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Abstract—A teachable agent is a learning companion that 
students teach about a domain they are trying to master. While 
most teachable agents have been virtual, there may be 
advantages to having students teach an agent with a physical 
form (i.e., a robot). The robot may better engage students in 
the learning activity, and if students take embodied action in 
order to instruct the robot, they may develop deeper 
knowledge. In this paper, we investigate these two hypotheses 
using the rTAG system, a teachable robot for geometry 
learning. In a study with 37 4th-6th grade participants, we 
compare rTAG to two other conditions, one where students use 
embodied action to teach a virtual agent, and one where 
students teach a virtual agent on a personal computer. We find 
that while there are no significant learning differences between 
conditions, students’ perceptions of the agent are influenced by 
condition and prior knowledge. 
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I.  INTRODUCTION 
In 1988, Chan and Baskin outlined the idea of a computer 

as a learning companion, or a virtual agent that “learns” 
alongside a human student. Through the interactions between 
the virtual agent and human student, the virtual agent can 
improve the human student’s learning [1]. One type of 
learning companion is a teachable agent, which simulates the 
collaborative activity of peer tutoring, in that the student 
teaches the agent about the target domain. Prior work has 
demonstrated that there are cognitive and social benefits to 
peer tutoring [2], and by extension, to having a student teach 
an agent [3]. However, it is not fully understood how to 
design a teachable agent to maximize student learning.  

To date, the majority of teachable agent systems have 
been virtual. However, there may be several potential 
advantages to having students teach a robot rather than a 
virtual agent. First, the physical presence provided by a 
robotic agent strengthens users’ perceptions of having a 
social partner more than a virtual agent, and thus may better 
socially engage students [4]. Second, students benefit from 
learning through embodied, physical interactions [5], which 
robotic platforms naturally support. In a robotic 
environment, the effects of a robot’s social behaviors may be 
heightened; in an embodied environment, students may 
develop deep knowledge by linking concrete embodied 
representations to the underlying domain formalisms.  

In our research, we use the robo-Tangible Activities for 
Geometry system (rTAG) to explore the impact of physical 
form on students’ perceptions of a teachable agent, 
motivation, and learning. In rTAG, middle school students 
move within a projected coordinate system and interact with 
a robot named Quinn. They solve coordinate geometry 
problems [e.g., “Plot the point (3,1)”] by giving Quinn 
instructions to take actions such as “Move 3 units.” Quinn 
responds to students with cognitive and social prompts.  

In this paper, we survey related work, describe the rTAG 
system, and then present results from a study where we 
compare the rTAG system to two other conditions: a 
completely virtual version of TAG, run on a personal 
computer (vTAG), and a version of TAG where students 
interact in the embodied environment but with a virtual 
rather than robotic agent (eTAG). We hypothesize that rTAG 
will improve learning over the other two conditions because 
the robot will lead students to perceive the agent more 
positively and be more engaged. We close the paper with a 
discussion of the implications of our finding for future 
design of robotic learning environments. 

II. BACKGROUND 

A. Teachable Agents 
Teachable agents have emerged from the body of 

research on how students benefit from tutoring other students 
(e.g., [2]). The most investigated teachable agent system is 
Betty’s Brain, designed to help students learn about causal 
modeling [6]. Students teach Betty, their agent, by using 
resources such as text and videos to draw causal networks. 
Students can ask Betty questions that she will answer based 
on the network, and at some point, Betty will take a quiz. 
Teaching a computer agent is highly beneficial for the 
student doing the teaching: it can lead to more learning than 
being taught by a computer agent [6], is nearly as effective as 
being taught by a human tutor [7], and can be more effective 
than classroom instruction [8]. When teaching an agent, 
students notice their own misconceptions and elaborate on 
their knowledge [6]. Moreover, students tend to be highly 
motivated to teach their agents, feel responsible for them, 
and so attend more to instructional material [3].  

