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What companies do varies incredibly widely. When it comes to their data, though, what 
companies need is remarkably similar:

•	 Consistency: Both operational and business data must be trustworthy and consistent.

•	 Agility:	Teams need to minimize the time it takes to build and modify real-time data 
pipelines (and the transformations that happen within them).

•	 Data	democratization:	Most companies need to create and compose data assets in a self-
service way and apply them for everything from tracking fast-moving inventory to providing 
fresh context for AI/ML.

•	 Few	resource	constraints: Companies aren’t in the data business. They need data tools 
that don’t require dedicated technical expertise.

Engineering teams we’ve talked to tell us they are spending too much time and money on the 
complicated, undifferentiated work of building, configuring, and maintaining a set of services 
in and around integrating, transforming, and delivering fresh data. One common way we see 
people solve this problem is by adopting stream processors like Apache Flink, which still require 
external support services like storage, orchestration, and some sort of serving layer.

Materialize	vs	Flink:	Key	decision	factors

•	 Development	velocity: Enterprise customers deploying Materialize in production 
report approximately 50% faster deployment cycles than their previous Flink 
installs.

•	 Cost	efficiency: These same customers say that deploying Materialize is 
45-50% of the cost they experienced deploying a stream processor like Flink   

•	 Data	consistency: Materialize provides strict serializability vs. Flink’s eventual 
consistency

•	 Team	accessibility:	Standard Postgres SQL-only (Materialize) vs. JVM 
programming and the FlinkSQL dialect (Flink)

•	 Consistency: Guaranteed global consistency through strict serializeability 
(Materialize) vs. eventual consistency through “exactly-once state semantics” 
(Flink) 

•	 Composability	for	higher	order	data	products: Materialize’s strict consistency 
model makes Materialize views safe to compose, cache, and expose to 
applications or agents vs Flink’s fundamental timing inconsistencies break 
system composability.
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Introduction
Apache Flink is a distributed stream processing framework for stateful computations over 
unbounded and bounded data streams. Flink specializes in stream processing, but it relies on 
other datastores for serving real-time data, which may not be optimized for that purpose. 

Materialize is a SQL-based real-time data integration and transformation platform that 
combines cloud storage, incremental view maintenance, and a built-in, Postgres-compatible 
serving layer. This design enables streaming data processing within a single framework, 
reducing complexity and cost. 

Not quite an apples-to-apples comparison
Before we dig into the gritty details of each platform, it’s important to understand that when 
comparing Flink and Materialize we are comparing a stream processor and a real-time data 
integration platform:

•	 Stream	processors	handle the core data transformation, but they also rely on Kafka for 
intermediate storage, and some type of serving layer (i.e. a separate database, or a Redis-
like tool). In practice, stream processors work in a context of multiple supporting services: 

•	 Materialize	is one tier up in the software abstraction stack. Materialize combines the 
compute, orchestration, and load balancing into one platform, so users see a unified 
real-time data integration and transformation platform that presents as a SQL database.
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The functional difference between Flink and Materialize is fundamental: 

Flink delivers raw stream processing. It functions as the compute layer, and requires external 
services to materialize data views: a message bus or CDC connector (e.g., Kafka, Debezium) as 
the input layer, and an output system (e.g., Kafka, Elasticsearch, a database) to persist results.

Materialize’s database abstraction means Materialize doesn’t deliver raw stream processing. 
At the heart of Materialize, Timely Dataflow, is mature and stable open source software 
originally developed at Microsoft Research starting more than a decade ago. Materialize’s 
platform builds the database abstractions and distributed architecture around this core stream 
processing library.

For	the	user,	Materialize	presents	as	a	Postgres	wire-compatible	data	streaming	platform	
with	incrementally	—	and	continually	—	updated	materialized	views.	This	means	you	can	
store	raw	data,	transform,	and	serve	all	within	a	single	system.

Architecture and system integration
Materialize hides the complexity of a stream processor behind a database abstraction — a 
fundamental shift in real-time data processing — because we think that this is the best 
abstraction to serve the broad majority of operational data use cases. Use cases that your 
engineering teams are likely grappling with right now, because so far they are not served well 
by traditional databases (wrong computation paradigm). Stream processors like Flink represent 
a step in the right direction, but they create complexity by requiring a system of services.

