
® 2025 Materialize 1

WHITEPAPER

Materialize vs ClickHouse: Comprehensive
Enterprise Platform Analysis

® 2025 Materialize 2

Materialize and ClickHouse are both high-performance analytical data systems, but they are
designed for fundamentally different workloads and architectural patterns. We will examine
the core differences in architecture, materialized view support, consistency, data mutability,
and intended use cases for both. We will also look at some examples of how they can be used
in conjunction to deliver highly performant, always up to date, and strongly consistent data
analytics for a variety of organizational data needs.

Companies today need real-time operational intelligence for fast-changing data.
They also need high-performance analytics for their ever-increasing volumes of
historical data. Legacy “one-size-fits-all” database approaches can’t keep up,
and business intelligence tools that attempt to fill these needs are often both
slow and expensive. Instead, enterprise organizations are turning to thoughtfully
composed architectures that leverage specialized systems to address their
increasingly complex — and increasingly mission-critical — data needs.

These organizations recognize that real-time operational analytics and historical analytical
processing are fundamentally different problems requiring different solutions. The way forward
for many use cases may be to harness complementary technologies that together can meet
the full spectrum of modern data platform requirements (while also delivering superior ROI
over other systems and solutions).

Understanding the core technologies

Materialize is a live data layer for
apps and AI agents that incrementally
maintains the results of SQL queries
over continuously changing upstream
data. It is optimized for live, stateful
workloads, offering strong consistency
guarantees and full support for inserts,
updates, and deletes, and helping
AI agents stay in sync with reality.

ClickHouse is a high-performance
columnar OLAP database designed
for executing analytical queries over
large volumes of immutable data. It is
optimized for fast, ad hoc queries on
append-only datasets for exploring
and analyzing existing historical data.

® 2025 Materialize 3

ClickHouse: High-performance analytics engine
ClickHouse is a data engine purpose-built for answering complex questions about large
datasets, very quickly. Clickhouse does multiple things well:

•	 Blazing fast analytics: Columnar
storage, aggressive compression, and
vectorized execution enable sub-second
queries across billions of rows of data.

•	 Scalable data storage: Efficiently
handles petabytes of historical data with
predictable performance characteristics.

•	 Ad hoc query excellence: Optimized
for exploratory analytics where query
patterns are unpredictable.

•	 Cost-effective storage: Excellent
compression ratios reduce storage costs
for long-term data retention.

•	 Resource efficiency: ClickHouse’s
performance can lead to savings on
compute resources.

ClickHouse is optimized for classic analytical workloads like historical data trend analysis
and business intelligence reporting. But it’s also a strong observability asset for queries and
powerful aggregations on logs, metrics, traces, session replays and errors catching, even on
high-cardinality data. Companies have used ClickHouse for financial reporting and compliance
analytics and to examine customer behavior across giant datasets.

Materialize: The live data layer for apps and AI agents
Materialize is a streaming database that maintains incrementally updated SQL query results
over continuously changing data. Unlike traditional databases that compute results on demand,
Materialize continuously maintains the answers to your queries. Materialize does many
important functions exceptionally well:

•	 Incremental view maintenance:
Updates query results as upstream data
changes, keeping data views current
without expensive batch reprocessing.

•	 Strong consistency: Guarantees strict-
serializable consistency across all data
sources and queries.

•	 Complex real-time views: Supports
multi-way joins, aggregations, window
functions, and even recursive SQL on
live changing data.

•	 Immediate reactivity: Single digit
millisecond latency for querying pre-
computed results.

•	 Flexible data ingestion: Can ingest
data from multiple sources in varying
formats, acting as a transformation layer
to transform, aggregate, and normalize
disparate data and then creating a
materialized view, continually updated
in real-time as upstream data changes.

® 2025 Materialize 4

Materialize vs. ClickHouse: Comparative analysis
Both systems support SQL interfaces, integrate with modern data stacks (dbt, BI tools),
and can handle complex analytical workloads. Other capabilities, however, diverge due to
Materialize and ClickHouse having respective designs and primary purposes.

