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Materialize and ClickHouse are both high-performance analytical data systems, but they are 
designed for fundamentally different workloads and architectural patterns. We will examine 
the core differences in architecture, materialized view support, consistency, data mutability, 
and intended use cases for both. We will also look at some examples of how they can be used 
in conjunction to deliver highly performant, always up to date, and strongly consistent data 
analytics for a variety of organizational data needs.

Companies today need real-time operational intelligence for fast-changing data. 
They also need high-performance analytics for their ever-increasing volumes of 
historical data. Legacy “one-size-fits-all” database approaches can’t keep up, 
and business intelligence tools that attempt to fill these needs are often both 
slow and expensive. Instead, enterprise organizations are turning to thoughtfully 
composed architectures that leverage specialized systems to address their 
increasingly complex — and increasingly mission-critical — data needs.

These organizations recognize that real-time operational analytics and historical analytical 
processing are fundamentally different problems requiring different solutions. The way forward 
for many use cases may be to harness complementary technologies that together can meet 
the full spectrum of modern data platform requirements (while also delivering superior ROI 
over other systems and solutions). 

Understanding the core technologies

Materialize is a live data layer for 
apps and AI agents that incrementally 
maintains the results of SQL queries 
over continuously changing upstream 
data. It is optimized for live, stateful 
workloads, offering strong consistency 
guarantees and full support for inserts, 
updates, and deletes, and helping 
AI agents stay in sync with reality.

ClickHouse is a high-performance 
columnar OLAP database designed 
for executing analytical queries over 
large volumes of immutable data. It is 
optimized for fast, ad hoc queries on 
append-only datasets for exploring 
and analyzing existing historical data.
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ClickHouse: High-performance analytics engine
ClickHouse is a data engine purpose-built for answering complex questions about large 
datasets, very quickly. Clickhouse does multiple things well:

•	 Blazing fast analytics: Columnar 
storage, aggressive compression, and 
vectorized execution enable sub-second 
queries across billions of rows of data.

•	 Scalable data storage: Efficiently 
handles petabytes of historical data with 
predictable performance characteristics.

•	 Ad hoc query excellence: Optimized 
for exploratory analytics where query 
patterns are unpredictable.

•	 Cost-effective storage: Excellent 
compression ratios reduce storage costs 
for long-term data retention.

•	 Resource efficiency: ClickHouse’s 
performance can lead to savings on 
compute resources.

ClickHouse is optimized for classic analytical workloads like historical data trend analysis 
and business intelligence reporting. But it’s also a strong observability asset for queries and 
powerful aggregations on logs, metrics, traces, session replays and errors catching, even on 
high-cardinality data. Companies have used ClickHouse for financial reporting and compliance 
analytics and to examine customer behavior across giant datasets.

Materialize: The live data layer for apps and AI agents
Materialize is a streaming database that maintains incrementally updated SQL query results 
over continuously changing data. Unlike traditional databases that compute results on demand, 
Materialize continuously maintains the answers to your queries. Materialize does many 
important functions exceptionally well:

•	 Incremental view maintenance: 
Updates query results as upstream data 
changes, keeping data views current 
without expensive batch reprocessing.

•	 Strong consistency: Guarantees strict-
serializable consistency across all data 
sources and queries.

•	 Complex real-time views: Supports 
multi-way joins, aggregations, window 
functions, and even recursive SQL on 
live changing data.

•	 Immediate reactivity: Single digit 
millisecond latency for querying pre-
computed results.

•	 Flexible data ingestion: Can ingest 
data from multiple sources in varying 
formats, acting as a transformation layer 
to transform, aggregate, and normalize 
disparate data and then creating a 
materialized view, continually updated 
in real-time as upstream data changes. 
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Materialize vs. ClickHouse: Comparative analysis
Both systems support SQL interfaces, integrate with modern data stacks (dbt, BI tools), 
and can handle complex analytical workloads. Other capabilities, however, diverge due to 
Materialize and ClickHouse having respective designs and primary purposes.

