
WHITEPAPER

Why AI Systems Fail—And How Real-Time 
Data Fixes Them



Your company has invested in a sophisticated customer service chatbot, combining 
the latest large language model with a vector database containing years of indexed 
support tickets. The system handles complex product questions and 
troubleshooting scenarios with impressive accuracy. Yet when a long-time premium 
customer asks about their recent order, the bot fails in the most basic way possible 
- it treats them like a stranger, unable to access their current order status or 
account details. In an instant, your significant AI investment transforms from an 
efficiency driver into a frustration generator.


While advances in generative AI and large language models have captured 
headlines and imagination, the success of AI applications hinges on their ability to 
ground responses in current reality.


The challenge runs deeper than simple data freshness. Modern AI systems are 
increasingly complex orchestrations of multiple components - vector databases 
storing historical knowledge, language models processing queries, and operational 
databases tracking current state. Each component might work perfectly in isolation, 
yet the system as a whole fails because it can't maintain a consistent view of 
rapidly changing business data.


Consider what happens when multiple AI agents need to coordinate actions based 
on rapidly changing data. A pricing algorithm adjusts product costs based on 
inventory levels, while simultaneously, a recommendation system suggests 
products to customers, and a supply chain AI manages restock orders. Without 
fresh, consistent data, these systems can work at cross-purposes – the pricing 
engine might drop prices on items that are running low, while the recommendation 
system pushes those same products to more customers, creating a cascade of 
inventory problems.


Traditional data architectures weren't built for these demands. Data warehouses 
update on fixed schedules, creating gaps between reality and decision-making. 
Streaming platforms can process fresh data but introduce eventual consistency 
issues, forcing teams to implement complex synchronization logic. Caching layers 
provide quick access to frequently needed data but risk serving stale results if not 
meticulously invalidated.


Materialize, a real-time data integration platform, addresses these challenges 
through a fundamentally different approach to data management. Rather than 
forcing AI systems to repeatedly query production databases or work with stale 
cache data, Materialize maintains continuously updated views of your operational 
data with strong consistency guarantees. Materialize uniquely addresses three 
critical requirements that AI systems need to deliver reliable, real-time responses

 Fast Queries for Online Inference: AI systems need to respond in milliseconds, 
not seconds. Through incremental view maintenance, Materialize delivers 
instant query results that support real-time inference without repeatedly hitting 
production systems.

Why AI Systems Break


Materialize: Rethinking Data for AI


© 2025 Materialize 1



 Fresh Data That Matches User Expectations: Users expect AI responses to 
reflect their most recent interactions and current system state. Materialize 
ensures AI systems always work with up-to-date data, maintaining user trust 
and enabling meaningful interactions

 Correct Data for Reliable Responses: Consistency isn't just a technical 
requirement—it's essential for building trust in AI systems. Materialize maintains 
a globally consistent view of your data, ensuring all AI components work from 
the same understanding of current state.


When these three capabilities intersect, they create something more powerful: a 
complete operational data system that can serve as the foundation for reliable AI 
applications.


The emergence of vector databases has revolutionized how AI systems access and 
understand unstructured information. These specialized databases excel at storing 
and retrieving high-dimensional embeddings derived from documents, web pages, 
and historical data, enabling sophisticated semantic search and contextual 
understanding. They form the bedrock of modern retrieval-augmented generation 
(RAG) systems, providing the deep subject matter expertise that allows AI models 
to ground their responses in authoritative content.


Yet vector databases alone aren't enough. While they excel at managing the "what" 
and "why" of your domain knowledge, they lack the crucial element of "now" – the 
operational context that turns general knowledge into actionable insights. This is 
where Materialize enters the equation, not as a competitor to vector databases, but 
as a crucial complementary technology.


The transformation that occurs when combining vector databases with operational 
data is profound. Consider this example of an e-commerce assistant responding to 
a simple product inquiry:


Without operational data, the AI assistant works solely from static knowledge:

The Power of Complementary Technologies


© 2025 Materialize 2

Prompt:

You are a helpful assistant for an e-commerce site. Based on 
the following retrieved documents:

1. Inventory Report: 'As of this morning, 10 Deluxe Espresso 
Machines were in stock in the central warehouse.'

2. Shipping Policy: 'Standard delivery takes 3–5 business 
days. Expedited delivery may be available in some 
locations.'