B. Robotic Learning Environments 
Our research builds on the teachable agent paradigm by 

exploring the effects of a student teaching a robot. There are 



many platforms that provide students with the opportunity to 
program robots. One of the earliest systems was related to 
turtle geometry [9]. Students programmed a robotic logo 
turtle to turn and move, and a pen attached to it created 
geometric figures. When using programmable robot 
platforms like LEGO Mindstorms®, children are often asked 
to meet certain challenges, ranging from building a soccer 
playing robot to creating an interactive park [10]. These 
activities are successful at improving programming and 
robotics skills [11], but the evidence on whether mathematics 
and science outcomes are improved is less convincing, with 
existing quantitative evaluations of learning from robotics 
programs yielding mixed results [12]. 

While having students teach a robot is similar to having 
students program a robot, a robotic teachable agent should 
initiate interaction in ways that the programmable robot 
paradigm does not support. In fact, [13] characterizes the 
above approaches as using the robot as a passive tool, and 
suggest instead using robots as direct facilitators and 
coordinators for the learning activity, such that the robot 
responds in socially and cognitively appropriate ways. Use 
of a robot as an intelligent mediator is promising, with initial 
positive results arising out of instituting robotic learning 
companions in various settings [14, 15].  

Along these lines, there have been a few examples of 
teachable robots for student learning. In [16], children aged 
3-6 taught a Nao care-receiving robot how to act out 
particular English verbs. These children had improved 
vocabulary learning compared to a set of children who did 
not interact with the robot. In [17], students aged 6-8 taught a 
robot to write handwritten letters. This work is promising, 
but the benefits of teachable robots are not yet understood. 

C. Research Hypotheses 
Our work explores two hypotheses for why a teachable 

robot in an embodied environment might enhance learning. 
The first hypothesis is: The social affordances of the robot 
will improve learning (H1a) and social perceptions of the 
robot (H1b). Physical robots can increase social presence 
compared to virtual agents [18, 19], and strengthen users’ 
perceptions of having a social partner [4]. These positive 
social perceptions of one’s learning companion are 
considered an important factor for learning in computer-
mediated environments [20, 21]. For example, [22] showed 
that students’ positive interactions with a social assistive 
robot helped in developing geometric thinking and meta-
cognitive skills. The social interactions fostered by the robot 
in rTAG may similarly improve student learning. Our 
second hypothesis is: The embodied affordances of the 
activity will improve learning (H2a). It has been proposed 
that humans give meaning to experience by going from 
embodied representations, using sensorimotor information, 
to symbolic representations [23]. There is much evidence 
that gesturing can facilitate learning [e.g., 24, 25], including 
complex gestural movements like sliding, stacking and/or 
rolling to mimic the shape of an object [26]. Thus, 
embodied action facilitated within our learning environment 
might improve student learning.  

III. RTAG SYSTEM 
This paper uses a platform for tangible robotic learning 

called rTAG [27]. In rTAG, students are told they are giving 
instructions to a robot in order to teach it how to solve point-
plotting problems. rTAG is currently comprised of the 
following three components (see Fig. 1, left). The problem 
space consists of a Cartesian plane projected onto a white 
foam mat. The teachable agent, Quinn, is an iPod Touch that 
displays facial expressions mounted on a LEGO 
Mindstorms® NXT 2.0 robot. Finally, the mobile interface 
consists of a second iPod Touch that students use to issue 
commands to the robot. Each one of these three components 
is a web app running from the same server. 

When using rTAG students are informed that they will be 
teaching Quinn to solve geometry problems. To issue 
commands to Quinn, students must first touch the iPod 
Touch that displays its face. When the face is touched, a list 
of commands available to the student appears on the mobile 
interface. This interface also lets the student see the current 
problem description and the steps taken thus far to solve it, 
check for correctness of the current solution, and, if the 
solution is correct, to move to the following problem. To 
illustrate, suppose a student is shown the following problem 
on the mobile interface: “Plot the point (2, 1)”. At this point, 
Quinn will be at the origin with zero degrees of rotation. The 
student might tell Quinn to move 2 units, turn 90 degrees, 
move 1 unit, and then plot the point. To issue each 
command, the student has to touch Quinn’s face.  