Materialized views
Unlike regular views, which are virtual and dynamically generated each time they’re accessed, 
materialized views precompute a query and then physically store the results for lowest possible 
latency. This precomputation is especially effective when you have complex queries or deal with 
massive datasets, because materialized views remove the need for repeated computations. 

Clickhouse and Materialize both support materialized views, but the design and capabilities 
differ substantially. 

ClickHouse is optimized for analytical workloads where you want to store and 
query very large data sets that do not receive constant updating. Materialize, on 
the other hand, is optimized for workloads that require frequent updates and 
recomputation. Materialize is where you want to keep your fast-changing data 
(or any other data that powers any kind of real-time or operational workload) 
and context-retrieval workloads for agentic AI.

THE UPSHOT:

Materialize’s primary purpose is real-time data integration and transformation. This makes 
it ideal for applications like fraud detection and alerting systems; supply chain visibility and 
exception handling; personalized, customer-facing analytics; and even regulatory compliance 
monitoring with immediate alerting. 

It also makes Materialize the perfect partner for agentic AI applications. AI agents need  
real-time, accurate models of business data with fraction-of-a-second updates whenever  
data changes so they always reflect reality when the LLM queries them. Materialize’s 
Incremental View Maintenance combines with Materialize’s flexible data ingestion capabilities 
to transform less-refined data into an always-current model – at scale – that AI agents can 
easily discover and use. 

http://agentic AI applications
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Materialize
Materialize allows you to create materialized views using standard PostgreSQL SQL syntax. 
You can write complex SQL queries — with joins, aggregations, subqueries, window functions, 
etc. — and Materialize will continuously maintain the results of those queries even as upstream 
data changes.

Unlike many other systems that restrict the types of queries you can materialize, Materialize 
supports very sophisticated SQL operations in materialized views, such as:

•	 Multi-table joins across different data sources, including between streams and 
reference tables

•	 Nested aggregations and grouping

•	 Window functions and subqueries for ranking and time-series analysis

•	 Complex WHERE clauses and filters

•	 Common table expressions (CTEs)

•	 Recursive CTEs for graph traversals and hierarchical aggregations

This is important because traditional materialized views in most databases are quite limited — 
they might only support simple aggregations or have restrictions on joins. Materialize, on the 
other hand, lets you take any complex analytical query you’d run in PostgreSQL and turn it into 
a continuously updated materialized view. If you know PostgreSQL, you can immediately start 
creating materialized views in Materialize. 

Once you define a view, Materialize keeps it incrementally maintained: Results are updated 
in response to new data, updates, or deletes that come in from any of your input sources. 
All these changes are applied consistently and in transactional order. Your users get to build 
reactive, always-up-to-date queries that remain correct as upstream data changes.

ClickHouse
ClickHouse is a batch platform, so it runs computation on read: when you send a query to 
ClickHouse to call data back, that’s when the computation is done. ClickHouse is really  
efficient and you’ll get back really fast queries, but ClickHouse can’t do incremental 
computation. This means that, as upstream data changes, they can’t keep that data fresh. 

As a result, ClickHouse does support materialized views, but with key limitations:

•	 Materialized views are defined on a single source (the fact table), and are updated  
only when new data is inserted into that source.

•	 Views do not respond to updates or deletes in the source table.

https://materialize.com/docs/sql/create-materialized-view/
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•	 Joins to dimension tables are evaluated at insert time; subsequent changes to those 
dimension tables do not affect the materialized view.

•	 There is no mechanism for automatic invalidation or recomputation of views based  
on changes outside the base table.

Ultimately, ClickHouse materialized views are well suited for event rollups and simple 
aggregations triggered by inserts. These views, though, are not suitable for modeling  
evolving state or maintaining consistency across multiple, continually changing tables.

Consistency
Materialize
Materialize provides strong consistency guarantees, enforcing serializable consistency 
across all sources and queries. Materialize’s strong consistency is essential because, 
under Materialize’s performance model, new inputs are applied incrementally without full 
recomputation. Even though there may be many moving parts when a query comes in, 
Materialize ensures that the numbers are always going to be strictly correct.