Materialized views
Unlike regular views, which are virtual and dynamically generated each time they’re accessed,
materialized views precompute a query and then physically store the results for lowest possible
latency. This precomputation is especially effective when you have complex queries or deal with
massive datasets, because materialized views remove the need for repeated computations.

Clickhouse and Materialize both support materialized views, but the design and capabilities
differ substantially.

ClickHouse is optimized for analytical workloads where you want to store and
query very large data sets that do not receive constant updating. Materialize, on
the other hand, is optimized for workloads that require frequent updates and
recomputation. Materialize is where you want to keep your fast-changing data
(or any other data that powers any kind of real-time or operational workload)
and context-retrieval workloads for agentic AI.

THE UPSHOT:

Materialize’s primary purpose is real-time data integration and transformation. This makes
it ideal for applications like fraud detection and alerting systems; supply chain visibility and
exception handling; personalized, customer-facing analytics; and even regulatory compliance
monitoring with immediate alerting.

It also makes Materialize the perfect partner for agentic AI applications. AI agents need
real-time, accurate models of business data with fraction-of-a-second updates whenever
data changes so they always reflect reality when the LLM queries them. Materialize’s
Incremental View Maintenance combines with Materialize’s flexible data ingestion capabilities
to transform less-refined data into an always-current model – at scale – that AI agents can
easily discover and use.

http://agentic AI applications

® 2025 Materialize 5

Materialize
Materialize allows you to create materialized views using standard PostgreSQL SQL syntax.
You can write complex SQL queries — with joins, aggregations, subqueries, window functions,
etc. — and Materialize will continuously maintain the results of those queries even as upstream
data changes.

Unlike many other systems that restrict the types of queries you can materialize, Materialize
supports very sophisticated SQL operations in materialized views, such as:

•	 Multi-table joins across different data sources, including between streams and
reference tables

•	 Nested aggregations and grouping

•	 Window functions and subqueries for ranking and time-series analysis

•	 Complex WHERE clauses and filters

•	 Common table expressions (CTEs)

•	 Recursive CTEs for graph traversals and hierarchical aggregations

This is important because traditional materialized views in most databases are quite limited —
they might only support simple aggregations or have restrictions on joins. Materialize, on the
other hand, lets you take any complex analytical query you’d run in PostgreSQL and turn it into
a continuously updated materialized view. If you know PostgreSQL, you can immediately start
creating materialized views in Materialize.

Once you define a view, Materialize keeps it incrementally maintained: Results are updated
in response to new data, updates, or deletes that come in from any of your input sources.
All these changes are applied consistently and in transactional order. Your users get to build
reactive, always-up-to-date queries that remain correct as upstream data changes.

ClickHouse
ClickHouse is a batch platform, so it runs computation on read: when you send a query to
ClickHouse to call data back, that’s when the computation is done. ClickHouse is really
efficient and you’ll get back really fast queries, but ClickHouse can’t do incremental
computation. This means that, as upstream data changes, they can’t keep that data fresh.

As a result, ClickHouse does support materialized views, but with key limitations:

•	 Materialized views are defined on a single source (the fact table), and are updated
only when new data is inserted into that source.

•	 Views do not respond to updates or deletes in the source table.

https://materialize.com/docs/sql/create-materialized-view/

® 2025 Materialize 6

•	 Joins to dimension tables are evaluated at insert time; subsequent changes to those
dimension tables do not affect the materialized view.

•	 There is no mechanism for automatic invalidation or recomputation of views based
on changes outside the base table.

Ultimately, ClickHouse materialized views are well suited for event rollups and simple
aggregations triggered by inserts. These views, though, are not suitable for modeling
evolving state or maintaining consistency across multiple, continually changing tables.

Consistency
Materialize
Materialize provides strong consistency guarantees, enforcing serializable consistency
across all sources and queries. Materialize’s strong consistency is essential because,
under Materialize’s performance model, new inputs are applied incrementally without full
recomputation. Even though there may be many moving parts when a query comes in,
Materialize ensures that the numbers are always going to be strictly correct.

