
RESEARCH ARTICLE

Adaptive Intelligent Support to Improve Peer
Tutoring in Algebra

Erin Walker & Nikol Rummel &
Kenneth R. Koedinger

Published online: 18 October 2013
International Artificial Intelligence in Education Society 2013

Abstract Adaptive collaborative learning support (ACLS) involves collaborative
learning environments that adapt their characteristics, and sometimes provide intelligent
hints and feedback, to improve individual students’ collaborative interactions. ACLS
often involves a system that can automatically assess student dialogue, model effective
and ineffective collaboration, and provide relevant support. While there is evidence that
ACLS can improve student learning, little is known about why systems that incorporate
ACLS are effective. Does relevant support improve student interactions by providing
just-in-time feedback, or do students who believe they are receiving relevant support feel
more accountable for the collaboration, and thus more motivated to improve their
interactions? In this paper, we describe an adaptive systemwe have developed to support
help-giving during peer tutoring in high school algebra: the Adaptive Peer Tutoring
Assistant (APTA). To validate our approach, we conducted a controlled study that
demonstrated that our system provided students with more relevant support and was
more effective at improving student learning than parallel nonadaptive conditions. Our
contributions involve generalizable techniques for implementing ACLS that can func-
tion adaptively and effectively, and the finding that adaptive support does indeed
improve student learning because of the relevance of the support.

Keywords Intelligent tutoring .Computer-supported collaborative learning .Adaptive
collaborative learning support . Peer tutoring

Int J Artif Intell Educ (2014) 24:33–61
DOI 10.1007/s40593-013-0001-9

E. Walker (*)
School of Computing, Informatics, and Decision Systems Engineering, Arizona State University,
Tempe, USA
e-mail: erin.a.walker@asu.edu

N. Rummel
Institute of Educational Research, Ruhr-Universität Bochum, Bochum, Germany
e-mail: nikol.rummel@rub.de

K. R. Koedinger
Human-Computer Interaction Institute, Carnegie Mellon University, Pittsburgh, USA
e-mail: koedinger@cmu.edu

Introduction

The ability to computationally model human problem-solving has had a profoundly
positive impact on the advancement of effective educational technologies. In intelli-
gent tutoring systems (ITSs), the system develops a model of student knowledge by
comparing students’ problem-solving steps to ideal performance, and then uses that
model to give students individualized support such as hints, feedback, and problem
selection (VanLehn 2006). These systems have been very successful at supporting
individual learners in problem solving, often approaching the effectiveness of expert
human tutoring (VanLehn 2011). For example, the Cognitive Tutor Algebra, an
intelligent tutoring system for high school algebra, has been demonstrated to improve
classroom learning by one standard deviation over traditional instruction (Koedinger
et al. 1997). Recently there has been a movement in ITS research to take a more
holistic view of the learning process and develop “tutors that care” (du Boulay et al.
2010), with a goal of modeling and supporting higher-order skills like metacognition,
motivation, and social interaction (e.g., Roll et al. 2011; Muldner et al. 2010; Ogan
et al. 2011).

Our focus within this movement is on modeling and supporting collaborative
learning. An important aspect of learning is the social construction of knowledge,
where students exchange ideas, reflect on their own misconceptions, and come to a
shared understanding through dialogue with their peers (Schoenfeld 1992).
Collaborative activities in the classroom can facilitate this kind of learning, but only
if students are engaging in particular interactions, such as giving help when their
partners need it (Johnson and Johnson 1990). As students do not engage in these
interactions spontaneously, researchers and practitioners attempt to improve student
collaboration through interventions that structure or script the collaboration, provid-
ing students with roles and activities to follow (Fischer et al. 2007; Kollar et al. 2006).
For example, in King’s reciprocal peer tutoring script, students take turns teaching a
partner, and are prompted to ask their partner specific questions at increasing levels of
depth (King et al. 1998). These collaboration scripts tend to be fixed, in that they do
not adapt to individual or group needs. They may overconstrain collaboration for
good collaborators, provide insufficient support for poor collaborators, and there is no
guarantee that students will use them as designed (Kollar et al. 2005; Dillenbourg
2002; Lazonder et al. 2003).

In adaptive collaborative learning support (ACLS), collaborative learning envi-
ronments adapt their characteristics, and sometimes provide intelligent hints and
feedback, to improve students’ collaborative interactions (Magnisalis et al. 2011).
In theory, ACLS systems are more effective than nonadaptive collaborative learning
systems because they can tailor the support they provide to students’ needs and
abilities (Rummel and Weinberger 2008). In this paper, we describe an ACLS system
we developed to support peer tutoring in high school algebra: The Adaptive Peer
Tutoring Assistant (APTA; Walker et al. 2011). APTA is based on the literal equation
solving unit of the Cognitive Tutor Algebra (CTA), a successful individual intelligent
tutoring system in high school algebra (Koedinger et al. 1997). In APTA, one student
(the tutee) solves problems like “Solve for x; ”, and a second student (the peer tutor)
marks the problem steps right or wrong and discusses the problems with the tutee in a
chat window. Our system provides adaptive support to peer tutors in order to help

34 Int J Artif Intell Educ (2014) 24:33–61

them give more correct and more effective help. In this paper, we focus on the
mechanisms we used to support the peer tutor in giving more effective help (a
help-giving tutor). In constructing our system, we made a technological contribution
by developing techniques to handle the uncertainty inherent in assessing, modeling,
and supporting collaborative dialogue. We made a theoretical contribution by eval-
uating APTA to investigate the impact of adaptive support on learning from collab-
oration, improving understanding of when and why adaptive systems are effective.

Implementation of ACLS

Soller et al. (2005), in their review of systems that support collaboration, differentiate
between mirroring systems that reflect the state of students’ collaboration back to the
students, metacognitive tools that provide information about the current and desired
state of the interaction, and guiding systems that propose remedial actions in response
to perceived collaborative weaknesses. Within guiding systems (what we are referring
to as ACLS), Magnisalis, Demetriadis, and Karakostas (2011) make a further distinc-
tion between systems that focus on group formation, domain-specific support, or peer
interaction support. For the purposes of this paper, our primary interest is in guiding
systems that provide peer interaction support by analyzing student collaborative
dialogue as it occurs and intervening when appropriate (e.g., Israel and Aiken
2007; Vieira et al. 2004).

Dialogue is a highly important element of learning from peer tutoring, and the
target of the help-giving support implemented in APTA. The simplest way of
supporting collaborative dialogue is to focus on metrics that do not rely on the
content of the dialogue. Several systems count individuals’ utterances as a way of
generating a participation score, and then encourage those who are not participating
to participate more (e.g., Vizcaíno et al. 2000; Rosatelli and Self 2004; Vieira et al.
2004; Kumar et al. 2007). For example, if a student does not participate in a chat
window for more than 50 % of the estimated time the group will be working on a
step, LeCS prompts the student to participate in the discussion by saying, “Would you
like to participate in the discussion?” (Rosatelli and Self 2004). Another set of
guiding systems facilitates dialogue between collaborating students by using sentence
openers or classifiers. Students are asked to classify their own utterances, and then the
sequence of labelled utterances is compared to a model of ideal dialogue in order to
provide students with support (McManus and Aiken 1995; Baker and Lund 2003).
For example, GroupLeader (Israel and Aiken 2007) asks students to select from one
of 46 sentence starters in order to label their utterance. Based on the starter selected,
the system identifies the dialog action students were taking (e.g., “Let’s negotiate
this…” represents the negotiation dialogue act), and students could then be encour-
aged to make more of a specific type of contribution (Barros and Verdejo 2000).
Particular sequences of dialogue actions can also relate to student behaviors or beliefs
that can serve as targets for support. For example, Tedesco (2003) uses sentence
starters such as “I disagree” and other forms of highly constrained input to detect
conflicts within a group and prompt group members to reflect and elaborate on their
opinions. Unfortunately, students do not consistently select sentence starters that
match the content of their statements, and therefore the inferences the system makes
can be inaccurate (Israel and Aiken 2007; Lazonder et al. 2003). In recent years,

Int J Artif Intell Educ (2014) 24:33–61 35

machine learning technology has been used to supplement sentence classifiers and
content-free metrics by automatically classifying student contributions along a growing
variety of dimensions (Rosé et al. 2008), and using features of the learning environment
such as the way discussion contributions are linked to improve the impact of the
machine learning (Mclaren et al. 2010). For example, Dragon, Florian, Woolf, and
Murray (2010) have demonstrated that they can automatically classify the topic of
student discussion. Recently, these classifiers have become effective at detecting rele-
vant aspects of collaborative dialogue such as authority (Mayfield and Rosé 2011), with
the goal of using these assessments as triggers for support.

Like an individual ITS, ACLS involves three phases: assessing student interac-
tions, modeling ideal interactions, and using a comparison between the two to provide
tailored support (Soller et al. 2005). Unlike many traditional ITSs, ACLS must deal
with ambiguity at each phase, sharing commonalities with the growing body of work
on ITSs in ill-defined domains (Mitrovic and Weerasinghe 2009). With regards to
assessment, much of the benefits of collaborative learning come from the dialogue
between collaborating students, but automatically assessing relevant aspects of stu-
dent dialogue is not a solved problem. Regarding modeling (i.e., creating a model of
ideal performance), while we know which collaborative interactions are broadly
related to learning, we know less about under what specific circumstances these
positive interactions should be employed. Therefore, when creating a model of
collaboration it is difficult to specify what interactions should occur at what moments
during the collaboration. Finally, in terms of support, little research has been done on
how to provide adaptive support based on uncertain information delivered in the
assessment and modeling phases. A single collaborative action or state is unlikely to
be unilaterally correct or incorrect, and students have many options when choosing
their next action. Traditional ITSs are ill-equipped to deal with this kind of ambiguity.
It is difficult to build an adaptive system that can produce support relevant to student
interaction, and thus ACLS systems are rarely sufficiently developed such that they
are able to be deployed in a natural context.