•	 Queries reflect a consistent snapshot of all input data at a specific logical timestamp.

•	 Updates and deletes are handled incrementally and applied in the correct 
transactional order.

•	 Multi-stream joins produce correct results without requiring users to manage 
timing or coordination.

Strong, serializable consistency makes Materialize appropriate for workloads where correctness 
under change is required, including operational analytics, data products, and embedded real-
time business logic.  

In Materialize, the data engine is focused on consistency and building out composable data 
products where you can have views stacked on top of each other, join them together, and 
create your ideal custom analytics dashboard. With strong consistency out of the box, you 
know that if you have multiple items on your visualization, say two summaries of your data that 
break it out in different ways, Materialize will guarantee that when the page loads, they’re both 
showing you results as of the exact same input datasets. Unlike other systems where different 
frequencies of ETLs can produce a lot of inconsistency, Materialize’s data will always tie out. 

It also makes Materialize an ideal data source for AI agents and MCPs — one they can access 
without taxing production systems, and with consistency guarantees all the way across. This 
emerging digital twin architecture makes it possible to have an exact, always-current model 
of your relevant business entities and their relationships, expressed in the language of your 
company (customers, orders, suppliers, routes) rather than low-level tables, that AI agents can 
query against. Materialize’s strong consistency helps agentic AI applications stay in sync 
with reality by immediately reflecting any changes that happen as a consequence of an 
action taken by the agent. 

http://emerging digital twin architecture
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ClickHouse
Because ClickHouse prioritizes throughput and analytical performance over consistency,  
it can only offer eventual consistency in both distributed deployments and materialized  
view maintenance:

•	 Queries may observe partially updated or inconsistent states when joining across 
changing tables.

•	 Materialized views are not updated in response to changes in reference data or  
dimension tables.

•	 Asynchronous replication means that distributed nodes may temporarily reflect 
different states of the data.

That said, ClickHouse is optimized for append-only data models where strong consistency 
across updates is not a core requirement. This is why ClickHouse is not typically recommended 
for transactional applications, or any other workloads that require frequent updates and 
row-level operations.

Data Mutability
Data mutability describes data’s ability to change after it’s been stored. “Mutable” data can 
be modified, while “immutable” data cannot be changed once written.

Materialize
One of Materialize’s key strengths is how it handles changing data: Materialize supports 
full data mutability. It can ingest:

•	 Inserts: Adding new records (like a new customer signup)

•	 Updates: Modifying existing records (like updating a customer’s address)

•	 Deletes: Removing records (like canceling an account)

These changes may come from directly running SQL commands against Materialize to modify 
data, just like a regular database. Materialize also offers a more powerful capability: streaming 
data sources with Change Data Capture (CDC). CDC lets you capture every change that 
happens in your upstream data sources (like PostgreSQL or MySQL) and then stream those 
changes to Materialize in real time. 

This is what makes Materialize uniquely powerful for real-time data systems: when data 
changes, all dependent views are updated immediately and correctly.

In most systems, if you have a materialized view that aggregates data, and then upstream data 
changes, you’d need to manually refresh the view or wait for a scheduled refresh. Materialize, 
however, tracks logical records (usually through primary keys) so that it understands the 
“identity” of your data records. 
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So when, for example, it sees an UPDATE for customer ID 12345, it knows this relates to 
the same customer record it processed before, not a new customer. This allows Materialize 
to do incremental updates, modifying only the changed data itself instead of recomputing 
everything. Materialize’s strict consistency then ensures these incremental changes are 
instantly, globally, and consistently applied to maintain correctness across all views. This is 
fundamentally different from systems where you’d need to rebuild the entire view or manually 
manage these cascading updates.

ClickHouse
ClickHouse is built as a data warehouse—a system designed for analyzing large amounts of 
data, not for day-to-day operational tasks. Its OLAP focus (Online Analytical Processing) means 
it’s optimized for complex queries that analyze trends, patterns, and aggregations across large 
datasets. As a result, ClickHouse is fundamentally designed to handle append-only workloads 
where you primarily add new data rather than changing existing data. 