•	 Queries reflect a consistent snapshot of all input data at a specific logical timestamp.

•	 Updates and deletes are handled incrementally and applied in the correct
transactional order.

•	 Multi-stream joins produce correct results without requiring users to manage
timing or coordination.

Strong, serializable consistency makes Materialize appropriate for workloads where correctness
under change is required, including operational analytics, data products, and embedded real-
time business logic.

In Materialize, the data engine is focused on consistency and building out composable data
products where you can have views stacked on top of each other, join them together, and
create your ideal custom analytics dashboard. With strong consistency out of the box, you
know that if you have multiple items on your visualization, say two summaries of your data that
break it out in different ways, Materialize will guarantee that when the page loads, they’re both
showing you results as of the exact same input datasets. Unlike other systems where different
frequencies of ETLs can produce a lot of inconsistency, Materialize’s data will always tie out.

It also makes Materialize an ideal data source for AI agents and MCPs — one they can access
without taxing production systems, and with consistency guarantees all the way across. This
emerging digital twin architecture makes it possible to have an exact, always-current model
of your relevant business entities and their relationships, expressed in the language of your
company (customers, orders, suppliers, routes) rather than low-level tables, that AI agents can
query against. Materialize’s strong consistency helps agentic AI applications stay in sync
with reality by immediately reflecting any changes that happen as a consequence of an
action taken by the agent.

http://emerging digital twin architecture

® 2025 Materialize 7

ClickHouse
Because ClickHouse prioritizes throughput and analytical performance over consistency,
it can only offer eventual consistency in both distributed deployments and materialized
view maintenance:

•	 Queries may observe partially updated or inconsistent states when joining across
changing tables.

•	 Materialized views are not updated in response to changes in reference data or
dimension tables.

•	 Asynchronous replication means that distributed nodes may temporarily reflect
different states of the data.

That said, ClickHouse is optimized for append-only data models where strong consistency
across updates is not a core requirement. This is why ClickHouse is not typically recommended
for transactional applications, or any other workloads that require frequent updates and
row-level operations.

Data Mutability
Data mutability describes data’s ability to change after it’s been stored. “Mutable” data can
be modified, while “immutable” data cannot be changed once written.

Materialize
One of Materialize’s key strengths is how it handles changing data: Materialize supports
full data mutability. It can ingest:

•	 Inserts: Adding new records (like a new customer signup)

•	 Updates: Modifying existing records (like updating a customer’s address)

•	 Deletes: Removing records (like canceling an account)

These changes may come from directly running SQL commands against Materialize to modify
data, just like a regular database. Materialize also offers a more powerful capability: streaming
data sources with Change Data Capture (CDC). CDC lets you capture every change that
happens in your upstream data sources (like PostgreSQL or MySQL) and then stream those
changes to Materialize in real time.

This is what makes Materialize uniquely powerful for real-time data systems: when data
changes, all dependent views are updated immediately and correctly.

In most systems, if you have a materialized view that aggregates data, and then upstream data
changes, you’d need to manually refresh the view or wait for a scheduled refresh. Materialize,
however, tracks logical records (usually through primary keys) so that it understands the
“identity” of your data records.

® 2025 Materialize 8

So when, for example, it sees an UPDATE for customer ID 12345, it knows this relates to
the same customer record it processed before, not a new customer. This allows Materialize
to do incremental updates, modifying only the changed data itself instead of recomputing
everything. Materialize’s strict consistency then ensures these incremental changes are
instantly, globally, and consistently applied to maintain correctness across all views. This is
fundamentally different from systems where you’d need to rebuild the entire view or manually
manage these cascading updates.

ClickHouse
ClickHouse is built as a data warehouse—a system designed for analyzing large amounts of
data, not for day-to-day operational tasks. Its OLAP focus (Online Analytical Processing) means
it’s optimized for complex queries that analyze trends, patterns, and aggregations across large
datasets. As a result, ClickHouse is fundamentally designed to handle append-only workloads
where you primarily add new data rather than changing existing data.

