a Diplomate in the American Board of Periodontology. In her role at UAB, she is involved in clinical and translational research. Her research focuses on periodontal-systemic interactions, periodontal regenerative therapies, implant dentistry, and educational technology. She serves on the ADA’s Council on Scientific Affairs, is the Chair of the ADA’s Seal Subcommittee, is a member of the American Academy of Periodontology (AAP)’s Board of Trustees, is the Chair of the AAP’s task force for Women in Periodontics, and is the Immediate Past President of the American Academy of Periodontology Foundation (AAPF). She has lectured nationally and internationally on a broad range of subjects in periodontology, dental education, and oral and overall health.

Email: miagdds@uab.edu