Magnisalis and colleagues (2011) introduce several necessary research directions
in their review of the state of the art of ACLS, including improving the assessment of
student collaboration, deepening the interaction analysis of the collaboration, and under-
standing the design space for providing support. In our system, APTA, we advance ACLS
by usingmultiple channels of information (automatic classifications, self-classifications, and
domain information) to assess student dialogue. We then use a combination of production
rule modeling, constraint-based modeling, and knowledge tracing to assess student peer
tutoring skills. The feedback we give based on these assessments takes into account the
uncertainty inherent in modeling collaboration, giving the peer tutor the benefit of the doubt
with respect to many of their collaborative actions.

Effects of ACLS

Once ACLS is implemented, it tends to be an effective way of supporting collabo-
ration. COLLECT-UML, for example, adaptively supports students in collaborating
on the design of UML class diagrams, and has been shown to lead to greater
knowledge of collaboration over an individual learning system (Baghaei et al.
2007). A previous iteration of our system demonstrated that adaptive support improved

36 Int J Artif Intell Educ (2014) 24:33–61

student peer tutoring in high school algebra over a static resource on how to collaborate
effectively (Walker et al. 2011). There is also evidence that ACLS can improve domain
learning. CycleTalk adaptively supports collaborative dialog in simulation-based learn-
ing environments using tutorial dialog agents, and has been shown to be better than fixed
support at increasing domain learning (Kumar et al. 2007). Karakostas and Demetriadis
(2011) provided adaptive domain support to collaborating students in the form of
prompts relating to important concepts students had missed in their discussion. This
adaptive support improved domain learning over a static resource that described all
important domain concepts. Although the research involving actual adaptive systems
and their effects on learning from collaboration is limited, there have additionally been
Wizard of Oz studies where adaptive support within a collaborative learning system has
been provided by a human acting as a computer, and benefits of the adaptive support
have been demonstrated (Gweon et al. 2006; Tsovaltzi et al. 2010).

It is important to understand why ACLS might be effective, so we can better direct
our efforts when building support. Research on collaborative learning has evolved from
investigating whether collaborative learning is better than individual learning, to inves-
tigating when collaborative interactions are related to benefits of collaboration, to
understanding how to support positive collaborative interactions to yield optimal out-
comes (Dillenbourg et al. 1995). Now that it is possible to support collaborative
interactions adaptively using technology, it becomes important to understand what kinds
of adaptive support are effective for what kinds of collaboration. Most research on
ACLS has assumed that it benefits students because when given relevant support in a
timely manner, students might more easily apply it to their interactions. In fact, the
success of ACLS systems is typically measured by looking at the validity of the
collaborative model used (Suebnukarn and Haddawy 2006) or the applicability of the
feedback messages given (Constantino-González et al. 2003). However, there is another
explanation for why ACLS might be effective: students who believe they are receiving
adaptive support may feel more motivated to engage with the support and take appro-
priate action, regardless of the actual relevance of the support. Accountability for one’s
partner’s outcomes tends to be an important motivational force in collaboration (e.g.,
Slavin 1996), and in previous work we found results that suggested that if students
believe the computer is monitoring and responding to their actions, they may feel an
increased sense of accountability for those actions and become better collaborators
(Walker et al. 2011). If support relevance is important, the uncertainty inherent in
modeling student collaboration needs to be resolved, but if support relevance is not
important, then designing engaging support becomes the most important goal. By
implementing a truly adaptive system, we can begin to evaluate the impactmore relevant
help, delivered by an intelligent system, has on student learning from collaboration.

To demonstrate the effectiveness of our system, we examined whether and why
providing more adaptive support improves learning from collaboration. We compared
three conditions: one in which support is adaptive and students were told it is adaptive
(real adaptive), one in which support is random but students were told it is adaptive
(told adaptive), and one in which support is random and students were told it is
random (real nonadaptive). If it is relevant support that matters, only students who
actually receive adaptive support (i.e., those students in the real adaptive condition)
should improve their collaboration quality and their domain learning. On the other
hand, if accountability is most important, told adaptive students should also improve

Int J Artif Intell Educ (2014) 24:33–61 37

their collaboration quality and domain learning. By distinguishing between these two
explanations for the effectiveness of adaptive collaborative support, we can better
evaluate the effectiveness of the specific adaptivity implemented in our system.

In the remainder of this paper, we first survey research on learning from peer tutoring,
and describe theyways in which APTA, our collaborative learning environment, enables
peer tutors and tutees to interact. We describe the implementation of the ACLS we
developed for the peer tutor. We then present the results of an evaluation of APTA that
explores why adaptive support might be effective in this context. For consistency,
throughout this paper, the student being tutored is referred to as the tutee, the student
doing the tutoring is referred to as the peer tutor, and the intelligent tutoring component
that provides feedback to the peer tutor is referred to as the help-giving tutor.

Context: Peer Tutoring

We investigate adaptive support to collaborative dialogue within the context of a
reciprocal peer tutoring script. In reciprocal peer tutoring, novices are put in pairs, and
take turns tutoring each other. These scenarios have been shown to lead to learning in
classroom environments (Fantuzzo et al. 1989). The core activity in reciprocal peer
tutoring is help-giving, where one student helps another. Help-giving is a large compo-
nent of many collaborative scenarios, and thus determining how to support students in
giving better help might generalize to many different areas (Johnson & Johnson, 1990).
Peer tutoring can have a positive impact on both the help-giver and help-receiver.
Students of all abilities benefit from giving help (Ploetzner et al. 1999). When students
know they will be tutoring another, they are more motivated to attend to the domain
material. As their partner takes steps and makes errors, they reflect on the steps, noticing
their own misconceptions. As they construct explanations to help their partner, they
elaborate on their existing knowledge and construct new knowledge (Roscoe and Chi
2007). In contrast, for the help-receiver to benefit from reciprocal peer tutoring scenar-
ios, many criteria need to be met: for example, help needs to target misconceptions, be
conceptual, be elaborated, and, for the most part, be correct (Webb and Mastergeorge
2003). In addition, the actions help-receivers take can have a positive impact on their
own learning, for example, by using peer tutor help constructively or by self-explaining
their errors (Webb et al. 1995; Chi et al. 1994).

APTA, our peer tutoring system, is based on the literal equation solving unit of the
Cognitive Tutor Algebra (CTA), a successful individual intelligent tutoring system in
high school algebra (Koedinger et al. 1997). In literal equation solving, students are
given a prompt like “Solve for x,” and then given an equation like “” This domain is
consistently identified by classroom teachers as one that is particularly difficult for
students to master. In this unit, students use menus in an equation solver tool to
manipulate the equation, selecting operations like “add x” or “combine like terms”.
The semantic label for the operation then appears on the right side of the screen. For
certain problems, students have to type the result of the operation in addition to
selecting it. As the students solve the problem, the CTA compares their actions to a
model of correct and incorrect problem-solving behavior. If they make a mistake, they
receive visual feedback in the interface, and often a message describing their
misconception. At any point, students can request a hint on the next step of the

38 Int J Artif Intell Educ (2014) 24:33–61

problem. The CTA monitors student skills, reflects them in a skill display, or
skillometer, and selects problems based on student skill mastery. Students complete
the unit when they have demonstrated mastery on problems at three levels of
difficulty: 1) problems where all variable terms are on the same side, 2) problems
where variable terms are on different sides of the equation, and 3) problems where the
variable terms are in unusual positions (e.g., in the denominator of a fraction).

Our initial version of the peer tutoring script attempted to create interaction conditions
conducive to the display of positive tutoring behaviors. During use of the script, students
were in the same classroom, but tutors and tutees were seated on opposite sides of the room
and asked to communicate with each other solely through a chat window on the computer.
One component of the script involved encouraging the peer tutor to reflect on the correctness
of tutee steps. The tutee solves problems using the equation solver interface in theCTA. The
tutor sees the tutee’s problem-solving steps and the results of her typed-in entries, but cannot
solve the problem herself (see Fig. 1e). Instead, she can mark the tutee’s actions right or
wrong, providing feedback that the tutee sees and can use while continuing to solve the
problem (Fig. 1f). Peer tutors did not have to mark every step before they could move to the
next problem, but could mark whichever steps they feel necessary. Peer tutors receive
feedback on these reflective actions; if they marked a step correct when it is actually
incorrect, or marked a step incorrect when it is actually correct, the computer tutor highlights
the answer in the interface, and presented the peer tutor with an error message, consisting of
a randomly selected prompt to collaborate and the domain help the tutees would have
received had they been solving the problem individually. The peer tutor could request a hint
from the computer tutor at any time, and would receive multi-level hints involving domain
help (including conceptual hints and feedback) and a prompt to collaborate. This feedback
was designed to trigger reflective processes on the part of the peer tutor by encouraging them
to mark steps more frequently. It also served to draw the peer tutors’ attention to miscon-
ceptions by letting them know when they have made an error marking a problem step,
further encouraging them to engage in reflection. In addition, the support is intended to lead
peer tutors to provide tutees with more correct feedback on problem steps, which facilitates
both students in building correct procedural knowledge in the domain. The hints that peer
tutors receive are intended to further introduce more correct and conceptual content into the
interaction. As students benefit from peer tutoring because they reflect on domain knowl-
edge and their own misconceptions, and tutees benefit more from peer tutoring when they
receive correct help, we felt that this interventionwould improve the domain learning of both
students involved.