ClickHouse’s columnar storage architecture drives its performance optimization for immutable
workloads, like long-term historical analysis and data exploration. Instead of storing data row-
by-row (like traditional databases), ClickHouse stores data column-by-column. This makes it
incredibly fast for analytical queries but more complex for updates.

Thus, while ClickHouse does support SQL modifications like ALTER TABLE UPDATE and
DELETE, these operations are not ideal for workloads where data changes frequently

Asynchronous background merges: When data gets updated, ClickHouse doesn’t process
the changes immediately – it incorporates the change later, during maintenance cycles.

No materialized view updates: Data changes do not trigger updates in dependent
materialized views. If you have a summary table (materialized view) showing “total sales by
region” and you change the region where a given sale occurred, ClickHouse won’t automatically
update that summary data view. You’d need to manually refresh it.

Resource intensive: Updates require ClickHouse to rewrite entire data blocks, which can slow
down the whole system and introduce delays before changes are visible.

As a result, ClickHouse excels at answering “what happened?” questions about large amounts
of historical data, such as Which customers generated the most revenue in 2023? or How did
our website traffic change during the holiday season?

ClickHouse struggles with “what’s happening now?” scenarios that require frequent data
updates, like real-time inventory tracking where stock levels constantly change, or dashboards
tracking current status for manufacturing operations.

® 2025 Materialize 9

ClickHouse and Materialize are two systems
that achieve performance in fundamentally
different ways, and for fundamentally
different analytic purposes.

Materialize’s performance
model: “Always ready”
Materialize is optimized for incremental
computation: Instead of recalculating
everything from scratch when data changes,
Materialize only updates the parts that are
affected. More importantly, once you define
a materialized view, its results are maintained
continuously.

New inputs are applied incrementally
without full recomputation: Again, instead
of recalculating everything from scratch when
data changes, Materialize updates only the
affected data.

Near-zero query latency for materialized
views: Because the results are already
computed and stored, querying a materialized
view is just reading pre-calculated data.
A complex query that might take 30 seconds
in a traditional database returns instantly
in Materialize because the answer is
already ready.

Performance scales with volume of
changes, not data size: Whether you have
a thousand records or one billion, if only 100
records change, Materialize only processes
those 100 changes. In traditional data
analytics systems, performance degrades
as data grows because they must scan all
data every time. Materialize’s performance
depends on how much your data is changing,
not your total data volume.

Dynamic data platform for AI agents:
Materialize’s incremental computation model
also enables “agent-ready” data infrastructure
so you can handle the massive increase
in queries when moving from human to
machine traffic.

Materialize’s performance model is well-
suited for operational systems where specific,
predefined queries must remain current with
the lowest possible latency. Example use
cases include live fraud detection where
flagged transactions need immediate
alerting, or live shipment tracking for a
logistics company.

It’s also the first system that can give AI
agents the real-time, semantically rich
business context they need to operate
effectively while simultaneously supporting
massive, agent-scale workloads.

ClickHouse’s performance
model: “Complex queries, fast”
ClickHouse is optimized for high-throughput,
on-demand analytical queries. This means
ClickHouse can answer complex analytics
questions over immense quantities of data
very quickly when you ask them, but it doesn’t
maintain these answers between queries.

Fast scan performance over large datasets:
Data is organized by column, so if you want
to sum all sales amounts, ClickHouse only
reads the “sales_amount” column, not
entire rows. ClickHouse also uses CPU
optimizations to process many values at once;
and leverages efficient data compression to
reduce I/O because similar values in columns
compress very well.

Performance model

® 2025 Materialize 10

Full or partial table scans: ClickHouse can
read through large portions of your data to
answer queries with very low latency. To
answer “average order value by month,” for
example, ClickHouse might scan millions of
order records but do it so efficiently that it still
completes in seconds.