When a command is issued, the robot moves to the 
correct place within the problem space. Its position is tracked 
by four Wii remotes attached to the ceiling, which capture 
the light from two sets of LEDs attached to the top of the 
robot. The communication between the system’s components 
is done through Bluetooth in the case of computer-to-robot 
and Wii remotes-to-computer; and through a Wireless LAN 
network in the case of computer-to-iPods. Communication 
between web apps is done via web sockets.  

To facilitate learning from rTAG, the robot provides 
cognitive support by generating prompts during and after 
problem solving, based on the student’s current problem-
solving state. The prompts include hints, self-explanations, 
and questions. Example prompts include: “I can’t remember 
which way the y-axis goes! Do you? Can you walk along the 
y-axis for me?”; “In (4, 0), does the 4 tell me to move on the 
x-axis or on the y-axis?” Students are instructed to answer 
these prompts aloud.  

rTAG also contains preliminary social support. Quinn’s 
social behaviors are loosely based on attribution theory, and 
are generated in response to rTAG’s feedback, representing 
the robot’s reaction to whether it got the correct answer. 
Quinn’s response includes an emotion displayed on its iPod 
and telling the student how it feels about the outcome 
(correct vs. incorrect solution) through a message spoken in a 
gender-neutral voice. In the message, Quinn attributes the 
outcome to factors along two dimensions: the cause of the 
outcome (effort or ability) and the agent responsible for it, 
namely itself, the student, or both. For example, Quinn might 
say, “Yay! I got that right because you are a good teacher.” 



Quinn avoids attributions that may provoke negative 
responses (e.g. attributing failure to the student’s ability). 

IV. STUDY METHOD 

A. Conditions 
To investigate our hypotheses regarding rTAG’s effect 

on engagement and learning, we compared three conditions: 
1. rTAG. This is the embodied teachable robot condition 

described in Section III. Students watched the robot 
take action in the physical space and interacted with the 
robot using both the iPod Touch mounted on the robot 
and the mobile interface (Fig. 1, left).  

2. eTAG. This is the embodied teachable agent condition. 
Students still observed the problem being solved in a 
projected, physical space, but Quinn was represented by 
a projected circle rather than a physical robot. To make 
eTAG equivalent to rTAG in terms of the 
expressiveness of the agent, Quinn’s face was displayed 
on a monitor beside the problem space (Fig. 1, center). 
Instead of touching Quinn’s face to issue a command, 
students were instructed to touch the projected circle 
with the mobile interface iPod, and then tap on a 
“click” button available in the same device to trigger 
the list of commands. Thus, in both the rTAG and 
eTAG students had to move to the robot to issue 
commands, facilitating embodied action. 

3. vTAG. This is the virtual teachable agent condition. 
Students interacted with a virtual version of TAG on a 
personal computer, consisting of both the coordinate 
space and Quinn’s face (Fig. 1, right). 

If H1a and H1b were true, one would expect rTAG to 
improve learning over eTAG and vTAG due to the social 
engagement engendered by rTAG. If H2a were true, one 
would expect rTAG and eTAG to improve learning over 
vTAG, due to the embodied action in rTAG and vTAG.  

B. Participants & Procedure 
Participants were 37 students recruited from the 4th, 5th, 

and 6th grade (19 male, 18 female). We excluded one student 
who scored 100% on the pretest and one student who 

skipped several items on the self-report questionnaire, 
leaving 35 participants. Participants were randomly assigned 
to condition, leaving 10 students in rTAG, 12 in eTAG, and 
13 in vTAG. The study took place both at our research lab 
and in a spare room at a school. Students received $20. 

