

Load modifying interventions for knee osteoarthritis

Scott Starkey (DPT, B.Biomed, A.P.A.M) Physiotherapist | PhD Candidate Centre for Health, Exercise and Sports Medicine University of Melbourne

Acknowledgements

Dr Claudio Pizzolato

Prof Rana Hinman CHESM Deputy Director Stream Co-leader – Musculoskeletal NHMRC Senior Research Fellow

Prof Kim Bennell

CHESM Director Stream Co-leader – Musculoskeletal Redmond Barry Distinguished Professor, NHMRC Leadership Fellow, Dame Kate Campbell Fellow

Dr Michelle Hall Sir Randal Heymanson Research Fellow NHMRC Emerging Leadership Fellow Dame Kate Campbell Fellow

What is osteoarthritis?

- Most common disorder of moveable joints
- Involves the entire joint organ, not just the articular cartilage

Complex pathological process:

- Micro and macro injury
- Cell stress and extracellular matrix degradation
- Maladaptive repair process/ abnormal joint tissue metabolism
- Anatomic and/or physiologic derangements

Hunter and Felson, BMJ 2006 639-642

Knee osteoarthritis

- 5-10 times more common in medial than lateral compartment
- Diagnosis based on clinical presentation, supported by radiography
- Knee pain with 3 or more (sensitivity 95%, specificity 69%)
 - Age>50
 - Morning stiffness <30 mins
 - Crepitus on active motion
 - Bony tenderness
 - Bony enlargement
 - No palpable warmth of synovium

ACR Diagnostic guidelines

The 2.1 billion dollar problem

Normal joint space

Loss of joint space

Osteoarthritis is in part a mechanical condition

Knee adduction moment (KAM)

Knee adduction moment (KAM)

Abnormal loading during gait

Biomechanical No of studies I-squared OR (95% CI) factor Varus thrust Med/lat OA 2 79.2 1.46 (1.00, 2.13) Valgus thrust Med/lat OA 1.29 (0.94, 1.78) - 1 Knee flexion moment Med OA 1.06 (0.61, 1.85) З 0 Med/lat OA 0.25 (0.13, 0.49) Knee extension moment Med OA 89.8 0.70 (0.10, 4.71) 3 Med/lat OA 2 95.6 1.12 (0.06, 20.28) Knee adduction moment Med OA 10 55.5 3.01 (1.87, 4.85) Lat OA 0.09 (0.02, 0.35) 76.1 Med/lat OA 3 1.11 (0.45, 2.72) Knee abduction moment Med/lat OA 1.21 (0.52, 2.81) - 1 Knee internal rotation moment 0.21(0.04,1.14) Med/lat OA 89.5 2 Knee external rotation moment Med/lat OA 0.40 (0.17, 0.94) NOTE: Pooled effect sizes for each biomechanical factor are shown. Individual forest plots for each biomechanical construct are provided in the supplementary files. .2 .1 2 5 10 more prevalent in non OA control more prevalent in knee OA

Medial knee osteoarthritis higher odds of have a larger knee adduction moment

No evidence of alterations in joint moments according to disease severity

Mills et al BMC Musculoskeletal Disorders 2018 19: 273

Knee moments and symptoms

Very low, questionable associations between knee joint moments and osteoarthritis symptoms

External ≠ internal estimates of joint loading

Saxby DJ et al. Gait & Posture. 2016.

Percent peak torque contribution to medial tibiofemoral joint contact force

Torque contribution (%)

A Solution?

Patient specific modelling

Patient specific modelling

Patient specific modelling

Neuromusculoskeletal modelling

OSSUR Unloader Study

- 30 participants with moderate to severe medial knee OA, with varus malalignment
- 8 weeks of wearing a valgus knee brace (Ossür Unloader One[©])
- Immediate and 8 week crosssectional effects of braced compared to no-braced walking on knee joint contact force impulse
- Self reported pain, function, sports and recreation, quality of life (KOOS)¹, walking pain (NRS)², selfefficacy (ASES)³.

Varus malalignment

Participant characteristics

Characteristics	n=30
Age, yr	64.1 (4.7)
Male, n(%)	18 (60%)
Height, m	1.69 (0.10)
Weight, kg	85.0 (13.7)
Body mass index, kg/m ²	29.7 (3.3)
Unilateral symptoms, n(%)	16 (53%)
Duration of symptoms, yr	5.2 (4.5)
Average pain over the past week	6.14 (1.56)
Test leg dominant, yes(%)	26 (87%)
Knee alignment, degrees	
Females	178.2 (2.6)
Males	177.9 (3.1)
Radiographic disease severity grade, n(%)	
Grade 2	9 (30%)
Grade 3	12 (40%)
Grade 4	9 (30%)

Adherence

Median hours per week wearing brace

Median: 48 hours per week

Median comfort levels while wearing brace

Median: 8 out of 10 comfort level

- 6% reduction in MTCF impulse at baseline
- 10% reduction in MTCF impulse at follow-up
- Improvement in all domains of KOOS and NRS pain while walking (all exceeded MDC scores).
- 20% improvement in self-efficacy (ASES)

Does 个 muscle = 个 knee loads?