Ad hoc queries: You can ask ClickHouse
questions it’s never seen before, and it will
figure out how to answer them efficiently.
This contrasts with Materialize, which

needs you to define your queries upfront as
materialized views.

No saved state between queries: ClickHouse
doesn’t “remember” the results of previous
queries. Each query starts fresh. This is
great for exploratory analysis where you’re
asking different questions each time, like BI
workloads over static or slowly changing data,
but is not suitable for real-time workloads like
dashboards or alerting.

Why consistency, data mutability, and performance matter
for architecture decisions
Understanding the comparative strengths and limitations for Materialize and ClickHouse as
high-performance analytical systems helps explain why many enterprises need both systems.
The key insight is that these aren’t competing approaches — they’re complementary
strategies for different types of data workloads.

Many enterprise organizations, though, need both real-time operational metrics (Materialize)
AND performant historical analysis capabilities (ClickHouse).

The key is matching the right tool to the right job, rather than trying to force one system
to do everything.

ClickHouse excels at historical analysis
and reporting where:

•	 You’re doing exploratory data analysis
•	 Query patterns are unpredictable/ad hoc
•	 You’re working with large historical
datasets

•	 You can tolerate some delay while
queries execute

Materialize excels at live operational
analytics where data changes
frequently and:

•	 You have a specific set of metrics
that need to always be current

•	 Users expect instant response times
•	 You need data changes reflected
immediately

•	 You’re supporting agentic AI applications

® 2025 Materialize 11

Materialize & ClickHouse: Better Together
Two real-world case studies of organizations using ClickHouse and Materialize in conjunction:
the analytics challenges they faced, and how they solved these by adopting both systems to
work together.

Case Study: A SaaS supply chain operating system for logistics
and transportation

THE COMPANY:
A startup that built a supply chain operating system, offered as a SaaS platform. Despite being
a small company, they serve major enterprise clients and are experiencing rapid growth in the
logistics and transportation industry.

THE CHALLENGE:
Complex multi-client operations: The platform serves logistics businesses that have complex
supply chain operations. For example, one customer is a trucking company that manages
deliveries for 20+ different clients on a single truck, each with unique routes, loads, and
delivery requirements.

Dual analytics requirements: The company needed both route optimization capabilities
(analyzing largely static data to plan efficient delivery routes) and real-time tracking services
(immediate alerts when conditions change).

ClickHouse limitations: The platform was launched using ClickHouse for analytics across
dozens of millions of data points generated by their users. ClickHouse was great for
logistics, generating optimized delivery routes for each truck’s unique load which, of course,
changed day to day. But the startup struggled with providing a real-time tracking service on
their platform — a feature that was in high demand from customers — because real-time
incrementally updated views are just not an out-of-the-box functionality ClickHouse offers.

Custom workaround problems: The startup’s developers built custom, fragile workarounds
to update data and trigger notifications (a common pattern with organizations trying to force
ClickHouse into real-time use cases) but they knew they needed a purpose-built solution that
could reliably trigger downstream notifications whenever upstream data changed — especially
given tight customer SLAs.

Rejected alternatives: Full-featured BI tools were evaluated but rejected as too slow and not
customizable enough for their embedded platform needs.

® 2025 Materialize 12

The solution architecture:

Phase 1: Route optimization (ClickHouse)

Phase 3: Integrated logistics platform

Phase 2: Real-time alerting system (Materialize)

•	 SLA Compliance: Ensures tight delivery
commitments are monitored and
communicated in real-time

•	 Delivery Planning: Analyzes historical and
current data to generate optimized routes
for each truck’s unique daily load

•	 Performance Analytics: Supports
exploratory analysis and ad hoc reporting
on delivery patterns

•	 Historical Insights: Enables long-term trend
analysis for route efficiency improvements

•	 Live shipment tracking: Continuously
ingests and processes logistics information
as deliveries progress

•	 Threshold monitoring: Automatically
detects when shipments exceed time/
location parameters