Apache Flink: Capabilities and architectural constraints

Apache Flink operates as a distributed stream processing engine with a clear architectural 
boundary: it processes data in motion without persistence or native query capabilities.

Understanding Flink’s design reveals both its strengths and the infrastructure requirements it 
imposes. A production Flink deployment follows a three-tier architecture.

1.	 Input Layer: Data ingestion occurs through message buses like Kafka or change data capture 
systems such as Debezium. These systems provide the streaming data interface, handling 
backpressure, partitioning, and initial fault tolerance.

2.	 Compute Layer: Flink job clusters execute the core stream processing logic. The engine excels at 
complex event processing, windowing operations, and stateful computations with exactly-once 
processing guarantees. However, Flink only maintains any transient state required for computation 
and immediately forwards results downstream.

3.	 Output Layer: Processed results must be materialized in external systems — additional Kafka 
topics, Elasticsearch clusters, or traditional databases. This externalization is mandatory since Flink 
provides no native storage or query interface.

https://timelydataflow.github.io/timely-dataflow/
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This multi-tier architecture creates several operational implications:

•	 Chaining	jobs	is	complex.	Multi-stage processing pipelines require external coordination 
through intermediate storage systems. Each stage boundary introduces network I/O, 
serialization overhead, and additional failure points. Pipeline orchestration becomes a 
distributed systems problem requiring careful attention to backpressure propagation and 
failure recovery across system boundaries.

•	 There’s	no	native	support	for	querying. Consuming processed data from Flink for business 
intelligence requires additional infrastructure investment. Real-time dashboards, 
operational APIs, and ad-hoc analytics require separate query-serving systems that read 
from Flink’s outputs. This typically involves data warehouses, search indices, or purpose-
built serving layers.

•	 Operational	boundaries	are	unclear. System availability depends on the coordinated 
operation of multiple independent components. Each system in the pipeline maintains its 
own durability guarantees, backup procedures, and failure modes. Operational teams must 
understand and manage the combined reliability characteristics of the entire stack.

Flink provides sophisticated stream processing primitives, but assembling 
a robust, composable, and queryable real-time data system with Flink can 
be complex and cumbersome because it requires managing multiple 
moving parts.

THE	UPSHOT:

The real-time data integration approach: Materialize

Materialize consolidates traditional stream processing architecture by integrating ingestion, 
computation, storage, and serving all within a unified system boundary. 

The platform’s separated storage, compute, and serving planes all operate and scale 
independently, so you can ingest arbitrary volumes of data to elastic storage (for example: S3), 
then spin up unlimited numbers of compute instances to read from, transform, and write this 
data back — and you can serve results to as many concurrent connections as you like.

•	 Unified	data	model:	Sources — Kafka topics, PostgreSQL tables, MySQL databases — 
connect directly through change data capture protocols. But unlike Flink’s ephemeral 
processing model, this data is persisted durably within Materialize itself. PostgreSQL 
changes and Kafka events are maintained as first-class data within a single system 
boundary — eliminating the overhead and complexity of coordinating external services for 
data availability.
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•	 Incremental	materialization:	In Materialize, the system maintains materialized views, live 
reports that update continuously as source data changes. This differs fundamentally from 
traditional batch materialization because Materialize updates the current view with each 
new event, but with much greater efficiency — only processing any incremental changes 
rather than doing a full recomputation.

•	 Virtual	time	ensures	global	consistency: Virtual time is a technique for distributed systems 
where events are timestamped prescriptively rather than descriptively. Materialize uses 
virtual time to efficiently compute, maintain, and return the specific correct answers 
at specific virtual times by recording, transforming, and reporting continually evolving, 
explicitly timestamped histories of collections of data. These explicit histories eliminate any 
potential concurrency by promptly and unambiguously communicating the exact contents 
of a collection at each of an ever-growing set of times.