EMG co-contraction

- Simultaneous activation of the quads/hams/gastrocs

At risk / unestablished populations

- 2-years post ACLR the MTCF are lower during walking, running, and side stepping compared to healthy controls¹
- EMG from vastus muscles and lower vatus torque in ACLR leg compared to uninvolved leg²

YES*

Knee Osteoarthritis

- Preliminary evidence that people with knee OA walk with increased co-contraction³
- Functional, weightbearing exercise may reduce cocontraction⁴

NO

Saxby, DJ et al. (2016) *MSSE* Bryant, AL et al. (2008) *J Orthop Res*

3. Heiden, TL et al. (2009) *Clin Biomech* 4. Preece et al. 2016 *BMC Musc. Disord.* 100 participants randomised with moderate to severe knee medial OA and varus malalignment

- 12 weeks of NWB quadriceps strengthening vs 12 weeks of WB "neuromuscular exercise"
- No change in KAM despite comparable symptom improvement

Neuromuscular Versus Quadriceps Strengthening Exercise in Patients With Medial Knee Osteoarthritis and Varus Malalignment: A Randomized Controlled Trial[†]

Kim L. Bennell 🗙, Mary Kyriakides, Ben Metcalf, Thorlene Egerton, Tim V. Wrigley, Paul W. Hodges, Michael A. Hunt, Ewa M. Roos, Andrew Forbes, Eva Ageberg, Rana S. Hinman

Outcome	Week 0		Week 13		Within-group difference, week 13 minus week 0, mean (95% CI)		Between-group difference, mean (95% CI)
	NEXA (n = 50)	QS (n = 50)	NEXA (n = 38)	QS (n = 44)	NEXA (n = 38)	QS (n = 44)	
Peak KAM, Nm/(BW × Ht)%	3.05 ± 0.90	3.21 ± 0.88	3.26 ± 0.95	3.30 ± 0.79	0.12 (-0.04, 0.29)	-0.04 (-0.18, 0.10)	<mark>0.13 (−0.08, 0.33)</mark>
Overall VAS score for pain (mm)	54.0 ±13.3	54.2 ± 16.8	34.1 ± 23.6	31.4 ± 19.3	<mark>-19.9 (-26.9, -12.9)</mark>	<mark>−22.0 (−27.9, −16.1)</mark>	2.4 (-6.0, 10.8)

ਿ Free Access

Osteoarthritis

Exercise program overview

Neuromuscular exercise (functional WB exercise):

- Forward and backward sliding or stepping
- Sideways exercises
- Functional hip muscle strengthening
- Functional knee muscle strengthening
- Step up and downs
- Balance

Quadriceps strengthening exercise (NWB exercise):

- Quads over roll
- Knee extension sitting
- Knee extension with hold at 30 degrees knee flexion
- Straight leg raise
- Outer range knee extension

A case for functional exercise

Compared with healthy controls, people with knee OA have:

- Higher odds of having lower muscle strength
- Proprioceptive deficits
- More medial varus-valgus laxity
- Less lateral varus-valgus laxity

Participant characteristics - secondary analysis

Characteristics	WB group (n=31)	NWB group (n = 36)
Age, yr	61.0 (6.8)	62.0 (7.0)
Males, %	13 (42%)	19 (53%)
Height, m	1.68 (0.09)	1.66 (0.11)
Body mass, kg	83.2 (14.2)	81.7 (16.0)
Body mass index, kg·m ⁻²	29.4 (3.5)	29.4 (4.5)
Dominant side affected	17 (57%)	19 (50%)
Symptom duration, median (IQR) months	60 (102)	84 (93)
Average knee pain over the past week ^a	53.5 (11.8)	52.9 (17.1)
Knee alignment ^b (°)	177.1 (3.0)	176.5 (3.8)
Males	177.5 (2.8)	176.4 (4.3)
Females	176.8 (3.2)	176.6 (3.2)
Radiographic disease severity ^c		
Grade 2	5 (16%)	10 (28%)
Grade 3	12 (39%)	16 (44%)
Grade 4	14 (45%)	10 (28%)