•	 Immediate Notifications: Triggers real-time
alerts to affected clients when exceptions
occur (breakdowns, delays, early arrivals)

•	 Seamless integration: Both systems are
Postgres wire compatible, enabling quick
integration into existing analytics workflows

•	 Eliminated custom code: Replaced fragile
workaround solutions with consistent, real-
time views capabilities

•	 Embedded analytics: Delivered real-time
alerting as a native platform feature rather
than a bolt-on solution

® 2025 Materialize 13

Why this required both systems:

ClickHouse alone: Perfect for route optimization and historical analytics but fundamentally
unable to provide the real-time incremental updates required for tracking services, leading
to time-consuming custom development.

Materialize alone: Could handle real-time alerting excellently but wasn’t optimized for the
large-scale route optimization analytics that ClickHouse provided.

Together: Created a complete logistics intelligence platform using ClickHouse to analyze
delivery route optimizations based on largely immutable data, and Materialize to ingest a
shipment’s logistics information and continually update it, make sense of it, and to trigger
an alert or other actions as soon as a threshold is met or not met.

This case study shows how ClickHouse and Materialize are not duplicate tools and why they
work so well in conjunction with each other. ClickHouse acts as a great, super-performant
warehouse for time series data and other things like exploratory analytics and ad hoc
historical reporting. Materialize is handling the real time incremental view that continually
ticks away as the transformation and real-time serving layer. Together, they keep the logistics
running smoothly.

® 2025 Materialize 14

Case Study: Private equity firm risk management platform

THE COMPANY:
A private equity firm with an insurance component that needs to continuously analyze and
evaluate the risk of their investment positions using data from 8-10 different insurance providers.

THE CHALLENGE:
Data integration complexity: Each insurance provider sends data in different formats,
schemas, and frequencies, making it difficult to create a unified view of risk.

Real-time requirements: Risk conditions change constantly, requiring immediate recalculation
of risk scores as new data arrives (ranging from every 20 seconds to hourly).

Historical analysis needs: The firm also needs to perform exploratory analysis and ad hoc
queries on historical insurance data for trend analysis and regulatory reporting.

Phase 1: Real-Time Data Transformation with Materialize

Phase 2: Historical Data Storage (ClickHouse)

•	 Data ingestion: Materialize receives
insurance data from multiple providers in
various formats and frequencies

•	 Real-time transformation: Automatically
normalizes, cleanses, and standardizes
incoming data from all sources

•	 Live risk calculation: Continuously maintains
materialized views that calculate and update
risk scores as conditions fluctuate

•	 Immediate availability: Risk analysts have
access to current risk assessments with zero
query latency

•	 Data aging strategy: After 1-2 days,
transformed data is bulk exported from
Materialize to ClickHouse

•	 Long-term storage: ClickHouse efficiently
stores historical insurance data from
all providers

•	 Exploratory analytics: Enables ad hoc
queries like Show me all data from
Provider X over the past 60 days

The solution architecture:

® 2025 Materialize 15

Phase 3: Integrated logistics platform

•	 Live vs. historical comparisons: Ability
to query up-to-the-minute data from
Materialize against historical context
from ClickHouse

•	 Dynamic dashboards: Shows current risk
levels alongside historical trends (e.g.,
“today’s risk vs. 30-day rolling average”)

•	 Unified querying: Single interface that pulls
fresh data from Materialize and historical
data from ClickHouse

Why this is required of both systems:

Materialize alone: Could handle real-time transformation and risk calculation but would be
prohibitively expensive for long-term historical storage and not optimized for exploratory
historical analysis.

ClickHouse alone: Could hold and analyze historical data efficiently but couldn’t provide the real-
time transformation, normalization, and continuous risk calculation required for operational use.

Together: Created a complete solution where each system handles what it does best, resulting
in immediate operational analytics paired with comprehensive analytical depth.