The user is asking: 'How many of the Deluxe Espresso 
Machines are available for delivery, and what's the 
estimated delivery time for my address?'

text



Now watch how the response transforms when the same vector-retrieved 
knowledge is enriched with actionable operational data:

© 2025 Materialize 3

Response:

As of this morning, there are 10 Deluxe Espresso Machines in 
stock in the central warehouse, so they are available for 
delivery.



The estimated delivery time depends on the shipping option 
you choose:

- Standard delivery: 3–5 business days

- Expedited delivery: May be available in some locations

Prompt:

You are a helpful assistant for an e-commerce site. Based on 
the following retrieved documents and real-time data:

1. Inventory Report: 'As of this morning, 10 Deluxe Espresso 
Machines were in stock in the central warehouse.'

2. Shipping Policy: 'Standard delivery takes 3–5 business 
days. Expedited delivery may be available in some 
locations.'

3. Live Inventory: 'Currently, 7 Deluxe Espresso Machines 
are in stock.'

4. Customer Data: 'User is located in Brooklyn, NY, and has 
Gold Membership status.'

5. Delivery Rules: 'Free next-day delivery is available for 
Gold Members in Brooklyn.'



The user is asking: 'How many of the Deluxe Espresso 
Machines are available for delivery, and what's the 
estimated delivery time for my address?'



Response:

Currently, 7 Deluxe Espresso Machines are available for 
delivery.

text



The difference is striking. The first response, while accurate to its knowledge base, 
offers only generic information. The second response, enriched with operational 
data from Materialize, delivers precisely what the customer needs to know: current 
availability, personalized delivery options, and actionable next steps. This 
transformation from general knowledge to specific, actionable insight is what drives 
conversion rates and customer satisfaction.


At the heart of solving this challenge lies a fundamental shift in how we process 
and maintain data views. Traditional systems face a brutal choice: either recompute 
entire result sets when data changes, leading to high latency and resource 
consumption, or accept eventual consistency and deal with the resulting 
complexity. Materialize takes a different approach, leveraging sophisticated 
incremental view maintenance to process only the necessary updates while 
maintaining strong consistency guarantees.


Consider this view definition, which maintains an active customer profile combining 
transaction history, current activity, and segmentation logic:

Incremental View Maintenance at Scale


© 2025 Materialize 4

Since you're located in Brooklyn, NY, and have Gold 
Membership status, you qualify for free next-day delivery. 
If you place your order today, your Deluxe Espresso Machine 
will be delivered by tomorrow.

CREATE MATERIALIZED VIEW customer_360 AS

WITH recent_orders AS (

    SELECT 

        customer_id,

        COUNT(*) as order_count,

        SUM(order_amount) as total_spent,

        MAX(order_time) as last_order_time

    FROM orders

    WHERE order_time >= MZ_NOW() - INTERVAL '30 days'

    GROUP BY customer_id

),

customer_segments AS (

    SELECT 

        customer_id,

text



When this view is created, Materialize doesn't just execute the query once. Instead, 
it builds an internal representation that tracks dependencies and maintains efficient 
indexes. As new orders arrive, shopping carts update, or customer information 
changes, Materialize automatically updates only the affected portions of the view. 
This approach delivers consistent sub-second query response times even as data 
volumes and complexity grow.


Materialize does all of this by reimagining of how databases process changing data. 
While traditional systems struggle with balancing freshness against performance, 
Materialize addresses these limitations through two key innovations.