A second component of the script involved natural language interaction between
peer tutors and tutees using a chat tool, where, for example, tutees can ask questions
and tutors can give hints and feedback (Fig. 1a). To facilitate the discussion in the
chat window, we included a common form of fixed scaffolding: sentence classifiers.
This form of fixed scaffolding is thought to be pedagogically beneficial by making
positive collaborative actions explicit in the interface and encouraging students to
consider the type of utterance they wish to make (Weinberger et al. 2005). We asked
peer tutors to label their utterances using one of four classifiers: “ask why”, “explain
why wrong”, “give hint”, and “explain what next” (see Fig. 1d). Students had to select a
classifier before they typed in an utterance, but they could also choose to click a neutral
classifier (“other”). For example, if students wanted to give a hint, they could click “give
hint” and then type “subtract x”. Their utterance would appear as: “tutor hints: subtract

Int J Artif Intell Educ (2014) 24:33–61 39

x” to both students in the chat window. Tutees were also asked to self-classify each
utterance as one of three categories: a “ask for help”, “explain yourself”, or “other”. To
further encourage students to chat appropriately, in the tutor’s interface, we linked each
sentence classifier to a brief description of how to use the classifier appropriately. This
description appeared every time the student selected the sentence classifier. Dialogue is
an important component of learning from peer tutoring; Peer tutors engage in elaborative
and generative processes when they compose conceptual explanations and reflect on
tutee questions; and tutees benefit by explaining their own actions and asking tutors
specific questions (Webb and Mastergeorge 2003). Including a chat window gives
students the opportunity to engage in these behaviors.

In the above system as described, there is cognitive support that adapts to what
students are doing, but not direct support for the quality of student collaboration
(which we call help-giving support). If tutees take incorrect steps, peer tutors have
access to hints and feedback on what the correct steps are, and the concepts behind
them. However, peer tutors do not receive adaptive guidance on whether they are
giving good help and how to improve. We hypothesized that introducing adaptive
help-giving support into the system would significantly improve the learning of both
the peer tutor and peer tutee. While it is likely that supporting the interactions of the
tutee more directly would also improve the learning of both parties, as an initial
attempt at introducing this ACLS we focused only on peer tutor actions.

Fig. 1 Peer tutor’s interface in APTA. The peer tutor watches the tutee take problem-solving actions (e),
and marks the actions right or wrong (f). Students can talk in the chat window (a), where they classify their
own utterances (d). They also receive prompts from the computer (b), and can choose to like them, dislike
them, or ignore them (c)

40 Int J Artif Intell Educ (2014) 24:33–61

Adaptive Help-Giving Support

Description

In improving peer tutor help-giving, our goal was to target four peer tutor skills that
exemplify good help in our context:

1. Timely help. Giving help in response to tutee errors and help requests. While this
skill is rarely discussed in research on peer tutoring, interacting with the tutee when
they are struggling is a basic common-sense requirement of effective peer tutoring.

2. Appropriate help. Prompting the tutee to self-explain and giving error feedback
when appropriate. As surveyed above, both prompting tutees to self-explain and
explaining tutee misconceptions can be beneficial for tutee learning (Chi et al.
1994; Webb and Mastergeorge 2003). Reflecting on tutee misconceptions is also
beneficial for peer tutor learning (Roscoe and Chi 2007).

3. Conceptual help. Explaining a problem-solving step using a domain concept.
Building a conceptual explanation is an essential part of peer tutor knowledge
construction (Roscoe and Chi 2007). Receiving these explanations can also be
beneficial for the tutee (Webb and Mastergeorge 2003).

4. Use of classifiers. Using sentence classifiers to accurately label the content of
peer tutor utterances. Sentence classifiers can be beneficial scaffolding on their
own for collaborating students (Weinberger et al. 2005), by enabling students to
reflect on the types of collaborative actions they want to take. In addition, we use
the sentence classifiers to improve our understanding of what the peer tutor is
doing. Ensuring that students use sentence classifiers correctly could potentially
both improve peer tutor learning and the accuracy of our system.

Adaptive support, visible to both students, was provided in the chat window to
help peer tutors give better help. For example, the peer tutor might give an instru-
mental hint like “then subtract” rather than a conceptual hint like “to get rid of qcv,
you need to perform the inverse operation on that side of the equation.” In that case,
the computer uses an assessment of the peer tutor’s help-giving skill to say in the chat
window (visible to both students), “Tutor, why do you say that? Can you explain
more?” (Fig. 1b). This utterance is designed to get both students reflecting on the
domain concepts behind the next step, and to remind the peer tutor that she should be
giving help that explains why in addition to what. However, the computer assistance
is posed as a question and uses non-critical wording to avoid threatening the authority
of the peer tutor. Students also received encouragement when they displayed a
particular help-giving skill (“Good work! Explaining what your partner did wrong
can help them not make the same mistake on future problems”). Only one reflective
prompt was given at a time, and prompts (in this version of the system) were always
addressed to the peer tutor. Parameters were tuned so that students received an average
of one prompt in the chat window for every three peer tutor actions. There were several
different prompts for any given situation, so students rarely received the same prompt
twice. These prompts were intended to support peer tutors in engaging in the four help-
giving skills described above, leading them to experience more reflective and generative
elaborative processes while providing better help to their tutees.

Int J Artif Intell Educ (2014) 24:33–61 41

A simplified architecture of the system is depicted in Fig. 2. The peer tutor and tutee
interact with separate interfaces. Student actions are sent to a central control module, and
then to the tutoring components of the system. The adaptive help-giving support consists
of an assessment component, a modeling component (that does both model and
knowledge tracing), and a support component. Once a pedagogical decision has been
made, the support component sends the appropriate action back to the control module,
which then directs the response to the student interfaces. In the following subsections we
describe how the help-giving tutoring components were implemented in more detail.

Assessment

The first step in delivering adaptive prompts to the peer tutor was to assess the current
quality of peer tutor help (see the Assessment Component of Fig. 2). The help-giving
tutor used a combination of several inputs. First, it used the CTA assessment of tutee
problem-solving steps. For each step tutees took, the CTA models classified the step
as right or wrong, and our help-giving tutor had access to that data. Second, it used
student self-classifications of chat actions, based on the sentence classifier selected
(e.g., “give hint”). Third, a machine classifier of student help, constructed using
Taghelper Tools (Rosé et al. 2008; currently called LightSIDE), could determine
whether students gave help, what kind of help it was, and whether it was conceptual

Fig. 2 Simplified architecture of APTA, depicting the help-giving tutoring components. First student
actions are assessed, then we model trace to compare the actions to an ideal model and knowledge trace to
update an assessment of tutor skills. Finally, an appropriate prompt is chosen by the support component

42 Int J Artif Intell Educ (2014) 24:33–61

or not. The details of this classifier are described fully in Walker, Walker, Rummel,
and Koedinger (2010); we summarize its functionality in the following paragraphs.

The system classified two aspects of peer tutor dialogue: help type and conceptual help.
First, for help type, we looked at whether peer tutors were giving next-step help, previous-
step help, both, or no help at all. Next-step help related to whether the utterance related to a
future action on the problem (e.g., “Howwould you get rid of 2h?”) while previous-step help
related to an action tutees had already taken (e.g., “No need to factor because there is only
one g”). If the help segment contained both categories, its help type was labeled “both”, and
if it contained neither category (e.g., “on to the next problem”), its help type was labeled
“none”. Using the classified help type in conjunction with the problem-solving context (e.g.,
knowing whether the tutee has just made a correct step, incorrect step, or help request) can
help APTA decide whether peer tutors are giving the appropriate kind of help. Second, for
conceptual content, we looked at whether peer tutors gave help that explains concepts rather
than simply stating what to do next (e.g., “add ax”was purely instrumental help, while “add
ax to cancel out the –ax”was conceptual). Being able to identify this aspect lets APTAknow
whether peer tutors are providing enough conceptual help. We used a corpus drawn from a
previous classroom study, where we compared adaptive and fixed support for peer tutoring
(Walker et al. 2011). As part of the study, students participated in two supported peer tutoring
sessions; one in which they acted as the tutor, and one in which they acted as the tutee. There
were a total of 84 tutoring sessions from both conditions, consisting of an average of 21.77
tutor lines of dialogue per session (SD=10.25). Two raters coded tutor utterances for help
type (kappa=0.83) and conceptual content (kappa=0.72). Interrater reliability was computed
on 20%of the data, and the remainder of the datawas coded by one rater and checked by the
second. All disagreements were resolved through discussion. The dialog was segmented by
chat messages, creating a new segment every time students hit enter. In our dataset, 935 tutor
instances were coded as “none”, 764 were coded as “next-step help”, 83 were coded as
“previous-step help”, and 47 were coded as “both”; 1654 instances were coded as non-
conceptual help, and 165 were conceptual help.

We created baseline machine classifiers for help type and conceptual content using
Taghelper Tools, state of the art text-classification technology designed for coding collabo-
rative dialogue (Rosé et al. 2008). Taghelper automatically extracts several dialogue features
for use in machine classification, including unigrams, bigrams, line length, and punctuation.
The domain context of the interaction was used to provide additional features for a machine
learning classifier. This context included information directly taken from the students’
problem-solving behavior (e.g., a student has just taken a incorrect step in the problem),
information about how student dialogue relates to the problem-solving context (e.g., a
student has referred to another student’s incorrect step), and information about the
history of the interaction (e.g., a student referred to another student’s incorrect steps
10 times over the course of the interaction). We used a chi-squared feature selection
algorithm to rank the most predictive features, and 10-fold cross validation to train a
support vector machine classifier for help type and conceptual content. On training data,
the classifier had an accuracy of .81 for help type and .66 for conceptual content.

Modeling

The modeling components of APTA consisted of both a model tracing and knowledge
tracing algorithm (see the Modeling component of Fig. 2). The above inputs (machine

Int J Artif Intell Educ (2014) 24:33–61 43

classification, self-classification, and CTA classification) were fed into a production rule
model with 19 rules. Our model is a metacognitivemodel rather than a cognitivemodel,
and thus, while our approach was inspired by model tracing, we made accommodations
for the ill-defined nature of the collaborative domain. Instead of being labeled as either
“correct” or “buggy,” rules were divided into four types: effective, somewhat effective,
somewhat ineffective, and ineffective behaviors. These four levels allowed us to
represent ambiguity in the model. The identification of rules and division into types
were conducted through a literature review, and leveraged previous data collected of
how students tutor each other in this particular context. Table 1 presents the rules, their
type, their associated skill, and what classification sources were used as inputs.