The complementary strengths of Materialize and ClickHouse can solve complex enterprise
data challenges that neither system can ideally address on its own. By doing this, this
investment firm gained:

•	 Engineering efficiency: Each system handles what it does best, reducing workarounds
and custom solutions

•	 Cost optimization: Right-sized infrastructure for different data lifecycle stages

•	 Operational excellence: Strong consistency for operational data, high performance

•	 Future-proofing: Modular achitecture that can evolve with business need

® 2025 Materialize 16

Conclusion
Materialize and ClickHouse are optimized for different workloads and serve
distinct purposes in a data architecture. In many modern architectures, though,
these systems can be complementary. As a live data layer for applications
and AI agents, Materialize can provide accurate, real-time views that always
maintain data state, while ClickHouse serves as a performant backend for
historical exploration and long-term analytics.

Use Materialize when you need always-up-to-date views over streaming or mutable
data, with strong consistency, low latency, and complex query support – or support for
real-time context-retrieval workloads for agentic AI applications architectures.

Materialize is best suited for known, repeated queries that must always be current. It’s built
for live incremental views where data changes frequently and you need those changes
reflected immediately, and also where users expect instant response times. Ideal Materialize
workloads are uses like fraud detection, where flagged transactions need immediate alerting,
or live shipment tracking for a logistics company.

AI agents need real-time, accurate models of business data with fraction-of-a-second updates
whenever data changes so they always reflect reality when the LLM queries them. Materialize’s
incremental views and flexible data ingestion capabilities transform less-refined data into an
always-current model – at scale – that AI agents can easily discover and use.

Use ClickHouse when you need dynamic, high-speed analytical queries over large
volumes of immutable data, and consistency or reactivity is not a primary concern.

ClickHouse is best suited for working with datasets where records are rarely modified after
insertion. ClickHouse is great for flat wide tables or historical data running ad hoc analytics.
Queries like Show me a sales report for the last month or Show me how many of our shipments
were over 20 minutes late in the last 90 days are ideal ClickHouse analytical workloads.

® 2025 Materialize 17

Use Materialize + ClickHouse together when you need both a strongly consistent
real-time operational data store and performant ad hoc historical analysis.

Using Materialize with ClickHouse would be super efficient for live comparisons of current
vs. long term data – for example, How am I tracking today against my daily average from the
last 30 days rolling? You can use them together to create a visualization that’s continually up to
date with current data versus your last 30 days rolling, You’ve got this ultra-performant access
to data from three seconds ago paired with this really efficient way to pull data from
the last month or two months or three years and surfacing that in conjunction.

By embracing this complementary systems approach, enterprises can build more efficient,
maintainable, and cost-effective data platforms that truly serve their business needs.
ClickHouse and Materialize are a powerful combination that together can satisfy the full
spectrum of your analytical data requirements — and position you for a flexible future of
composable data products.

® 2025 Materialize 18

Appendix 1: Use case fit

Requirement Materialize ClickHouse Materialize
+ ClickHouse

Streaming data support ✓
(native)

Limited
(append-only) ✓

Real-time business data model
support for agentic AI applications ✓ Not supported ✓

Arbitrary materialized views ✓ Limited to
single-table inserts ✓

Reactivity to updates/deletes ✓ X ✓

Joins across mutable tables ✓ Not supported in
materialized views ✓

Serializable consistency ✓ X ✓

Ad hoc query Performance
Adequate for
simple queries

Optimized ✓

Long-term historical analysis Not optimized ✓ ✓
Real-time operational analytics ✓ Limited ✓
Immutable event analytics Limited ✓ ✓
Data mesh / live APIs ✓ X ✓

Appendix 2: Licensing and ecosystem
•	 Materialize is source-available under the BSL license. A free Community Edition
is available with resource limits. For horizontal scaling, high availability, and cloud
deployment, a commercial license or the hosted Materialize Cloud offering is required.

•	 ClickHouse is fully open source under the Apache 2.0 license. It can be self-hosted or
used via ClickHouse Cloud or other managed offerings.

Both systems offer mature SQL interfaces, integrations with popular tools (e.g., dbt, BI tools),
and active, engaged user communities.