ClickHouse’s columnar storage architecture drives its performance optimization for immutable 
workloads, like long-term historical analysis and data exploration. Instead of storing data row-
by-row (like traditional databases), ClickHouse stores data column-by-column. This makes it 
incredibly fast for analytical queries but more complex for updates. 

Thus, while ClickHouse does support SQL modifications like ALTER TABLE UPDATE and 
DELETE, these operations are not ideal for workloads where data changes frequently 

Asynchronous background merges: When data gets updated, ClickHouse doesn’t process 
the changes immediately – it incorporates the change later, during maintenance cycles.

No materialized view updates: Data changes do not trigger updates in dependent 
materialized views. If you have a summary table (materialized view) showing “total sales by 
region” and you change the region where a given sale occurred, ClickHouse won’t automatically 
update that summary data view. You’d need to manually refresh it.

Resource intensive: Updates require ClickHouse to rewrite entire data blocks, which can slow 
down the whole system and introduce delays before changes are visible.

As a result, ClickHouse excels at answering “what happened?” questions about large amounts 
of historical data, such as Which customers generated the most revenue in 2023? or How did 
our website traffic change during the holiday season?

ClickHouse struggles with “what’s happening now?” scenarios that require frequent data 
updates, like real-time inventory tracking where stock levels constantly change, or dashboards 
tracking current status for manufacturing operations.
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ClickHouse and Materialize are two systems 
that achieve performance in fundamentally 
different ways, and for fundamentally 
different analytic purposes. 

Materialize’s performance 
model: “Always ready”
Materialize is optimized for incremental 
computation: Instead of recalculating 
everything from scratch when data changes, 
Materialize only updates the parts that are 
affected. More importantly, once you define 
a materialized view, its results are maintained 
continuously.

New inputs are applied incrementally 
without full recomputation: Again, instead 
of recalculating everything from scratch when 
data changes, Materialize updates only the 
affected data. 

Near-zero query latency for materialized 
views: Because the results are already 
computed and stored, querying a materialized 
view is just reading pre-calculated data. 
A complex query that might take 30 seconds 
in a traditional database returns instantly 
in Materialize because the answer is 
already ready.

Performance scales with volume of 
changes, not data size: Whether you have 
a thousand records or one billion, if only 100 
records change, Materialize only processes 
those 100 changes. In traditional data 
analytics systems, performance degrades 
as data grows because they must scan all 
data every time. Materialize’s performance 
depends on how much your data is changing, 
not your total data volume.

Dynamic data platform for AI agents: 
Materialize’s incremental computation model 
also enables “agent-ready” data infrastructure 
so you can handle the massive increase 
in queries when moving from human to 
machine traffic. 

Materialize’s performance model is well-
suited for operational systems where specific, 
predefined queries must remain current with 
the lowest possible latency. Example use 
cases include live fraud detection where 
flagged transactions need immediate 
alerting, or live shipment tracking for a 
logistics company. 

It’s also the first system that can give AI 
agents the real-time, semantically rich 
business context they need to operate 
effectively while simultaneously supporting 
massive, agent-scale workloads.

ClickHouse’s performance 
model: “Complex queries, fast”
ClickHouse is optimized for high-throughput, 
on-demand analytical queries. This means 
ClickHouse can answer complex analytics 
questions over immense quantities of data 
very quickly when you ask them, but it doesn’t 
maintain these answers between queries.

Fast scan performance over large datasets: 
Data is organized by column, so if you want 
to sum all sales amounts, ClickHouse only 
reads the “sales_amount” column, not 
entire rows. ClickHouse also uses CPU 
optimizations to process many values at once; 
and leverages efficient data compression to 
reduce I/O because similar values in columns 
compress very well.

Performance model
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Full or partial table scans: ClickHouse can 
read through large portions of your data to 
answer queries with very low latency. To 
answer “average order value by month,” for 
example, ClickHouse might scan millions of 
order records but do it so efficiently that it still 
completes in seconds.