Students were introduced to the study, and then spent 5 
minutes studying a Geometry cheat sheet that discussed the 
principles to be learned in the study. They were then given a 
15-minute pretest, followed by a questionnaire on their 
attributional style (described below). They received 20 
minutes of training on how to use the system. Next, students 
were given 45 minutes to solve problems with the system. If 
students made three incorrect attempts at a given problem, 
they were given a list of steps to correctly answer the 
problem, which they followed by themselves. Students 
solved a mean of 9.20 problems (SD = 5.89). After the 45 
minutes, students took a 15-minute posttest, and then 
answered self-report questions on perceptions of their 
experience. In total, the study took two hours.  

C. Measures 
Pre- and posttests of domain knowledge were two 

isomorphic, counterbalanced forms, each consisting of 11 
questions spanning factual knowledge (e.g. labeling the 
coordinate system), procedural knowledge (e.g. plotting 
points), transfer knowledge (e.g. units in the coordinate 
system) and embodied knowledge (e.g. moving direction 
when plotting points). Each item was assigned 0 or 1 point 
and then the total was summed to create the final score.  

Perceptions of the robot were collected using [28]’s 
validated measurement tool for human-robot interaction, 
assessing perceived animacy (6 items), likability (5 items), 
intelligence (5 items), and trustworthiness (3 items). In this 
measure, students rate the agent on a series of 5-point scales 
(e.g., from foolish to sensible, unpleasant to pleasant, or 
artificial to lifelike). All items were averaged to create an 
overall measure of students’ social perceptions.  

V. STUDY RESULTS AND DISCUSSION 

A. Social Perceptions 
First, we examined the effects of condition on student 

Fig. 1. The three TAG conditions tested in the study. In rTAG (left), students interact with a robot, Quinn, using a mobile interface. In eTAG (center), 
students interact using the same mobile interface, and a projected circle responds to students’ instructions. The agent’s face is displayed on a screen to 
the side of the problem space. In vTAG (right), students interact with Quinn and the problem space through a computer. 

 



perceptions of the agent, testing H1b. We conducted four 
ANCOVAs, each with animacy, likability, intelligence, and 
trustworthiness as the dependent variable, condition as an 
independent variable, and pretest score as a covariate, as our 
initial analyses suggested that prior knowledge may be 
influencing student perceptions (see Table 1 for means). We 
found that condition had a marginally significant effect on 
likability (F(2,29) = 3.26, p = 0.053), and significant effects 
on intelligence (F(2,29) = 3.59, p = 0.041), and 
trustworthiness (F(2,29) = 4.82, p = 0.016). Effects of 
condition on animacy was not significant (F(2,29) = 1.30, p 
= 0.29). In addition, the interaction between condition and 
pretest score had a significant effect on trustworthiness 
(F(2,29) = 4.64, p = 0.018) and a marginal effect on 
likability (F(2,29) = 3.18, p = 0.058). We computed 
correlations for each condition between pretest and these 
two perception variables. For the vTAG condition, pretest 
was positively related to trustworthiness (r(11) = 0.511, p = 
0.074) and likability (r(11) = 0.457, p = 0.116). For the 
eTAG condition, pretest did not seem particularly related to 
trustworthiness (r(10) = 0.241, p = 0.450) or likability (r(10) 
= -0.016, p = 0.960). For the rTAG condition, pretest score 
was negatively related to trustworthiness (r(8) = -0.566, p = 
0.088) and likability (r(8) = -0.489, p = 0.151).  

Interpreting these results, it seems as though low-prior 
knowledge students had more positive perceptions of Quinn 
in rTAG, while high-prior knowledge students had more 
positive perceptions in vTAG. It may be that high-prior 
knowledge students were likely to be more receptive to 
familiar technologies, while low prior knowledge students 
were more likely to be engaged by novel ones. 