Effective behaviors, represented by the “++” in Table 1, are most analogous to correct
behaviors in traditional ITSs. They are paths in our model of good peer tutoring that are
considered to be beneficial for collaboration quality the majority of the time. For example,
explaining a tutee error was considered to be an ideal behavior (rule 9 in Table 1). The tutee
commission of the error was detected by the CTA, and then explanation of the error was
detected using our automated classification algorithm (whenever an utterance was classified
as previous-step help). There are four effective behaviors in the model.

Somewhat effective behaviors, represented by the “+” in the table, were considered to
be probably beneficial for collaboration quality at any given time. An example of a
somewhat effective behavior can be found at rule 2 in Table 1, where if the tutee makes
an error, the peer tutor should give help. This rule is only somewhat effective because
while there are many situations where peer tutor should give help after an error, it is not
necessarily the best course of action in all cases; there may bemany situations where tutees
should repair their own error. There were six somewhat effective behaviors in the model.

Somewhat ineffective behaviors, represented by the “-”in the table, were consid-
ered to be probably detrimental to collaboration quality. An example of a somewhat
ineffective behavior is rule 13 in the table, where peer tutors give next step help after
an error. While this may be beneficial in cases where tutees are struggling, in many
situations it is likely to be more beneficial if peer tutors address tutee misconceptions
in their help. The model consisted of five somewhat ineffective behaviors.

Finally, ineffective behaviors, represented by the “–”in the table, were behaviors
considered to be detrimental to collaboration quality in most cases (analogous to
buggy rules in traditional ITSs). The model consisted of four ineffective behaviors.
Two of the ineffective behaviors are related to the timely help skill: one where the
tutee commits three errors in a row without a peer tutor response (rule 6), and another
where the tutee makes three help requests without a peer tutor response (rule 4) These
rules are two of the three rules in the model where the model firing is triggered on
peer tutor inaction, rather than on peer tutor action, which is unusual in typical ITSs.
They are indicators that the tutee is in trouble, and the peer tutor, possibly because of
a gap in domain knowledge, is struggling to help.

Rules were represented in a fully configurable xml file, and then parsed as part of a
model tracing engine in the java code. Through this representation, we were able to
modify the rule set on the fly, without having to recompile the code. This implementa-
tion strategy is ideal for testing the collaborative model. During piloting, we easily
iterated on the model by adjusting its parameters and the specifics of the rule definitions.

While our approach has much in common with traditional production rule modeling,
there are a few key differences. As in much production rule modeling, our approach

44 Int J Artif Intell Educ (2014) 24:33–61

Table 1 Production rules in APTA. Each rule has an associated skill, and is mapped to effective (++),
somewhat effective (+), somewhat ineffective (−), or ineffective behaviors (−−). The classification column
describes how the elements of the rule are assessed, either by the peer tutor (self), the help-giving agent
(machine), or the Cognitive Tutor Algebra (CTA)

Rule Skill Type Classification

1 IF tutee makes a help request
THEN peer tutor gives help

Timely ++ self

machine

2 IF tutee makes an error
THEN peer tutor gives help

Timely + CTA

machine

3 IF tutee self-explains
THEN peer tutor gives help

Timely + self

machine

4 IF tutee makes 2 help requests in a row
THEN tutee makes a 3rd help request

Timely – self

self

5 IF tutee makes a help request
THEN tutee makes an error

Timely - self

CTA

6 IF tutee makes 2 errors in a row
THEN tutee makes a third error

Timely – CTA

CTA

7 IF tutee makes a correct stepAND peer tutor
gives next-step help

AND tutee takes another correct step
THEN peer tutor gives next-step help

Timely - CTA

machine

CTA

machine

8 IF tutee makes an error
THEN prompt for explanation

Appropriate ++ CTA

self

9 IF tutee makes an error
THEN give previous-step help

Appropriate ++ CTA

machine

10 IF tutee makes an error
AND tutee makes a help request
THEN prompt for explanation

Appropriate + CTA

self

self

11 IF tutee makes an error
AND tutee makes a help request
THEN give previous-step help

Appropriate + CTA

self

machine

12 IF tutee makes an error
AND tutee makes a help request
THEN give next-step help

Appropriate - CTA

self

machine

13 IF tutee makes an error
THEN give next-step help

Appropriate – CTA

machine

14 IF the peer tutor gives help
THEN help is conceptual

Conceptual + self

machine

15 IF the peer tutor gives next-step help
THEN help is not conceptual

Conceptual - self

machine

16 IF peer tutor labels help
THEN give help

Classifiers ++ self

machine

17 If peer tutor labels no help
THEN don’t give help

Classifiers + self

machine

Int J Artif Intell Educ (2014) 24:33–61 45

focuses on student actions (in this case, peer tutor actions). Our model of peer tutor
behaviors contains rules for both correct and incorrect behaviors, although we created
four categories: 2 levels of correctness (effective and somewhat effective) and 2 levels of
buggy-ness (somewhat ineffective and ineffective). The rules in our model form a self-
contained peer tutor, in that they can reproduce a subset of peer tutor help-giving
behaviors (although we cannot produce natural language dialogue). On the other hand,
our approach is in many ways more congruent with constraint-based tutoring systems
than with model tracing tutors (Mitrovic et al. 2003). As in constraint-based tutors, the
model that we use is a subset of the domain, and anything not represented in our model is
considered to be correct behavior, rather than incorrect behavior. Most importantly, a
single peer tutor action can cause multiple rules to fire, which is not the case with
traditional model-tracing tutors. These adaptations are acknowledgments to the ill-
defined nature of supporting collaboration, where we give peer tutors the benefit of
the doubt by not immediately assuming the actions we do not understand are wrong, and
associate several rules for tutoring behaviors with a single collaborative action.

Each production rule contributed to an overall assessment of the degree to which
students had mastered one of the four skills described above: timely help, appropriate
help, conceptual help, and classifier use. Timely help, covered by model rules 1–7,
represented whether the peer tutor gave help when tutees needed it. Appropriate help,
covered by rules 8–13, represented whether peer tutors gave the type of help that
tutees needed. For the purposes of our model, it can be divided into two subskills:
whether peer tutors prompted tutees to self-explain after an error, and whether peer
tutors provided error feedback after an error. Conceptual help, covered by rules 14–
15, represented whether peer tutors gave help that included an explanation. Finally,
use of classifiers, represented by rules 16–19, covered whether peer tutors used
sentence classifiers appropriately.

We used an algorithm based on Bayesian knowledge tracing to update a running
assessment of peer tutor mastery of these four skills (Corbett and Anderson 1994).
Knowledge tracing computes the likelihood that students have mastered a skill for
any particular opportunity to do so (called p[Ln]), based on four parameters: The
probability that peer tutors had mastered the skill before the opportunity (p[Ln-1]), the
probability that peer tutors will learn the skill at the next opportunity (p[T]), the
probability that the peer tutor will exhibit an effective collaborative behaviour even if
they have not mastered the skill (p[G]), and the probability that the peer tutor will
exhibit an ineffective collaborative behaviour even if they have mastered the skill
(p[S]). For each student step, the algorithm first calculates the probability that
students had mastered the skill prior to taking the step, and then the algorithm
calculates the probability that students currently know the skill.

Table 1 (continued)

Rule Skill Type Classification

18 If peer tutor labels no help
THEN give help

Classifiers – self

machine

19 IF peer tutor labels help
THEN don’t give help

Classifiers - self

machine

46 Int J Artif Intell Educ (2014) 24:33–61

While this type of knowledge tracing has been used in individual settings for the
assessment of domain knowledge, it has not to our knowledge been used in collaborative
settings. Thus we present a novel application of standard knowledge tracing algorithms. We
made a few modifications to the basic knowledge tracing algorithm to make it more
appropriate for collaborative settings. First, at the beginning of the tutorial session, we set
p(Lo) to 0.9 for the collaborative skills. The system assumes that students know how to
collaborate effectively, unless they repeatedly provide evidence that they do not. This
approach gives students the benefit of the doubt on initial interactions with each other,
assuming that the students know more about collaboration than the system does until a
pattern of interaction suggests that students do indeed need help. Next, according to the
approach in Beck and Sison (2006), we inflated the values of p(G) and p(S), the probabilities
that students behave effectively even if they do not know the skill and ineffectively even if
they do know the skill. We also varied those probabilities based on the valence of the fired
rule (e.g., p(S) was larger for a “somewhat ineffective” rule than for an “ineffective” rule).
This approach takes parameters that were initially meant to represent human error and
incorporates system error as well. p(G) now included the probability that the system
characterizes student responses as effective even if they do not know the skill, and p(S)
now included the probability that the system characterizes student responses as ineffective
even if they have mastered the skill. Essentially, as in Beck and Sison (2006), we redefine
p(G) to be the broader probability of a “false positive”, and p(S) to be the broader probability
of a “false negative”. For example, for the conceptual help skill, we defined p(G)=0.20 and
p(S)=0.30 for effective and ineffective rules. For somewhat effective and somewhat inef-
fective rules, p(G)=0.25 and p(S)=0.375. The higher values for p(G) and p(S) for somewhat
effective and somewhat ineffective rulesmeans that the skill assessment increases less after a
positive interaction, and also decreases less after a negative interaction.

In Table 2, there is an examplemodel and knowledge trace. The studentswere solving the
problem “” for w, and the tutee had just subtracted 3n from both sides, which was incorrect
(#1 in the Table 2). The peer tutor then said “factor out n” and labeled it as a “hint”. The
computer classified the chat as next-step help and nonconceptual help (#2 in the table), and
recognized that it came immediately after an incorrect step. This action fires model rules 2,
12, 15, and 16, meaning that the knowledge tracing assessments for all four skills are
updated (#3 in Table 2). The assessment of peer tutor mastery of timely help and use of
classifiers increases, while the appropriate help and conceptual help skills decrease. The
effective and ineffective rules fired lead to more fluctuation in the skills than the somewhat
effective and somewhat ineffective rules.