•	 Native	query	interface: Materialized views support direct SQL querying through standard 
database protocols (PostgreSQL wire protocol compatibility). This enables immediate 
consumption by existing business intelligence tools, application frameworks, and analytical 
workloads without additional serving infrastructure.

Key architectural advantages
Materialize’s real-time model consolidates multiple operational concerns within a single system 
boundary, creating distinct advantages and constraints:

•	 Operational	simplification:	Materialize’s single system boundary means that platform teams 
manage just one system instead of needing to coordinate external state stores 
or intermediate topics. 

•	 Incremental	computation	with	durability:	Inputs are ingested once and retained as needed 
for recomputation or recovery.

•	 Direct	interactivity:	Queries can be executed directly against maintained views. This 
enables use cases like operational dashboards, AI feature stores, or real-time APIs with no 
additional infrastructure.

Materialize’s real-time data integration platform minimizes architectural 
sprawl, reduces operational cost, and allows teams to focus on business 
logic instead of pipeline plumbing.

THE	UPSHOT:

https://dl.acm.org/doi/10.1145/3916.3988
https://materialize.com/blog/virtual-time-consistency-scalability/
https://materialize.com/blog/virtual-time-consistency-scalability/
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Consistency & composability

Flink’s consistency model: Guarantees vs. observable behavior

Flink’s “exactly-once state semantics” represents one of the most frequently cited — and 
misunderstood — guarantees in stream processing. The core limitation lies in when outputs 
become visible and how they align across jobs.

•	 Internal	consistency	mechanics:	Flink achieves globally consistent state snapshots within 
individual jobs through its distributed snapshot algorithm, derived from the Chandy-
Lamport protocol. This ensures that internal state across all parallel operators reflects a 
coherent point in the data stream at checkpoint time. The algorithm is sophisticated and 
works reliably for Flink’s internal bookkeeping.

•	 Compromised	output	visibility:	The challenge emerges when considering how and when 
processed results become observable downstream. Flink sinks emit data as it flows through 
the processing topology, operating independently of the snapshot boundaries that govern 
internal consistency. And multiple Flink applications that process the same inputs may do 
so at different times and produce results in differing orders. This fundamental asynchrony 
creates a disconnect between internal state consistency and external output visibility.

•	 Transaction	boundary	loss: Consider a common scenario where upstream database 
transactions contain multiple related changes—perhaps updating both an account balance 
and transaction log simultaneously. When Flink processes CDC events from this database, 
it cannot guarantee that these related changes appear together in downstream systems. 
The processing topology may emit one change before the other, breaking the original 
transactional relationship.

Operationally, this results in eventual consistency — outputs appear when convenient, not 
when correct, as researcher Jamii Brandon succinctly puts it. The implications extend beyond 
individual jobs: downstream consumers cannot safely compare or join outputs from separate 
Flink jobs, and they can’t infer or determine consistency boundaries through observation alone.

Composability	breakdown: These fundamental timing inconsistencies break system 
composability. Building higher-order data products means combining multiple Flink job outputs 
— creating systems that quickly become difficult to reason about. Teams often discover 
correctness issues only after deploying complex multi-job pipelines, leading to expensive 
architectural remediation or acceptance of data inconsistency.

While Flink does support batch / adhoc queries, it is really not built to easily go back and forth 
— i.e., you can’t create a streaming view and then easily query it to test results. This is because 
Flink doesn’t include storage so you always have to connect to external services, even if you 
are just chaining Flink jobs. Also, Flink does not have drivers. You aren’t going to query Flink 
from a programming language — you are going to sink results into some third-party system and 
then read the data using that system’s integrations.

https://www.scattered-thoughts.net/writing/internal-consistency-in-streaming-systems/
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Materialize’s consistency architecture: Strict serializability

Materialize handles consistent with a fundamentally different architectural approach: strict 
serializability across all system components with a global logical timeline:

•	 Global	timeline	model:	Every batch of input data receives a logical timestamp within 
a unified global timeline. This timeline serves as the consistency foundation for all 
downstream processing, ensuring that computations across different views or queries 
reflect identical points in logical time.