The Technical Foundation: How Materialize Works


© 2025 Materialize 5

       CASE 

            WHEN total_spent > 10000 THEN 'platinum'

            WHEN total_spent > 5000 THEN 'gold'

            ELSE 'standard'

        END as segment,

        order_count,

        last_order_time

    FROM recent_orders

)

SELECT 

    c.customer_id,

    c.email,

    c.signup_date,

    cs.segment,

    cs.order_count,

    cs.last_order_time,

    i.items_in_cart,

    i.cart_value

FROM customers c

LEFT JOIN customer_segments cs ON c.customer_id = 
cs.customer_id

LEFT JOIN active_shopping_carts i ON c.customer_id = 
i.customer_id;



Differential Dataflow: Making Complex SQL Efficient 


Virtual Time: Consistency Without Compromise


Beyond Consistency: Joins Across Data Sources


The first innovation of Materialize comes from differential dataflow - a computation 
model that rethinks how we process changing data. Instead of doing heavy 
computation when you need answers, differential dataflow does a small amount of 
work every time your data changes, precisely tracking how each change affects 
your results. By understanding exactly what changed, the system updates only 
what's necessary - whether you're doing complex multi-way joins, window 
functions, or even recursive queries for hierarchical data.


Think of it like keeping your house organized: rather than letting things pile up and 
doing a big cleanup when guests arrive, you do a little work each time something 
changes. When you need answers, they're already there. This "write-time" 
approach means queries return instantly, making it perfect for AI systems that need 
fast, consistent access to complex derived data.


And to keep the system cost effective, differential dataflow shares state between 
operators. Each piece of computation happens exactly once and gets reused 
wherever needed. For example, if multiple views need the same join result, that 
work is shared. This means even sophisticated materialized views stay efficient as 
your data and query complexity grow.


Materialize's virtual time system introduces a structure that solves one of the 
hardest problems in distributed systems: maintaining consistency across 
components without forcing them to synchronize. By placing every update on a 
common timeline with explicit timestamps, different parts of the system can 
process data at their own pace while still guaranteeing consistent results.


For AI applications that need to combine data from multiple sources - customer 
records, inventory levels, real-time signals - this means getting fresh, consistent 
data without the traditional performance overhead of coordination. Every query 
sees a correct view of your data at a specific point in time, even as the underlying 
systems update independently.


The true power of this approach becomes apparent when we consider real-world AI 
applications that need to combine data from multiple sources. Take an e-commerce 
recommendation engine that must merge active user behavior, product catalog 
data, inventory levels, and pricing rules. Traditional architectures would require 
complex ETL pipelines or accept significant delays between updates. Materialize 
instead maintains materialized views that span multiple data sources while 
preserving incremental updates and strong consistency guarantees.


Here's how this works in practice:

© 2025 Materialize 6



© 2025 Materialize 7

CREATE MATERIALIZED VIEW product_recommendations AS

WITH user_interests AS (

    SELECT 

        user_id,

        product_id,

        COUNT(*) as view_count,

        MAX(view_time) as last_viewed

    FROM user_product_views

    WHERE view_time >= MZ_NOW() - INTERVAL '24 hours'

    GROUP BY user_id, product_id

),

product_scores AS (

    SELECT 

        ui.user_id,

        ui.product_id,

        p.category,

        p.brand,

        ui.view_count,

        i.available_quantity,

        pr.current_price,

        (ui.view_count * 0.3 + 

         CASE WHEN i.available_quantity > 0 THEN 0.4 ELSE 0 
END +

         CASE WHEN pr.current_price < pr.list_price THEN 0.3 
ELSE 0 END

        ) as recommendation_score

    FROM user_interests ui

    JOIN products p ON ui.product_id = p.id

    JOIN inventory i ON p.id = i.product_id

    JOIN pricing pr ON p.id = pr.product_id

)

SELECT 

    user_id,

    product_id,

    category,

    brand,

    recommendation_score,

text



This view combines streaming user behavior data with reference data from multiple 
databases, maintaining recommendations that reflect both user interests and 
business constraints like inventory availability and pricing rules. When a user views 
a product or inventory levels change, only the affected recommendations are 
recomputed, ensuring efficient resource utilization while maintaining consistency.