Ad hoc queries: You can ask ClickHouse 
questions it’s never seen before, and it will 
figure out how to answer them efficiently. 
This contrasts with Materialize, which 

needs you to define your queries upfront as 
materialized views.

No saved state between queries: ClickHouse 
doesn’t “remember” the results of previous 
queries. Each query starts fresh. This is 
great for exploratory analysis where you’re 
asking different questions each time, like BI 
workloads over static or slowly changing data, 
but is not suitable for real-time workloads like 
dashboards or alerting.

Why consistency, data mutability, and performance matter 
for architecture decisions
Understanding the comparative strengths and limitations for Materialize and ClickHouse as 
high-performance analytical systems helps explain why many enterprises need both systems. 
The key insight is that these aren’t competing approaches — they’re complementary 
strategies for different types of data workloads.

Many enterprise organizations, though, need both real-time operational metrics (Materialize) 
AND performant historical analysis capabilities (ClickHouse). 

The key is matching the right tool to the right job, rather than trying to force one system  
to do everything.

ClickHouse excels at historical analysis 
and reporting where:

•	 You’re doing exploratory data analysis
•	 Query patterns are unpredictable/ad hoc
•	 You’re working with large historical 
datasets

•	 You can tolerate some delay while 
queries execute

Materialize excels at live operational 
analytics where data changes 
frequently and: 

•	 You have a specific set of metrics 
that need to always be current

•	 Users expect instant response times
•	 You need data changes reflected 
immediately

•	 You’re supporting agentic AI applications
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Materialize & ClickHouse: Better Together
Two real-world case studies of organizations using ClickHouse and Materialize in conjunction: 
the analytics challenges they faced, and how they solved these by adopting both systems to 
work together. 

Case Study: A SaaS supply chain operating system for logistics 
and transportation

THE COMPANY:
A startup that built a supply chain operating system, offered as a SaaS platform. Despite being 
a small company, they serve major enterprise clients and are experiencing rapid growth in the 
logistics and transportation industry.

THE CHALLENGE:
Complex multi-client operations: The platform serves logistics businesses that have complex 
supply chain operations. For example, one customer is a trucking company that manages 
deliveries for 20+ different clients on a single truck, each with unique routes, loads, and 
delivery requirements.

Dual analytics requirements: The company needed both route optimization capabilities 
(analyzing largely static data to plan efficient delivery routes) and real-time tracking services 
(immediate alerts when conditions change).

ClickHouse limitations: The platform was launched using ClickHouse for analytics across 
dozens of millions of data points generated by their users. ClickHouse was great for 
logistics, generating optimized delivery routes for each truck’s unique load which, of course, 
changed day to day. But the startup struggled with providing a real-time tracking service on 
their platform — a feature that was in high demand from customers — because real-time 
incrementally updated views are just not an out-of-the-box functionality ClickHouse offers.

Custom workaround problems: The startup’s developers built custom, fragile workarounds 
to update data and trigger notifications (a common pattern with organizations trying to force 
ClickHouse into real-time use cases) but they knew they needed a purpose-built solution that 
could reliably trigger downstream notifications whenever upstream data changed — especially 
given tight customer SLAs.

Rejected alternatives: Full-featured BI tools were evaluated but rejected as too slow and not 
customizable enough for their embedded platform needs.
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The solution architecture:

Phase 1: Route optimization (ClickHouse)

Phase 3: Integrated logistics platform

Phase 2: Real-time alerting system (Materialize)

•	 SLA Compliance: Ensures tight delivery 
commitments are monitored and 
communicated in real-time

•	 Delivery Planning: Analyzes historical and 
current data to generate optimized routes 
for each truck’s unique daily load

•	 Performance Analytics: Supports 
exploratory analysis and ad hoc reporting 
on delivery patterns

•	 Historical Insights: Enables long-term trend 
analysis for route efficiency improvements

•	 Live shipment tracking: Continuously 
ingests and processes logistics information 
as deliveries progress

•	 Threshold monitoring: Automatically 
detects when shipments exceed time/
location parameters