Support

We used a combination of the model tracing and knowledge tracing results to decide
when to give students reflective prompts in the chat window, based on encoded
support strategies and a pedagogical model (see the Support component of Fig. 2).
The model tracing specified which skills students had exhibited or failed to exhibit
with any particular action (firing particular production rules), and then the knowledge
tracing recomputed the probability that students had mastered a skill. Each rule was
linked to a set of feedback thresholds. If a rule fired, and the skill adjustment
associated with the rule fell within one of the feedback thresholds linked to the rule,
then the rule-threshold combination was added to a list specifying the possible

Int J Artif Intell Educ (2014) 24:33–61 47

feedback to send. Each rule-threshold combination was assigned a particular priority,
and once the list was complete, the rule-threshold with the highest priority was chosen to
be the target rule for a reflective prompt. If there was a tie in priority, then the target rule-
threshold was randomly chosen out of the tied candidates. Finally, each rule-threshold
had a set of similar prompt messages associated with it, and one of the messages
associated with the rule-threshold target was randomly chosen. The message was either
sent to both students in the chat window or privately to the peer tutor, and this parameter
was linked to the rule-threshold combination. This decision to make multiple messages
for any given situation ensured that students rarely received the same message twice.

Expanding on the example in the previous section, although all the skills were
adjusted, only the values of the appropriate and conceptual help fell within the
feedback threshold, and were added to the list (#4 in Table 2). Because the rule
associated with the targeted skill had the highest priority, it was selected to be
delivered to both students in the chat window. Out of all the possible prompts that
could be chosen (#5 in Table 2), the prompt “Tutor, is there anything your partner
doesn’t understand right now?” was sent to the students.

Both priorities and thresholds were assigned based on a combination of theoretical
model of the relative importance from each rule, piloting, and data from previous
studies. Priorities were assigned on a scale from 1 to 10. As an example, there were

Table 2 Modeling and feedback example from Phase 3. The system uses the problem state to model
student collaborative knowledge and select appropriate feedback

(1) Problem State

Problem Solve for Last step Last evaluation State

-wn+3n=w w Subtract 3n Incorrect -wn=w-3n

(2) Assessment

Tutor chat Self labeling Machine labeling Machine labeling Domain context

“Factor out n” Hint Next-step help Non-conceptual Incorrect step

(3) Model and Knowledge Tracing

Timely Appropriate Conceptual Classifiers

p(Ln-1) 0.903 0.911 0.903 0.794

Rule fired 2 13 15 16

Valence + – - ++

p(Ln) 0.956 0.742 0.81 0.931

(4) Feedback Selection

Timely Appropriate Conceptual Classifiers

Rule-threshold None [0.6,1] [0.7,1] None

Add to list No Yes Yes No

Priority n/a 4 3 n/a

Chosen No Yes No No

(5) Message Choice

Possible prompts “Tutor, do you know if your partner has made a mistake?”, “Tutor, can you explain
your partner’s mistake?”, “Tutor, is there anything your partner doesn’t understand
right now about the problem?”

Prompt chosen “Tutor, is there anything your partner doesn’t understand right now about the
problem?”

48 Int J Artif Intell Educ (2014) 24:33–61

two feedback thresholds based on rule #6: One was [0, 0.3) with a priority of 1, and one
was [0.3, 7) with a priority of 2. Both thresholds were given extremely high priorities
because the peer tutor likely needs immediate feedback if they are not responding to
three tutor errors in a row. Themessages associatedwith the higher threshold for this rule
(e.g., “Tutor, is your partner still taking the right steps? Make sure both sides of the
equation still equal each other”) tended to have less urgency than the messages associ-
ated with the lower threshold (e.g., “Tutor, do you know what your partner should do?
Try asking the computer for a hint”), as a lower skill assessment indicated the peer tutor
needed more explicit support. As a second example, rule #15 had a single feedback
threshold: [0,.7) with a priority of 7. If a student gives high level help, and they are not in
the habit of doing so (i.e., their p[Ln] was under .7), then giving them positive feedback
to reinforce their behavior was a somewhat low priority, but still built into the system. In
contrast, if they were already relatively proficient at the skill (p[Ln]>= .7), we did not
give any positive feedback. We tuned these parameters in piloting so that peer tutors
received one prompt for every three peer tutor actions.

As the primary use of the skill estimates was to trigger feedback, our knowledge
tracing algorithm was designed and tuned more to accomplish this goal than to actually
estimate student collaborative skills. We are aware our approach violates certain as-
sumptions of knowledge tracing (Corbett and Anderson 1994): In our approach, a
student can transfer from a learned to an unlearned state, and more than one skill maps
to a given action. Future work will be to modify the core knowledge tracing algorithm to
incorporate the assumptions we use as part of the peer tutoring model, evaluate the
algorithm against a human-coded assessment of student skills, and improve the algo-
rithm to be a more fine-grained representation of peer tutor skills. However, we think our
approach is an effective first pass at using a knowledge tracing approach to mitigate the
uncertainty inherent in collaborative scenarios, by using the (potentially flawed) skill
estimates to trigger feedback rather than specific peer tutor behaviors.

Data Collection

Hypotheses & Conditions

We conducted a study in order to evaluate whether our adaptive system had a
beneficial effect on peer tutor learning, and what features of the system may have
contributed to its effectiveness. In the introduction, we presented two possible
mechanisms that might link receiving adaptive support to benefitting more from a
peer tutoring interaction. First, students who receive relevant support might more
easily apply it to their interactions, improving the quality of their collaboration and
learning. Second, students who believe they are receiving adaptive support may feel
more motivated to engage with the support and take appropriate action, improving the
quality of their collaboration and learning.

We tested these hypotheses and evaluated the effectiveness of our system by
comparing the help-giving support in the adaptive version of our system (the real
adaptive condition) to two conditions that received non-adaptive computer prompts
in the chat window. In one of the nonadaptive conditions (the real nonadaptive
condition), students were told that the prompts were nonadaptive. In the second

Int J Artif Intell Educ (2014) 24:33–61 49

nonadaptive condition (the told adaptive condition), students were told that the
prompts were adaptive, when they in fact were not. If it is relevant support that
matters, only students who actually receive adaptive support (i.e., those students in
the real adaptive condition) should improve their collaboration quality and their
domain learning. On the other hand, if engagement is most important, and students
in the told adaptive condition believe the system is adaptive, told adaptive students
should also improve their collaboration quality and domain learning real nonadaptive
students. By distinguishing between these two explanations for the effectiveness of
adaptive collaborative support, we can better evaluate the effectiveness of the specific
adaptivity implemented in our system.

Participants

Participants were 130 high-school students (49 males, 81 females) from one high
school, ranging from 7th to 12th grade, and currently enrolled in Algebra 1 (46
students), Geometry (49 students), or Algebra 2 (35 students). While the literal
equation solving unit was one that all students had theoretically received instruction
on in Algebra 1, many students did not remember seeing the material before. The
teacher we were working with identified this unit as challenging for the students. The
study was run at the high school, either immediately after school or on Saturdays.
Thus the study was somewhere in between a lab study and a classroom study: It was
run in a school context and with several students at once, but it was not run during
school hours as part of regular classes. All students were paid 30 dollars for their
participation. Students participated in sessions of up to 9 students at a time (M group
size=7.41, SD=1.35). Each session was randomly assigned to one of the three
conditions, and then within each pair students were randomly assigned to the role
of tutee or tutor. While APTAwas designed to be used in a reciprocal scenario, for the
purposes of this evaluation students retained the same role throughout the whole
study; if a student was assigned the role of tutor, he or she tutored throughout the
entire session.

Students came with partners that they had chosen, except in the case of 12 students
who came to the study alone and were assigned to their partners by the researchers. The
results of Ogan, Finkelstein, Walker, Carlson, and Cassell (2012) in their analysis of this
dataset suggested that students who self-selected their partners and thus collaborated
with friends interacted more effectively and learned more than students who have their
partners selected by researchers. We thus excluded the 12 students with researcher-
selected partners from our analysis, as they were small in number, may have been from a
different population than those with self-selected partners, and had a substantially
different interaction experience. Two dyads were excluded due to logging errors with
the computer prompts. Further, for ease of scheduling, we sometimes assigned an extra
student to a given session (in case somebody did not show up at the assigned time).
There were 8 students who worked alone over the course of the session. Thus, a total of
108 students were included in the analysis. There were 45 same-gender pairs and 8
cross-gender pairs. We did a median split on pretest score to reclassify students as low-
ability or high-ability, and then counted homogenous and heterogeneous pairs. 31 pairs
were homogenous (two low-ability or two high-ability students) and 22 were heteroge-
neous (one low ability and one high ability student).

50 Int J Artif Intell Educ (2014) 24:33–61

Procedure

During the study, students took a 20 min pretest. Next, students spent 20 min in a
preparation phase, solving problems individually using the CTA.All students worked on
easier problems in the literal equation solving unit, which consisted of factoring
problems where the variable terms were on the same side of the equation. Students then
spent 30min in the tutoring phase, with the peer tutor helping their partner with factoring
problems where the variable terms were on both sides of the equation. Students took up
to 10 min to answer several survey questions on their motivational state, and then spent
another 30 min in the tutoring phase. Students took a 20 min domain posttest.

In the tutoring phase, we varied whether students received adaptive support or not
and whether they thought it was adaptive or not. The nonadaptive support was
implemented as follows. We gave students pseudo-random prompts that ensured that
the timing and content of the prompts did not depend on their behavior. Every time
students would have received a reflective prompt were they in the adaptive condition,
they never received a prompt in the fixed condition. However, we ensured that they
received a prompt within the next three turns, essentially yoking the nonadaptive
prompt to the adaptive prompt. We randomly choose the content of the prompt, but
we never choose content that would have been relevant to the yoked adaptive prompt.
All other support across conditions was parallel (i.e., all students received adaptive
correction support).