•	 Synchronized	view	updates:	All materialized views update atomically at single logical 
timestamps. When source data changes, related views progress together through the 
timeline, eliminating the asynchrony that creates consistency gaps in traditional stream 
processing. Applications reading across multiple views observe a coherent snapshot of the 
data state.

•	 Transactional	integrity	preservation:	When ingesting data through change data capture, 
Materialize maintains the transactional boundaries from source systems. Multiple changes 
originating from the same database transaction become visible simultaneously downstream, 
preserving the semantic relationships that upstream applications depend upon.

•	 Correctness	before	visibility:	Results become observable only after achieving correctness 
at the designated logical timestamp. This approach prevents the partial result visibility that 
can lead to incorrect business decisions or downstream processing errors.

Fundamental	composability:	Materialize’s 
strict consistency model makes Materialize 
views safe to compose, cache, and expose 
to applications or agents — and it aligns with 
the requirements of modern data products 
that must behave predictably and support 
correctness guarantees.

Flink, on the other hand, offers eventual 
consistency that fundamentally undermines 
composability. Flink-based systems typically 
require additional application logic to handle 
consistency gaps, not to mention operational 
reasoning that is more complex by an order 
of magnitude: Flink deployments require 
that you understand — and handle — the 
interaction between processing topology, 
checkpoint timing, and sink behavior. 

Materialize	guarantees	strict	
serializability:	global consistency 
across the entire database.	At	any	
given	moment,	you	can	trust	that	no	
matter	how	you	are	slicing	your	data	up,	
you	can	always	see	every	view	is	going	
to	show	results	as	of	the	same	inputs,	
as	of	the	same	result,	and	the	numbers	
always	tie	out.	And	you	can	reason	
across	these,	you	can	join	them,	you	
can	compose	them,	and	the	numbers	
will	still	make	sense.

THE	UPSHOT:
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Developer experience & data accessibility

Flink’s Programming Model: Power with Complexity

Flink’s computational model represents a significant departure from traditional batch processing 
and relational database paradigms. While this approach unlocks sophisticated stream 
processing capabilities, it introduces substantial learning curves and operational overhead for 
development teams.

•	 Custom	programming:	Flink development centers on imperative programming through 
specialized APIs in Java, Scala, or Python. Developers must explicitly define transformation 
logic, manage operator chaining, and handle data serialization. This approach provides fine-
grained control over processing behavior but requires teams to master streaming-specific 
programming patterns that differ fundamentally from familiar batch-oriented development. 

•	 Bespoke	SQL	dialect:	Flink relies on its own customized version of SQL, so developers must 
specifically learn FlinkSQL in order to run queries on streaming (and batch) datasets.

•	 Temporal	complexity: Producing correct results in Flink requires deep understanding of 
event time semantics, watermark generation, and out-of-order data handling. Developers 
must reason about when computations should trigger, how late data affects results, and 
how to balance latency against completeness. These concepts have no direct analogues 
in traditional application development, creating significant knowledge barriers for teams 
transitioning to stream processing.

•	 Complex	configuration	for	state	and	fault	tolerance:	Checkpointing behavior, state 
backend selection, and recovery strategies require explicit configuration and ongoing 
tuning. Developers must understand how state size affects performance, how checkpoint 
intervals impact latency, and how to optimize for their specific workload characteristics. 
These operational concerns become part of the development process rather than being 
abstracted away by the platform.

•	 Testing	and	Debugging	Challenges:	Flink’s asynchronous processing model creates non-
deterministic output timing that complicates testing strategies. Traditional unit testing 
approaches often prove insufficient, requiring developers to create complex test harnesses 
that account for timing variations. Debugging production issues becomes particularly 
challenging due to limited runtime introspection capabilities and the distributed nature of 
stream processing execution.

These characteristics make Flink potentially powerful for teams with dedicated 
streaming expertise. But they also make Flink inaccessible: the majority of teams 
out there don’t have the significant training and operational resources needed to 
deploy Flink in a real-time data streaming environment.