The most sophisticated AI implementations often involve multiple specialized 
agents working in concert. A modern e-commerce platform might employ separate 
AI systems for inventory optimization, dynamic pricing, fraud detection, customer 
service, and delivery routing. Without a unified data foundation, these agents can 
work at cross-purposes, leading to situations where the pricing engine drops prices 
on items the inventory system knows are running low, or the customer service bot 
promises availability it can't verify.


Materialize addresses this orchestration challenge by providing a consistent data 
plane that all agents can trust. Consider this view that maintains a unified 
operational state:

Orchestrating the AI Ensemble


© 2025 Materialize 8

    ROW_NUMBER() OVER (

        PARTITION BY user_id 

        ORDER BY recommendation_score DESC

    ) as rank

FROM product_scores;

CREATE MATERIALIZED VIEW operational_state AS

SELECT 

    p.product_id,

    p.name,

    p.category,

    i.quantity_available,

    i.reorder_point,

    pr.current_price,

    pr.min_price,

    pr.max_price,

    o.pending_orders,

    o.shipping_backlog,

    r.regional_demand,

text



This view combines streaming user behavior data with reference data from multiple 
databases, maintaining recommendations that reflect both user interests and 
business constraints like inventory availability and pricing rules. When a user views 
a product or inventory levels change, only the affected recommendations are 
recomputed, ensuring efficient resource utilization while maintaining consistency.


The most sophisticated AI implementations often involve multiple specialized 
agents working in concert. A modern e-commerce platform might employ separate 
AI systems for inventory optimization, dynamic pricing, fraud detection, customer 
service, and delivery routing. Without a unified data foundation, these agents can 
work at cross-purposes, leading to situations where the pricing engine drops prices 
on items the inventory system knows are running low, or the customer service bot 
promises availability it can't verify.


Materialize addresses this orchestration challenge by providing a consistent data 
plane that all agents can trust. Consider this view that maintains a unified 
operational state:

Orchestrating the AI Ensemble


© 2025 Materialize 9

    ROW_NUMBER() OVER (

        PARTITION BY user_id 

        ORDER BY recommendation_score DESC

    ) as rank

FROM product_scores;

CREATE MATERIALIZED VIEW operational_state AS

SELECT 

    p.product_id,

    p.name,

    p.category,

    i.quantity_available,

    i.reorder_point,

    pr.current_price,

    pr.min_price,

    pr.max_price,

    o.pending_orders,

    o.shipping_backlog,

    r.regional_demand,

text



For a network of inventory management agents:

In both cases, Materialize maintains these views incrementally, ensuring that 
whether it's a language model seeking context for a response or an autonomous 
agent making inventory decisions, the necessary information is instantly available 
without redundant computation. This architectural pattern transforms how AI 
systems interact with operational data, making actionable data intelligence 
sustainable at scale.


As organizations expand their AI initiatives, they quickly encounter a hidden scaling 
challenge. Each new AI agent—whether handling fraud detection, inventory 
optimization, or dynamic routing—introduces additional load on production 
systems. Every query or computation adds latency, consumes resources, and often 
duplicates work already being performed by other agents. The

Scaling AI: The Challenge of Agentic Load


© 2025 Materialize 10

    c.segment,

    o.latest_order_status,

    t.open_ticket_count,

    i.items_in_cart

FROM customers c

LEFT JOIN orders o ON c.customer_id = o.customer_id

LEFT JOIN tickets t ON c.customer_id = t.customer_id

LEFT JOIN shopping_carts i ON c.customer_id = i.customer_id;

CREATE MATERIALIZED VIEW inventory_insights AS

SELECT

    product_id,

    warehouse_id,

    current_stock,

    reorder_point,

    CASE 

        WHEN current_stock < reorder_point THEN 'reorder'

        WHEN current_stock < safety_stock THEN 'warning'

        ELSE 'normal'

    END as stock_status

FROM inventory_levels;

text



cumulative effect can quickly become unsustainable, turning what should be a 
transformative technology into a operational burden.


Materialize fundamentally reimagines how AI agents interact with operational data. 
Instead of each agent repeatedly executing expensive computations against 
production systems, Materialize shifts this computational burden to its specialized 
actionable data data engine. Through intelligent pre-computation and incremental 
maintenance, it transforms what would be repeated, resource-intensive queries into 
near-instantaneous lookups against continuously updated views.