We manipulated whether we told students that support was adaptive or
nonadaptive prior to the tutoring phase. The adaptive instructions were as follows:
“The computer will watch you tutor, and give you targeted advice when you need it
based on how well you tutor. Both you and your partner will see the help in the chat.”
The nonadaptive instructions were as follows: “From time to time, the computer will
give you a general tip chosen randomly from advice on good collaboration. Both you
and your partner will see the help in the chat.” As students began to use APTA, they
were given further instruction, including directions to indicate how they felt about the
reflective prompts using thumbs up and thumbs down widgets (Fig. 1c). To motivate
the use of these widgets and reaffirm the experimental manipulation, students in the real
and told adaptive conditions were told: “We will use that information to improve the
computer’s ability to track what you’re doing and give you advice you can use.” Students
in the real nonadaptive condition were told: “We will use that information to describe
which pieces of advice can go into the pool of advice we randomly select from.”

Measures

To assess students’ individual learning we used counterbalanced pretests and post-
tests, each containing 7 conceptual items (some with multiple parts), 5 procedural
items, and 2 items that demanded a verbal explanation. Tests were approved by the
coordinating classroom teacher, and were administered on paper. We scored answers
on these tests by marking whether students were correct or incorrect on each item
part, and then summing the item scores to get a total score.

As a manipulation check, we assessed perceived adaptivity with five items asking
students how adaptive they thought the system was (e.g., for the peer tutor: “The
computer gave advice at times when it was useful”) and how positively they perceived

Int J Artif Intell Educ (2014) 24:33–61 51

the system’s effects (e.g., for the tutee: “The advice the computer gave improved how
well my partner tutored me”). Items were rated on a 7-point likert scale.

All collaborative process variables were logged, including tutee problem-solving actions,
sentence classifiers selected by both students, and chat actionsmade by both students. Along
with the student actions, we logged computer tutor responses, which included both the
system’s evaluation of the action and the computer assistance students received.

We coded each instance of support delivered by the computer tutor for whether it
was relevant to the current context, as defined by the tutee-tutor interactions spanning
the last instance of tutee dialogue, peer tutor dialogue, and tutee problem step. To be
relevant, negative feedback had to meet three criteria:

1. Not contradict the current situation. E.g., feedback that referred to an error
contradicts the situation if tutees had not made an error.

2. Refer to something students were not currently doing. E.g., feedback that
prompted for more conceptual help would only be relevant if students were not
giving conceptual help.

3. If students were to follow the help, their interaction would be improved, based on
the four skills. E.g., feedback that tells the peer tutor to give help would improve
the interaction if the tutee had asked for help and not received it.

For positive feedback to be relevant, students had to be doing something to merit
positive feedback, and then the advice given by the feedback had to meet the above
criteria #1 and #3. To calculate inter-rater reliability, two raters independently coded
30 % of the data, with a kappa of 0.70. Conflicts were resolved through discussion.

Results

Domain Learning

Our first step was to determine whether students learned more from the real adaptive
support condition than from the other two nonadaptive conditions. We conducted a two-
way (condition x role) ANCOVA, controlling for pretest, with posttest as the dependent
variable. Pretest score was significantly predictive of posttest score (F[1,99]=103.73,
p<0.001; see Table 3). There was a significant effect of condition on posttest
(F[2,99]=4.03, p=0.021, eta2=0.075), indicating that the adaptivity of support had a
positive effect on student posttest performance. A planned comparison of the effects of
receiving real adaptive support revealed that it indeed had a significant effect
(F[1,99]=7.73, p=0.006), while a planned comparison of the effects of receiving
support that students were told was adaptive revealed that this manipulation did not
have a significant effect (F[1,99]=0.990, p=0.322). These results suggest that the real
adaptive support we implemented in APTA had a more beneficial effect than
nonadaptive support. Telling students support was adaptive did not have a beneficial
effect on learning compared to telling them support was not adaptive.

While the effect of role on posttest was not significant (F[1,99]=0.194, p=0.661),
there was a significant interaction effect between condition and role (F[2,99]=3.87,
p=0.024, eta2=0.073). Applying the planned comparisons to the interaction effect
revealed that the effects of real adaptivity had significantly differential effects on peer

52 Int J Artif Intell Educ (2014) 24:33–61

tutors and tutees (F[1,99]=3.95, p=0.05), as did the effects of told adaptivity
(F[1,99]=7.33, p=0.008). Inspecting student learning across role and condition (see
Table 3), we see that while all students benefit from the real adaptive condition, peer
tutors benefit more from the told adaptive condition than the real nonadpative
condition, but tutees benefit more from the real nonadaptive condition than the told
adaptive condition. The perception that the advice is relevant when it is not, as in the
told adaptive condition, may impede the tutoring abilities of the peer tutor and thus
may lead to less tutee learning.

Support Relevance

Given the encouraging results that students in the real adaptive condition learned
more, we then verified that the support students received in the real adaptive
condition was indeed more adaptive. Indeed, the total number of prompts each pair
received from the adaptive system was not significantly different between conditions
(F[2,50]=0.660, p=0.522; see Table 4). We conducted an ANCOVA with relevant
prompts received as the dependent variable, condition as an independent variable, and
total prompts received as a covariate. While the number of relevant prompts students
received was not significantly different between conditions (F[2,47]=0.057, p=0.944;
see Table 4), total prompts received was predictive of relevant support
(F[1,47]=266.34, p<0.01). The interaction between condition and total support given
was significantly related to relevant prompts received (F[2,47]=17.32; p<0.001).
Inspecting Fig. 3, you can see that as total instances of feedback increase, the greater
the difference in amount of relevant feedback between the real adaptive conditions
and the other two conditions. Over a long period of time, with many instances of

Table 3 Mean pre and posttest results for tutors and tutees by condition. Standard deviations are in
parentheses

Condition Peer Tutor Peer Tutee

Pretest Postttest Pretest Postttest

Real Adaptive 0.27 (0.14) 0.42 (0.18) 0.28 (0.16) 0.37 (0.22)

Told Adaptive 0.25 (0.13) 0.29 (0.14) 0.27 (0.16) 0.29 (0.16)

Real Nonadaptive 0.30 (0.16) 0.29 (0.18) 0.24 (0.15) 0.35 (0.21)

Table 4 Mean support received and relevant support received per group by condition. Perceived adaptivity
by condition and role. Standard deviations are in parentheses

Support Characteristics Perceived Adaptivity

Condition Total support Relevant support Peer tutor Tutee

Real Adaptive 15.20 (12.17) 12.60 (11.34) 5.88 (1.82) 4.15 (0.85)

Told Adaptive 17.84 (9.67) 7.63 (5.63) 5.29 (1.40) 3.65 (1.23)

Real Nonadaptive 14.26 (11.86) 5.68 (4.44) 4.60 (1.34) 3.80 (1.01)

Int J Artif Intell Educ (2014) 24:33–61 53

feedback, the differences between adaptive and nonadaptive support become
apparent.

Perceptions of Adaptive Support

We next examined whether student perceptions of adaptive support differed across
conditions, as a check of our “told adaptive” manipulation. We had intended the told
adaptive and real adaptive conditions to perceive support as more adaptive than the
real nonadaptive condition. Thus, we had asked students questions intended to assess
whether they perceived the support they received as adaptive. We conducted a two-
way ANCOVA (including both peer tutors and tutees) with perceived adaptivity as
the dependent variable, condition and role as independent variables, and relevant
feedback received as a covariate. There was no significant differences across condi-
tions on the perceived adaptivity measure (F[2,80]=.330, p=0.72). Student percep-
tions did not appear to be affected by the experimental manipulation of telling them
support was adaptive. However, the amount of relevant support students received did
predict the perceived adaptivity of the system (F[1,80]=34.08; p<0.001). In addition,
there was a significant interaction between role and relevant support (F[1,80]=9.99,
p=0.002). The scatterplot in Fig. 4 reveals that as the amount of relevant support
increases, so do students perceptions of the adaptivity of support, and this effect is
stronger for peer tutors than for tutees. Because peer tutors were the targets of the

Fig. 3 Graph of relevant support compared to total support by condition. As total support instances
increase, the adaptive condition has more relevant support than the other two conditions

54 Int J Artif Intell Educ (2014) 24:33–61

support, it seems logical that their perceptions of the support would be more affected
by its relevance.

Frequencies of Support Given

Finally, to get a better sense of what specific support students received based on our
model, we looked at the real adaptive condition to determine how often each rule
fired, how frequently support was given to students based on the rule, and how
frequently that support was relevant. The means and standard deviations of this
measure are presented in Table 5. Within our model, the most frequent peer tutor
behavioural profile involves giving help after an error that focuses on the next step, is
nonconceptual, and isn’t appropriately labelled with a sentence classifier. Our system
often gave students feedback on these behaviors. Our system also reinforced partic-
ular positive behaviors that students engaged in: giving help after a help request,
giving conceptual help, and labelling utterances appropriately with sentence classi-
fiers. The majority of support given in response to each rule was coded as relevant,
except for the cases of prompting for self-explanation and using sentence classifiers
when help is not being given. This result may have been the fault of poorly designed
feedback messages or a failure of the automated classifier to detect help. There are
also some rules in the model that did not fire at all (e.g., 4, 10, 11, and 12). These

Fig. 4 Graph of relevant support and perceived adaptivity. As relevant support increases, perceived
adaptivity increases. This effect is stronger for peer tutors than tutees

Int J Artif Intell Educ (2014) 24:33–61 55

Table 5 Production rules in APTA , along with how frequently they fired, how frequently they triggered
feedback, and how many of those feedback instances were relevant. Each rule has a type representing
whether the rule is mapped to effective (++), somewhat effective (+), somewhat ineffective (−), or
ineffective behaviors (−−)

Rule Type # Times Rule
Fired M (SD)

Support
Instances
M (SD)

Relevant Support
Instances M (SD)

1 IF tutee makes a help request
THEN peer tutor gives help

++ 1.40 (2.38) 0.67 (1.40) 0.47 (0.92)

2 IF tutee makes an error
THEN peer tutor gives help

+ 4.27 (2.69) 0 (0) 0 (0)

3 IF tutee self-explains
THEN peer tutor gives help

+ 0.20 (0.56) 0 (0) 0 (0)