•	 Immediate Notifications: Triggers real-time 
alerts to affected clients when exceptions 
occur (breakdowns, delays, early arrivals)

•	 Seamless integration: Both systems are 
Postgres wire compatible, enabling quick 
integration into existing analytics workflows

•	 Eliminated custom code: Replaced fragile 
workaround solutions with consistent, real-
time views capabilities

•	 Embedded analytics: Delivered real-time 
alerting as a native platform feature rather 
than a bolt-on solution
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Why this required both systems:

ClickHouse alone: Perfect for route optimization and historical analytics but fundamentally 
unable to provide the real-time incremental updates required for tracking services, leading 
to time-consuming custom development.

Materialize alone: Could handle real-time alerting excellently but wasn’t optimized for the 
large-scale route optimization analytics that ClickHouse provided.

Together: Created a complete logistics intelligence platform using ClickHouse to analyze 
delivery route optimizations based on largely immutable data, and Materialize to ingest a 
shipment’s logistics information and continually update it, make sense of it, and to trigger 
an alert or other actions as soon as a threshold is met or not met.

This case study shows how ClickHouse and Materialize are not duplicate tools and why they 
work so well in conjunction with each other. ClickHouse acts as a great, super-performant 
warehouse for time series data and other things like exploratory analytics and ad hoc 
historical reporting. Materialize is handling the real time incremental view that continually 
ticks away as the transformation and real-time serving layer. Together, they keep the logistics 
running smoothly.
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Case Study: Private equity firm risk management platform

THE COMPANY:
A private equity firm with an insurance component that needs to continuously analyze and 
evaluate the risk of their investment positions using data from 8-10 different insurance providers.

THE CHALLENGE:
Data integration complexity: Each insurance provider sends data in different formats, 
schemas, and frequencies, making it difficult to create a unified view of risk.

Real-time requirements: Risk conditions change constantly, requiring immediate recalculation 
of risk scores as new data arrives (ranging from every 20 seconds to hourly).

Historical analysis needs: The firm also needs to perform exploratory analysis and ad hoc 
queries on historical insurance data for trend analysis and regulatory reporting.

Phase 1: Real-Time Data Transformation with Materialize

Phase 2: Historical Data Storage (ClickHouse)

•	 Data ingestion: Materialize receives 
insurance data from multiple providers in 
various formats and frequencies

•	 Real-time transformation: Automatically 
normalizes, cleanses, and standardizes 
incoming data from all sources

•	 Live risk calculation: Continuously maintains 
materialized views that calculate and update 
risk scores as conditions fluctuate

•	 Immediate availability: Risk analysts have 
access to current risk assessments with zero 
query latency

•	 Data aging strategy: After 1-2 days, 
transformed data is bulk exported from 
Materialize to ClickHouse

•	 Long-term storage: ClickHouse efficiently 
stores historical insurance data from 
all providers

•	 Exploratory analytics: Enables ad hoc 
queries like Show me all data from 
Provider X over the past 60 days

The solution architecture:
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Phase 3: Integrated logistics platform

•	 Live vs. historical comparisons: Ability 
to query up-to-the-minute data from 
Materialize against historical context 
from ClickHouse

•	 Dynamic dashboards: Shows current risk 
levels alongside historical trends (e.g., 
“today’s risk vs. 30-day rolling average”)

•	 Unified querying: Single interface that pulls 
fresh data from Materialize and historical 
data from ClickHouse

Why this is required of both systems:

Materialize alone: Could handle real-time transformation and risk calculation but would be 
prohibitively expensive for long-term historical storage and not optimized for exploratory 
historical analysis.

ClickHouse alone: Could hold and analyze historical data efficiently but couldn’t provide the real-
time transformation, normalization, and continuous risk calculation required for operational use.

Together: Created a complete solution where each system handles what it does best, resulting 
in immediate operational analytics paired with comprehensive analytical depth. 