Consider a real-world example: multiple AI agents monitoring inventory levels 
across a network of warehouses. Without proper architecture, each agent might 
independently query for current stock levels, recent sales, and incoming shipments
—repeatedly triggering expensive joins and aggregations that strain the production 
database. Here's how Materialize transforms this scenario:

© 2025 Materialize 11

CREATE MATERIALIZED VIEW inventory AS

WITH current_inventory AS (

  SELECT 

    product_id, 

    SUM(quantity) AS total_inventory

  FROM inventory

  GROUP BY product_id

),

recent_sales AS (

  SELECT 

    product_id, 

    SUM(quantity_sold) AS recent_sales

  FROM sales

  WHERE sale_time >= MZ_MZ_NOW() - INTERVAL '1 hour'

  GROUP BY product_id

),

recent_shipments AS (

  SELECT 

    product_id, 

    SUM(quantity_received) AS recent_shipments

  FROM shipments

  WHERE shipment_time >= MZ_MZ_NOW() - INTERVAL '1 hour'

  GROUP BY product_id

)

SELECT

text



This view encapsulates complex business logic—combining current inventory 
levels, recent sales trends, and incoming shipments to calculate turnover ratios and 
rankings. Rather than having each AI agent independently compute these metrics, 
Materialize maintains this view incrementally, updating it automatically as new data 
arrives. Every agent accessing this view gets instant, consistent access to the 
latest insights without additional computational overhead.


The impact on system performance and scalability is transformative. Organizations 
can deploy more AI agents, tackle more complex use cases, and process higher 
data volumes without the traditional exponential increase in infrastructure costs. 
When market conditions shift, online orders spike, or supply chain disruptions 
occur, the system maintains its responsiveness—each materialized view updates 
automatically, providing agents with current insights at near-constant latency.

© 2025 Materialize 12

  p.product_id,

  p.product_name,

  p.category,

  ci.total_inventory,

  COALESCE(rs.recent_sales, 0) AS recent_sales,

  COALESCE(rsh.recent_shipments, 0) AS recent_shipments,

  CASE 

    WHEN ci.total_inventory > 0 

    THEN (COALESCE(rs.recent_sales, 0)::float / 
ci.total_inventory)

    ELSE 0

  END AS turnover_ratio,

  RANK() OVER (

    PARTITION BY p.category 

    ORDER BY 

      CASE 

        WHEN ci.total_inventory > 0 

        THEN (COALESCE(rs.recent_sales, 0)::float / 
ci.total_inventory)

        ELSE 0

      END DESC

  ) AS turnover_rank

FROM products p

  LEFT JOIN current_inventory ci ON p.product_id = 
ci.product_id

  LEFT JOIN recent_sales rs ON p.product_id = rs.product_id

  LEFT JOIN recent_shipments rsh ON p.product_id = 
rsh.product_id

ORDER BY p.category, turnover_rank;



This architectural approach fundamentally changes the economics of AI 
deployment. Instead of each new agent adding computational burden to production 
systems, organizations can scale their AI initiatives while maintaining lean, efficient 
operations. The result is an AI infrastructure that delivers not just actionable data, 
but sustainable, cost-effective performance at scale.


The journey to effective AI implementation begins with identifying where stale or 
inconsistent data limits your current capabilities. Perhaps it's a customer service 
system that can't access current order statuses, a recommendation engine working 
from outdated inventory data, or trading algorithms operating on delayed market 
feeds. These pain points are opportunities for transformation, chances to 
demonstrate how fresh, consistent data can elevate AI from an interesting 
technology to a reliable driver of business value.


The future of AI isn't just about bigger models or more sophisticated algorithms. It's 
about grounding those capabilities in reality, ensuring every interaction, 
recommendation, and decision reflects the current state of your business. With the 
right data foundation, that future is within reach today.

The Path Forward


© 2025 Materialize 1


	cover
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13