THE	UPSHOT:
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Materialize’s SQL-centric approach: Familiar paradigms for Stream Processing

Materialize addresses the accessibility challenge by building on familiar relational database 
concepts while providing streaming capabilities, all behind a standard (and, for many, familiar) 
SQL interface.

•	 Declarative	programming	model: In Materialize, all transformation logic expresses through 
standard SQL syntax familiar to any developer with database experience. Teams define 
materialized views using CREATE VIEW statements, aggregate data with GROUP BY 
clauses, and join streams using familiar SQL JOIN syntax. This eliminates the need to learn 
specialized streaming programming models while maintaining the expressiveness required 
for complex real-time processing.

•	 Internal	incrementalization:	Materialize handles time semantics, incremental computation, 
and consistency management internally. Developers focus on defining what results they 
want rather than how the system should process changing data. Because Materialize is 
built on Timely Dataflow, the platform automatically manages consistency across complex 
view hierarchies without exposing concepts like watermarks or out of order concerns to 
application developers.

OLTP Sources

Other Sources

Ingest Cluster Transform Cluster

PULL

PUSH

Services

BI Tool

MCP Server

SQL Subscribe

Cache Service

Object Storage INDEXED Views

Agent

Materialize Architecture Overview
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•	 Deterministic	query	behavior:	Given identical logical timestamps, queries return identical 
results regardless of execution timing or resource allocation. This deterministic behavior 
simplifies testing, debugging, and reasoning about system correctness. Developers can 
validate logic using familiar SQL tools and techniques rather than building specialized 
streaming test frameworks.

•	 Broad	integration:	Standard PostgreSQL wire protocol compatibility enables immediate 
integration with existing development tools, business intelligence platforms, and application 
frameworks. Teams can use dbt for transformation logic management, connect Tableau 
for visualization, or integrate with web applications using standard database drivers. This 
compatibility eliminates the custom integration work typically required when adopting new 
stream processing platforms.

Enterprise implications
Flink is a flexible, general-purpose stream processor well-suited to complex event processing 
or bespoke transformation pipelines. However, it provides no consistent query interface, 
no composability guarantees, and no support for direct consumption of results in real-time 
applications.

Materialize, by contrast, offers strict serializability and composable views. It integrates 
ingestion, storage, and compute within a single system, using a standard SQL interface to offer 
broad accessibility for existing data teams.

These fundamentally divergent approaches to data stream processing have real-world 
consequences for enterprise adoption:

•	 Skills	&	resources:	Materialize can be used by anyone with SQL competency, while 
Flink typically requires engineers who are very well versed with JVM  platforms and the 
nuances of streaming and distributed systems.

•	 Consistency	guarantee: Materialize provides strict serializability, ensuring that no 
matter how you slice your data, every view shows results as of the same inputs. Flink 
offers eventually-consistent data where you do not know if the output is correct at any 
given moment.

Materialize’s stream-processor-wrapped-in-a-database approach offers a 
drastically lower barrier to entry and faster time-to-value. Teams can ship 
real-time features without hiring streaming specialists or re-architecting 
their systems.

THE	UPSHOT:
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•	 Cost	structure:	Materialize is typically around half the cost of a stream processor like 
Flink or Spark when factoring in development, operational, and maintenance costs.

•	 Business	value:	One of Materialize’s biggest values is enabling customers to access 
transactions in real time via a BI tool, while Flink requires additional systems for 
query access.

Total cost of ownership

Compared	with	Flink’s	standalone	stream	processor,	Materialize	offers	lower	
overall	TCO.	

Companies need fewer resources to work with Materialize’s integrated data streaming and 
transformation platform. Because deploying Materialize is drastically less complicated, they can 
also work with less experienced engineers — it’s much easier for organizations to spin up. 

Teams that have moved to Materialize further report savings related to denormalization and 
solving cache invalidation. Some organizations have been able to reduce their data warehouse 
spend by offloading expensive queries to run through Materialize. Users also tell us that they 
are able to reduce secondary costs associated with pipeline development, updates, and 
maintenance. In terms of dollars and cents, Materialize typically lands at half the cost of a 
stream processor like Flink in terms of operating costs.