The complementary strengths of Materialize and ClickHouse can solve complex enterprise 
data challenges that neither system can ideally address on its own. By doing this, this 
investment firm gained:

•	 Engineering efficiency: Each system handles what it does best, reducing workarounds 
and custom solutions

•	 Cost optimization: Right-sized infrastructure for different data lifecycle stages

•	 Operational excellence: Strong consistency for operational data, high performance

•	 Future-proofing: Modular achitecture that can evolve with business need
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Conclusion
Materialize and ClickHouse are optimized for different workloads and serve 
distinct purposes in a data architecture. In many modern architectures, though, 
these systems can be complementary. As a live data layer for applications 
and AI agents, Materialize can provide accurate, real-time views that always 
maintain data state, while ClickHouse serves as a performant backend for 
historical exploration and long-term analytics.

Use Materialize when you need always-up-to-date views over streaming or mutable 
data, with strong consistency, low latency, and complex query support – or support for 
real-time context-retrieval workloads for agentic AI applications architectures.

Materialize is best suited for known, repeated queries that must always be current. It’s built 
for live incremental views where data changes frequently and you need those changes 
reflected immediately, and also where users expect instant response times. Ideal Materialize 
workloads are uses like fraud detection, where flagged transactions need immediate alerting, 
or live shipment tracking for a logistics company.

AI agents need real-time, accurate models of business data with fraction-of-a-second updates 
whenever data changes so they always reflect reality when the LLM queries them. Materialize’s 
incremental views and flexible data ingestion capabilities transform less-refined data into an 
always-current model – at scale – that AI agents can easily discover and use. 

Use ClickHouse when you need dynamic, high-speed analytical queries over large 
volumes of immutable data, and consistency or reactivity is not a primary concern. 

ClickHouse is best suited for working with datasets where records are rarely modified after 
insertion. ClickHouse is great for flat wide tables or historical data running ad hoc analytics. 
Queries like Show me a sales report for the last month or Show me how many of our shipments 
were over 20 minutes late in the last 90 days are ideal ClickHouse analytical workloads.
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Use Materialize + ClickHouse together when you need both a strongly consistent 
real-time operational data store and performant ad hoc historical analysis. 

Using Materialize with ClickHouse would be super efficient for live comparisons of current 
vs. long term data – for example, How am I tracking today against my daily average from the 
last 30 days rolling? You can use them together to create a visualization that’s continually up to 
date with current data versus your last 30 days rolling, You’ve got this ultra-performant access 
to data from three seconds ago paired with this really efficient way to pull data from 
the last month or two months or three years and surfacing that in conjunction. 

By embracing this complementary systems approach, enterprises can build more efficient, 
maintainable, and cost-effective data platforms that truly serve their business needs. 
ClickHouse and Materialize are a powerful combination that together can satisfy the full 
spectrum of your analytical data requirements — and position you for a flexible future of 
composable data products.
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Appendix 1: Use case fit 

Requirement Materialize ClickHouse Materialize  
+ ClickHouse

Streaming data support ✓ 
(native)

Limited 
(append-only) ✓

Real-time business data model  
support for agentic AI applications ✓ Not supported ✓

Arbitrary materialized views ✓ Limited to 
single-table inserts ✓

Reactivity to updates/deletes ✓ X ✓

Joins across mutable tables ✓ Not supported in 
materialized views ✓

Serializable consistency ✓ X ✓

Ad hoc query Performance
Adequate for 
simple queries

Optimized ✓

Long-term historical analysis Not optimized ✓ ✓
Real-time operational analytics ✓ Limited ✓
Immutable event analytics Limited ✓ ✓
Data mesh / live APIs ✓ X ✓

Appendix 2: Licensing and ecosystem
•	 Materialize is source-available under the BSL license. A free Community Edition 
is available with resource limits. For horizontal scaling, high availability, and cloud 
deployment, a commercial license or the hosted Materialize Cloud offering is required.

•	 ClickHouse is fully open source under the Apache 2.0 license. It can be self-hosted or 
used via ClickHouse Cloud or other managed offerings.

Both systems offer mature SQL interfaces, integrations with popular tools (e.g., dbt, BI tools), 
and active, engaged user communities.