4 IF tutee makes 2 help requests in a row
THEN tutee makes a 3rd help request

– 0 (0) 0 (0) 0 (0)

5 IF tutee makes a help request
THEN tutee makes an error

- 0.67 (1.40) 0.625 (1.36) 0.625 (1.36)

6 IF tutee makes 2 errors in a row
THEN tutee makes a third error

– 1.33 (2.02) 1.33 (2.02) 1.27 (1.87)

7 IF tutee makes a correct stepAND
peer tutor gives next-step help

AND tutee takes another correct step
THEN peer tutor gives next-step help

- 1.13 (2.07) 0.73 (1.71) 0.67 (1.63)

8 IF tutee makes an error
THEN prompt for explanation

++ 0.47 (1.30) 0.13 (0.35) 0.07 (0.26)

9 IF tutee makes an error
THEN give previous-step help

++ 0.33 (0.49) 0 (0) 0 (0)

10 IF tutee makes an error
AND tutee makes a help request
THEN prompt for explanation

+ 0 (0) 0 (0) 0 (0)

11 IF tutee makes an error
AND tutee makes a help request
THEN give previous-step help

+ 0 (0) 0 (0) 0 (0)

12 IF tutee makes an error
AND tutee makes a help request
THEN give next-step help

- 0 (0) 0 (0) 0 (0)

13 IF tutee makes an error
THEN give next-step help

– 4.20 (2.68) 4.13 (2.61) 3.00 (2.48)

14 IF the peer tutor gives help
THEN help is conceptual

+ 2.27 (2.25) 1.00 (1.77) 0.93 (1.79)

15 IF the peer tutor gives next-step help
THEN help is not conceptual

- 11.13 (10.44) 5.00 (4.52) 4.33 (4.67)

16 IF peer tutor labels help
THEN give help

++ 4.53 (5.34) 0 (0) 0 (0)

17 If peer tutor labels no help
THEN don’t give help

+ 0 (0) 0 (0) 0 (0)

18 If peer tutor labels no help
THEN give help

– 9.20 (12.16) 2.73 (5.46) 2.73 (5.46)

19 IF peer tutor labels help
THEN don’t give help

- 0.27 (0.59) 0.27 (0.59) 0.07 (0.26)

56 Int J Artif Intell Educ (2014) 24:33–61

rules may have not fired because we relied on tutees to use sentence classifiers to
label their help requests, and tutees may have failed to do so or done so inaccurately.
Overall, however, the model behaved as expected and provided relevant support to
tutees.

Discussion

In this paper, we discussed the assessment, modeling, and support provided in APTA,
an intelligent tutoring system for peer tutoring. We demonstrated that APTA is indeed
adaptive, in that it provides students with significantly more relevant support than
non-adaptive control conditions, and also that APTA improves student learning over
non-adaptive controls. We also found that student perceptions of the adaptivity of the
system was directly linked to the actual adaptivity of support, making it difficult to
convince students that support was adaptive when, in fact, it was not. Based on these
results, our system was a successful implementation of an ACLS.

Our approach acknowledged the ambiguity inherent in assessing, modeling, and
supporting collaboration. One challenge in supporting collaboration is the difficulty
in automatically assessing student dialogue. APTA uses multiple sources of informa-
tion to assess collaborative state: a combination of problem-solving information,
student self-classifications of their own chat, and machine classifications of student
chat. The incorporation of problem-solving information into our assessment would
not have been possible without having built our help-giving tutor on top of the
Cognitive Tutor Algebra, but we believe it was a main contributor to the success of
the system. The multiple channels of information allowed us to understand better the
context in which peer tutoring actions were executed, allowing us to interpret those
actions more effectively.

Another challenge in supporting collaboration is the difficulty inherent in model-
ling collaborative behaviors by representing which interactions should be employed,
and under what contexts. APTA maintains a production-rule style model of effective
and ineffective peer tutor actions that it uses to compare the current collaborative state
to an ideal model. The modeling in APTA draws both from model-tracing tutors and
constraint-based tutors to incorporate the advantages of both approaches. Like model-
tracing tutors, APTA focuses on peer tutoring actions and models both correct and
incorrect behaviors. Like constraint-based tutors, APTA assumes that anything out-
side the model is correct rather than incorrect, and an action can fire multiple rules.
By assuming that anything outside the model is correct, it gives the peer tutors the
benefit of the doubt when they take unexpected tutorial actions. One innovation here
is that APTA employs different levels of correctness, distinguishing, for example,
between effective behaviors and somewhat effective behaviors. Using this technique,
we can mitigate some of the ambiguity in judging the potential benefits of a particular
peer tutor behavior by representing (albeit in a discrete way) the likelihood that the
behaviour is effective.

A final challenge in supporting collaborative learning is understanding how to
provide adaptive support based on the uncertain information delivered in the assess-
ment and modeling phases. APTA uses Bayesian Knowledge Tracing to evaluate peer
tutor skills and provide reflective prompts in a chat window. Our approach is used as

Int J Artif Intell Educ (2014) 24:33–61 57

a trigger for feedback, and was not yet designed to be a fine-grained representation of
student skills. However, it allows us to base feedback on the overall pattern of peer
tutor behaviors rather than specific peer tutor actions, making us more certain that
peer tutors will get positive feedback when they are truly excelling and negative
feedback when they are truly struggling. Future work will be to iterate on the
algorithm so it can more accurately assess collaborative skills.

We demonstrated that the techniques we used produced more relevant help than
nonadaptive techniques, using a human coding of relevant help. Developing our
coding scheme was a challenging and iterative process, in part because any given
instance of support may appear to be relevant in multiple situations. Indeed, the
nonadaptive technique we used still produced a large proportion of relevant help,
even when we purposefully inhibited all responses congruent with our adaptive
model of support. It is possible that with carefully designed feedback messages,
nonadaptive techniques could produce similar amounts of relevant help as adaptive
techniques. Nevertheless, the amount of relevant help affected student perceptions of
the adaptivity of the system, suggesting that students do recognize and respond to
adaptive support. Additionally, as relevant support increased, peer tutors perceived
the system to be more adaptive than tutees. This suggests that in order to reap the full
benefits of relevant support, it should be directed at all parties in the interaction. This
link between relevant support and perceptions of adaptivity may have negated the
effects of our second manipulation, where we told students support was adaptive
when, in fact, it was not.

Our empirical results support some common-sense ideas about the benefits of
adaptive support. We demonstrated that students in the adaptive support conditions
learned more than students in the nonadaptive conditions. As the amount of support
students received increased, the difference between the adaptive condition and the
nonadaptive conditions became more apparent. While if students receive few in-
stances of support it may not be necessary that the support be highly adaptive, as
students use the system over a longer period of time they will be able to distinguish
between adaptive and nonadaptive support. The techniques presented in this paper
bring us closer to implementing an ACLS that can provide students with the long-term
adaptive support they need to collaborate more effectively.

Acknowledgments This work was supported by the Pittsburgh Science of Learning Center, NSF Grant
#SBE-0836012, and a Computing Innovations Fellowship, NSF Grant #1019343. Thanks to Ruth Wylie for
her comments and Sean Walker for his work on the assessment algorithm.

References

Baghaei, N., Mitrovic, A., & Irwin, W. (2007). Supporting collaborative learning and problem solving in a
constraint-based CSCL environment for UML class diagrams. International Journal of Computer-
Supported Collaborative Learning, 2(2–3), 159–190.

Baker, M., & Lund, K. (2003). Promoting reflective interactions in a CSCL environment. Journal of
Computer Assisted Learning, 13(3), 175–193.

Barros, B., & Verdejo, M. F. (2000). Analysing student interaction processes in order to improve
collaboration. The DEGREE approach. International Journal of Artificial Intelligence in Education,
11(3), 221–241.

58 Int J Artif Intell Educ (2014) 24:33–61

Beck, J. E., & Sison, J. (2006). Using knowledge tracing in a noisy environment to measure
student reading proficiencies. International Journal of Artificial Intelligence in Education, 16,
129–143.

Chi, M. T., De Leeuw, N., Chiu, M. H., & LaVancher, C. (1994). Eliciting self-explanations improves
understanding. Cognitive Science, 18(3), 439–477.

Constantino-González, M. A., Suthers, D., & Escamilla de los Santos, J. (2003). Coaching web-based
collaborative learning based on problem solution differences and participation. IJAIED, 13, 263–299.

Corbett, A. T., & Anderson, J. R. (1994). Knowledge tracing: Modeling the acquisition of procedural
knowledge. User Modeling and User-Adapted Interaction, 4(4), 253–278.

Dillenbourg, P. (2002). Over-scripting CSCL: The risk of blending collaborative learning with instructional
design. In Kirschner, P. A. (Ed.), Three worlds of CSCL: Can we support CSCL? 61–91.

Dillenbourg, P., Baker, M. J., Blaye, A., & O’Malley, C. (1995). The evolution of research on collaborative
learning. Learning in Humans and Machine: Towards an interdisciplinary learning science. 189–211.

Dragon, T., Floryan, M., Woolf, B., & Murray, T. (2010). Recognizing dialogue content in student
collaborative conversation. In Intelligent Tutoring Systems (pp. 113–122). Berlin: Springer.

du Boulay, B., Avramides, K., Luckin, R., Martinez-Miron, E., Rebolledo-Mendez, G., & Carr, A. (2010).
Towards systems that care: A conceptual framework based on motivation, metacognition and affect.
International Journal of Artificial Intelligence in Education, 20(3), 197–229.

Fantuzzo, J. W., Riggio, R. E., Connelly, S., & Dimeff, L. A. (1989). Effects of reciprocal peer tutoring on academic
achievement and psychological adjustment: A component analysis. Journal of Educational Psychology, 81(2),
173–177.

Fischer, F., Mandl, H., Haake, J., & Kollar, I. (2007). Scripting computer-supported collaborative
learning—cognitive, computational, and educational perspectives. Computer-supported collaborative
learning series. New York: Springer.