B. Learning 
Next, we conducted a repeated-measures ANOVA to 

assess learning (H1a and H2a). Test score was the 
dependent variable, test time was used as a within-subjects 
variable, and condition was used as a between-subjects 
variable (see Table 1). Students improved significantly from 
pre to posttest (F(1,32) = 40.76, p < 0.001), but there was no 
significant differences between conditions in terms of 
learning (F(2,32) = 0.423, p = 0.658).  

We had posited a relationship between students’ social 
perceptions and their learning. As an exploratory analysis, 
we ran a series of partial correlations within each condition 

where we controlled for pretest score and explored the 
effects of students’ social perceptions on their posttest 
scores. While no correlations were significant, within the 
rTAG condition, we found negative relationships between 
posttest score and perceived likability (r(7)= -0.528), and 
posttest score and trustworthiness (r(7) = -0.227). This 
pattern was stronger in the eTAG condition, with posttest 
score negatively related to likability (r(9) = -0.650), 
animacy (r(9) = -0.329), intelligence (r(9) = -0.477), and 
trustworthiness (r(9) = -0.441). We did not find this pattern 
in the vTAG condition, and, in fact, posttest score appeared 
to be positively related to perceived intelligence (r(10) = 
0.331) and likability (r(10) = 0.202).  

Thus, there was little evidence that social perceptions 
positively related to learning within the two embodied 
conditions. In fact, the added motivational elements may 
have increased cognitive load, adding “seductive details” 
that distracted the learners [29]. The more students attended 
to novel features of the technology, the less they may have 
attended to the problem-solving content. 

VI. CONCLUSIONS 
In this paper, we examined the effects of a teachable 

robot on student perceptions and learning, compared to 
virtual and embodied versions of the system. While students 
learned from using the system, there were no significant 
differences between conditions on learning. There was some 
evidence that perceptions influenced learning, although in 
unexpected ways. Students with low prior knowledge 
appeared to respond more positively to rTAG, suggesting 
that the novelty of the system and the robot may have 
appealed to them. However, positive perceptions of rTAG 
were related to smaller learning gains. Students with more 
positive perceptions of rTAG may have been distracted by 
its novel elements [29]. 

Our analysis was limited by our small sample size, which 
reduces the generalizability of the findings. In addition, the 
short duration of the study makes it difficult to interpret the 
results. Two hours may not give students enough time both 
to learn how to use the system and to reflect on the problem-
solving content. Short-term interactions with technology can 
produce a novelty effect, where students’ initial engagement 
decreases after the first few interactions [30]. 

Thus, there is a need for additional research examining 

TABLE I.  MEANS AND STANDARD DEVIATIONS (IN PARENTHESIS) FOR SOCIAL PERCEPTION AND LEARNING VARIABLES. PRETEST AND POSTTEST 
SCORES ARE REPORTED AS PERCENTAGES. SOCIAL PERCEPTION SCORES ARE OUT OF 5. 

 
 Animacy Likability Intelligence Trustworthiness Pretest Posttest 
vTAG 3.92 (0.94) 4.46 (0.96) 4.19 (0.73) 4.33 (0.73) 38.8 (24.1) 57.0 (25.6) 

eTAG 3.87 (0.76) 4.62 (0.36) 4.40 (0.55) 4.64 (0.39) 45.8 (32.0) 58.7 (30.1) 

rTAG 4.53 (0.67) 4.66 (0.49) 4.56 (0.46) 4.53 (0.67) 40.3 (23.0) 55.9 (17.2) 

 



whether low prior knowledge students are socially engaged 
by the robot over long periods of time, and if so, how best to 
support them in learning. Iteration on the cognitive and 
social support within the system may preserve students’ 
motivation while better directing their attention to salient 
problem-solving features. For example, we could investigate 
how different types of social statements can lead students to 
reflect on problem-solving steps. In addition, use of rTAG 
in classroom contexts may yield secondary benefits, 
facilitating collaboration and technological literacy in 
addition to problem-solving [27]. Teachable robots hold 
theoretical promise, but require continued research into 
relevant design principles and their potential effects. 
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