Results - secondary analysis

Starkey, SC., et al. (under peer review)

NWB Quads strengthening

Groups					Within Group Change		Difference in Change		
	Baseline		Follow-up		Follow-up mi	Follow-up minus Baseline		Between-group	
Outcome	WB NWB		WB	NWB	WB	NWB	NWB minus WB	P	
	(n=31)	(n=36)	(n-31)	(n=36)	(n=31)	(n=36)		Value	
Joint contact forces (BW)									
Peak medial	2.19 (0.32)	2.22 (0.31)	2.12 (0.31)	2.14 (0.30)	-0.06 (-0.15, 0.02)	-0.08 (-0.18, 0.02)	-0.02 (-0.12, 0.09)	0.77	
(muscle component)	0.79 (0.22)	0.77 (0.27)	0.79 (0.25)	0.71 (0.25)	0.00 (-0.06, 0.06)	-0.06 (-0.13, -0.00)	<mark>-0.08 (-0.15, -0.00)</mark>	<mark>0.04</mark>	
(external component)	1.39 (0.25)	1.44 (0.22)	1.33 (0.24)	1.43 (0.19)	-0.06 (-0.15, 0.00)	-0.01 (-0.09, 0.07)	<mark>0.09 (0.01, 0.18)</mark>	<mark>0.04</mark>	
External co medial tibiofemoral joi	Pe	50	100		50 Percent stance	100 phase			
	Pe	ercent stance phase	—— No b	race — Brace	e reident stande	pnase	Starkey, SC., et al. (under pe	er review)	

Mechanistic variation

NWB quad strengthening Muscle component \downarrow External component \leftrightarrow

WB functional exercise Muscle component \leftrightarrow External component \downarrow

Outcome

Similar ↓ peak MTCF via differing mechanisms

Baseline

100

Where did the load go?

A: Varus aligned knee $\mathrm{F}_{\mathrm{musc}}$ fmusc **f**ext Mext х

B: Neutral aligned knee

0

Percent stance phase

50

Clinical considerations

- NWB quadriceps strengthening may translate to muscular unloading of the medial compartment during walking
- Should we prescribe a combination of quadriceps strengthening and functional exercises to "maximise" reductions?
- Do we avoid functional exercise in bi-compartmental osteoarthritis to prevent increased lateral compartmental loads?

Individual change scores (% from baseline)

Full length article

Effect of exercise on knee joint contact forces in people following medial partial meniscectomy: A secondary analysis of a randomised controlled trial

An issue of heterogeneity

- "It is likely that participants are using subject-specific gait strategies or muscle activation patterns to influence MTCF during their walking task"
- ?Intra-subject variability
- ?Intra-session variability

Gait modification strategies?

Walking speed

Toes pointing in/out

Side-to-side trunk sway

Internal hip rotation

Stride length

Increased step width

Loading outside of foot

Changing knee alignment / medial thrust

Biofeedback for Gait Retraining Based on Real-Time Estimation of Tibiofemoral Joint Contact Forces

Claudio Pizzolato, Monica Reggiani *Member, IEEE*, David J. Saxby, Elena Ceseracciu, Luca Modenese, and David G. Lloyd

- 5 healthy subjects walking on an instrumented treadmill with visual biofeedback of their MTCF
- All subjects were able to increase their MTCF
- Only 3 subjects could decrease it, and only after receiving verbal suggestions about possible gait modification strategies
- ALL subjects utilised different strategies to achieve this

Walking speed

- Many of these may result in an increase in muscle contraction and no change, or increases to MTCF depending on the participant Gait
- Individually identify possible compensatory mechanisms that your patient is using and whether they are beneficial or detrimental
 - Utilise gait-retraining methods with caution and prepare to be flexible

Challenges

Change in load associated with clinically relevant improvements is still uncertain

- Cost
- Imaging
- Equipment
- Expertise
- Feasibility

Take home messages

- OA is in part a mechanical condition
- Past use of external loads (KAM) to infer internal contact forces may explain the poor associations between knee loads and clinically relevant outcomes
- Neuromusculoskeletal modelling provides a novel means to evaluate knee joint loads, however current research is largely exploratory (hypothesis generating, not conclusive).
- A reduction in knee loads while wearing a valgus knee brace was more prominent after 8 weeks, likely due to muscle adaptations. Self reported benefits (pain + function) well exceeded MDC scores.
- A combination of quadriceps strengthening, functional exercise and gait-retraining may be required to achieve clinically important reductions in knee loads
- Tailored programs are essential given the substantial intraparticipant heterogeneity in gait and muscle strategies