Gweon, G., Rose, C., Carey, R., & Zaiss, Z. (2006, April). Providing support for adaptive scripting in an
on-line collaborative learning environment. In Proceedings of the SIGCHI conference on Human
Factors in computing systems (pp. 251–260). ACM.

Israel, J., & Aiken, R. (2007). Supporting collaborative learning with an intelligent web-based system.
International Journal of Artificial Intelligence and Education, 17(1), 3–40.

Johnson, D. W., & Johnson, R. T. (1990). Cooperative learning and achievement. In S. Sharan (Ed.),
Cooperative learning: Theory and research (pp. 23–37). NY: Praeger.

Karakostas, A., & Demetriadis, S. (2011). Enhancing collaborative learning through dynamic forms of support: the
impact of an adaptive domain-specific support strategy. Journal of Computer Assisted Learning, 27(3), 243–258.

King, A., Staffieri, A., & Adelgais, A. (1998). Mutual peer tutoring: Effects of structuring tutorial
interaction to scaffold peer learning. Journal of Educational Psychology, 90, 134–152.

Koedinger, K. R., Anderson, J., Hadley, W., & Mark, M. (1997). Intelligent tutoring goes to school in the
big city. International Journal of Artificial Intelligence in Education, 8, 30–43.

Kollar, I., Fischer, F., & Slotta, J. D. (2005). Internal and external collaboration scripts in web-based science
learning at schools. In T. Koschmann, D. Suthers, & T.-W. Chan (Eds.), Proceedings of the
International Conference on Computer Support for Collaborative Learning 2005 (pp. 331–340).
Mahwah: Lawrence Erlbaum Associates.

Kollar, I., Fischer, F., & Hesse, F. W. (2006). Collaboration scripts—A conceptual analysis. Educational
Psychology Review, 18(2), 159–185.

Kumar, R., Rosé, C. P., Wang, Y. C., Joshi, M., & Robinson, A. (2007). Tutorial dialogue as adaptive
collaborative learning support. In R. Luckin, K. R. Koedinger, & Greer J. (Eds.), Proceedings of
Artificial Intelligence in Education (pp. 383–390). IOS Press.

Lazonder, A. W., Wilhelm, P., & Ootes, S. A. W. (2003). Using sentence openers to foster student
interaction in computer-mediated learning environments. Computers and Education, 41, 291–308.

Magnisalis, I., Demetriadis, S., & Karakostas, A. (2011). Adaptive and intelligent systems for collaborative
learning support: A review of the field. IEEE Transactions on Learning Technologies, 4(1), 5–20.

Mayfield, E., & Rosé, C. P. (2011, June). Recognizing authority in dialogue with an integer linear
programming constrained model. In Proceedings of Association for Computational Linguistics.

7Mclaren, B. M., Scheuer, O., & Mikšátko, J. (2010). Supporting collaborative learning and e-discussions
using artificial intelligence techniques. International Journal of Artificial Intelligence in Education,
20(1), 1–46.

McManus, M. M., & Aiken, R. M. (1995). Monitoring computer-based colaborative problem solving.
Journal of Artificial Intelligence in Education, 6(4), 307–336.

Mitrovic, A., Weerasinghe, A. (2009). Revisiting ill-definedness and the consequences for ITSs. In: The
14th Conference on Artificial Intelligence in Education, pp. 375–382. IOS Press, Marina Del Ray

Int J Artif Intell Educ (2014) 24:33–61 59

Mitrovic, A., Koedinger, K. R., & Martin, B. (2003). A comparative analysis of cognitive tutoring and
constraint-based modeling. In P. Brusilovsky, A. Corbett, & F. D. Rosis (Eds.), Proceedings of the Ninth
International Conference on User Modeling, UM 2003 (Vol. LNAI 2702) (pp. 313–322). Berlin: Springer.

Muldner, K., Burleson, B., VanLehn, K. (2010). “Yes!”: Using tutor and sensor data to predict moments of
delight during instructional activities. In Proceedings of the International Conference on User
Modeling and Adaptive Presentation, 159–170.

Ogan, A., Aleven, V., Kim, J., & Jones, C. (2011). Persistent Effects of Social Instructional Dialog in a
Virtual Learning Environment. In Proc. 15th International Conference on AIED, pp.238-246.

Ogan, A., Finkelstein, S., Walker, E., Carlson, R., & Cassell, J. (2012). Rudeness and Rapport: Insults and
Learning Gains in Peer Tutoring. In Proceedings of the 11th International Conference on Intelligent
Tutoring Systems. ITS ‘12 (pp. 11–21). Berlin: Springer.

Ploetzner, R., Dillenbourg, P., Preier, M., & Traum, D. (1999). Learning by explaining to oneself and to
others. In P. Dillenbourg (Ed.), Collaborative learning: cognitive and computational approaches (pp.
103–121). UK: Elsevier Science Publishers.

Roll, I., Aleven, V., McLaren, B. M., & Koedinger, K. R. (2011). Improving students’ help-seeking skills
using metacognitive feedback in an intelligent tutoring system. Learning and Instruction, 21, 267–280.

Rosatelli, M., & Self, J. (2004). A collaborative case study system for distance learning. International
Journal of Artificial Intelligence in Education, 14(1), 97–125.

Roscoe, R. D., & Chi, M. (2007). Understanding tutor learning: Knowledge-building and knowledge-
telling in peer tutors’ explanations and questions. Review of Educational Research., 77(4), 534–574.

Rosé, C., Wang, Y. C., Cui, Y., Arguello, J., Stegmann, K., Weinberger, A., et al. (2008). Analyzing collaborative
learning processes automatically: Exploiting the advances of computational linguistics in computer-supported
collaborative learning. International Journal of Computer-Supported Collaborative Learning, 3(3), 237–271.

Rummel, N., &Weinberger, A. (2008). New challenges in CSCL: Towards adaptive script support. In G. Kanselaar,
Jonker, V., Kirschner, P.A., & Prins, F. (Eds.), Proceedings of the Eighth International Conference of the
Learning Sciences (ICLS 2008), Vol 3 (pp. 338–345). International Society of the Learning Sciences.

Schoenfeld, A. H. (1992). Learning to think mathematically: Problem-solving, metacognition, and sense
making in mathematics. In D. Grouws (Ed.), Handbook for research on mathematics teaching and
learning (pp. 334–370). New York: Macmillan.

Slavin, R. E. (1996). Research on cooperative learning and achievement: What we know, what we need to
know. Contemporary Educational Psychology, 21, 43–69.

Soller, A., Jermann, P., Mühlenbrock,M., &Martinez, A. (2005). Frommirroring to guiding: A review of state of the
art technology for supporting collaborative learning. International Journal of Artificial Intelligence in Education,
15(4), 261–290.

Suebnukarn, S., & Haddawy, P. (2006). Modeling individual and collaborative problem-solving in medical
problem-based learning. User Modeling and User-Adapted Interaction, 16(3–4), 211–248.

Tedesco, P. (2003). MArCo: Building an artificial conflict mediator to support group planning interactions.
International Journal of Artificial Intelligence in Education, 13(1), 117–155.

Tsovaltzi, D., Rummel, N., McLaren, B. M., Pinkwart, N., Scheuer, O., Harrer, A., et al. (2010). Extending
a virtual chemistry laboratory with a collaboration script to promote conceptual learning. International
Journal of Technology Enhanced Learning, 2(1), 91–110.

VanLehn, K. (2006). The behavior of tutoring systems. IJAIED, 16(3), 227–265.
VanLehn, K. (2011). The relative effectiveness of human tutoring, intelligent tutoring systems, and other

tutoring systems. Educational Psychologist, 46(4), 197–221.
Vieira, A. C., Teixeira, L., Timóteo, A., Tedesco, P., Barros, F. A., Lester, J. C., et al. (2004). Analyzing on-

line collaborative dialogues: The OXEnTCHÊ-Chat. In F. Paraguaçu (Ed.), Proceedings of the 7th
International Conference on Intelligent Tutoring Systems (pp. 315–324). Germany: Springer.

Vizcaíno, A., Contreras, J., Favela, J., & Prieto, M. (2000). An adaptive collaborative environment to
develop good habits in programming. In G. Gauthier, C. Frasson, & K. VanLehn (Eds.), 5th
International Conference on Intelligent Tutoring Systems, ITS’2000 (pp. 262–271). Berlin: Springer.

Walker, E., Walker, S., Rummel, N., & Koedinger, K. (2010). Using problem-solving context to assess help
quality in computer-mediated peer tutoring. In V. Aleven, J. Kay, & J. Mostow (Eds.), Proceedings of
the International Conference on Intelligent Tutoring Systems (pp. 145–155). Berlin: Springer.

Walker, E., Rummel, N., & Koedinger, K. R. (2011). Designing automated adaptive support to improve
student helping behaviors in a peer tutoring activity. International Journal of Computer-Supported
Collaborative Learning, 6(2), 279–306.

Webb, N. M., & Mastergeorge, A. (2003). Promoting effective helping behavior in peer-directed groups.
International Journal of Education Research, 39, 73–97.

60 Int J Artif Intell Educ (2014) 24:33–61

Webb, N. M., Troper, J. D., & Fall, R. (1995). Constructive activity and learning in collaborative small
groups. Journal of Educational Psychology, 87(3), 406.

Weinberger, A., Ertl, B., Fischer, F., & Mandl, H. (2005). Epistemic and social scripts in computer–
supported collaborative learning. Instructional Science, 33(1), 1–30.

Int J Artif Intell Educ (2014) 24:33–61 61

	Adaptive Intelligent Support to Improve Peer Tutoring in Algebra
	Abstract
	Introduction
	Implementation of ACLS
	Effects of ACLS

	Context: Peer Tutoring
	Adaptive Help-Giving Support
	Description
	Assessment
	Modeling
	Support

	Data Collection
	Hypotheses & Conditions
	Participants
	Procedure
	Measures

	Results
	Domain Learning
	Support Relevance
	Perceptions of Adaptive Support
	Frequencies of Support Given

	Discussion
	References

