
Replicating Novices’ Struggles with Coding Style
Eliane S. Wiese

School of Computing
University of Utah

Salt Lake City, USA
eliane.wiese@utah.edu

Anna N. Rafferty
Computer Science Department

Carleton College
Northfield, USA

arafferty@carleton.edu

Daniel M. Kopta
School of Computing

University of Utah
Salt Lake City, USA
dkopta@cs.utah.edu

Jacqulyn M. Anderson
School of Computing

University of Utah
Salt Lake City, USA
macharjk@gmail.com

Abstract—Good style makes code easier for others to read
and modify. Control flow is one element of style where experts
expect particular structure, such as conjoining conditions rather
than nesting if statements. Empirical work is necessary to
understand why novices use poor style, so they can be taught
to use good style. Previous work shows that many students know
what control flows experts prefer, but may say that novice-styled
code is more readable. Yet, these same students showed similarly
high comprehension across both expert- and novice-styled code.
We propose a replication of that work that more fully assesses
students’ code comprehension and code writing. Our replication
focuses on students who are earlier in their computer science
courses and are less likely to be majors, to determine whether
the pattern of results is particular to students who are relatively
attuned to style concerns. Our pilot of the proposed replication
finds that: students in this new population are less able to identify
expert code; expert style may reduce comprehension for some
control flows; and writing with good style does not always predict
a preference for reading code with good style.

Index Terms—Computer science education, Novice code com-
prehension, Programming style

I. INTRODUCTION

To become expert programmers, students must learn not
only how to write code with desired functionality but also how
to structure that code so it’s readable and maintainable by oth-
ers [1]. These latter skills are part of good style: writing code
that follows conventions that are understood by the broader
community [2]. Style encompasses a variety of different
programming practices [3], including helpful comments [4],
understandable variable names [5], and appropriate syntactic
constructions [6]. Style is notoriously difficult to teach [1],
[7], [8]. Designing effective style instruction requires empirical
work on which style problems are common and determining if
poor style is a symptom of conceptual misunderstanding [9].
Wiese, Rafferty, and Fox [10] examined these issues in seven
different code patterns involving control flow and syntactic
structure, and we replicate and extend this work.

A. Original Study

The original study [10] surveyed students at the University
of Utah on seven code patterns. Each code pattern had an
expert version (experts here are instructors; expert code is how
they want students to write: e.g., directly returning a Boolean
condition) and a novice version, (e.g., checking a Boolean
condition using an if-statement and then explicitly returning
true or false). Students were asked which version of

each pattern was most readable and which experts would
label as having the best style. Students were also given code
samples with each version, and asked what the output would
be for some input, to ascertain whether students actually had
trouble understanding different versions of the code or simply
preferred one version. Students also wrote code that required
using a Boolean condition, measuring how their code writing
style compared to their preferences and comprehension.

In the original study [10], students found four novice
patterns more readable than their expert-styled counterparts:
checking a Boolean condition using an if-statement and
then explicitly returning true or false (for conditions
with and without relational operators); preceding a general
solution with extraneous special cases; and repeating code
within an if-block and its corresponding else. However,
across all patterns, there was no significant effect of style
on comprehension scores, nor was there an effect of which
style students preferred. Writing style was highly correlated
with readability preference for the one pattern with a writing
question, suggesting that multiple-choice readability questions
may be an efficient proxy for assessing writing style. The study
did not find support for the hypotheses that students use poor
style because (1) they don’t know what expert style is, or (2)
they don’t understand code written with good style [10].

B. Replication in Different Context

Our replication was conducted at a small liberal arts college.
This kind of replication is important in determining whether
the original findings [10] are typical of undergraduate students
broadly. Student preparation across the two institutions differs,
both in terms of curriculum and intention to major in CS. At
the time of our survey, at the liberal arts college, most students
had completed one ten-week introductory computing course
(taught in Python), and were near the end of their second ten-
week programming course, which focused on data structures
and was taught in Java. While the coding patterns in the survey
are applicable in both languages, the survey items were in Java.
Wiese, Rafferty, and Fox [10] surveyed 231 undergraduate
students in two courses: 75 in a data structures course and
156 in a software engineering course (the next course in the
sequence). These students had more formal experience in Java
- one or two 15-week semesters when they took the survey.

At the liberal arts college, style instruction emphasizes
readability through variable naming and comments rather than

Eliane Wiese
Wiese, E.S., Rafferty, A.N., Kopta, D.M., & Anderson, J.M. (2019, May) Replicating Novices’ Struggles with Coding Style. To appear in Proceedings of the 29th International Conference on Program Comprehension. Short paper to be presented at ICPC ‘19, Montréal, Canada�

syntactic structure. While students at both schools had implicit
exposure to the expert-style versions of these patterns through
their textbook and in-class coding examples, the University
of Utah particularly emphasized the types of style patterns
that were on the survey, and even had an assignment in an
introductory course specifically targeting one of the patterns.
Further, 81% of students in the prior study [10] were majoring
in CS or planned to, in contrast to 38% of our sample in this
study. Most CS majors at the University of Utah are planning
for a career that involves programming. The lower emphasis on
the target style patterns, lower percentage of students intending
to major in CS, and general pattern of liberal arts colleges
having less emphasis on careers, may lead to the liberal arts
college students being less focused on code style.

It is important to replicate the results with students earlier
in their study of computer science and who are enrolled in
a liberal arts college. First, the original study suggested that
students would benefit simply from having their style errors
flagged, since students mostly recognized and understood
expert-styled code. However, if students with less experience
with the programming language have more trouble compre-
hending expert-styled code, reminders to use good style may
be asking students to use code that they don’t understand.
And, if students do not recognize expert-style code based
on less emphasis on it in instruction, style guidelines may
feel arbitrary. Thus, this pilot replication can address whether
formal instruction on the expert style is necessary for students
to recognize expert style, or if exposure is sufficient. Addition-
ally, since the original study [10] found some code patterns
that students had more difficulty comprehending, replicating
this finding would indicate that those patterns are particularly
difficult, perhaps necessitating other types of interventions.

II. METHODS

A. Participants and Materials

Students enrolled in Data Structures (the second program-
ming course) at the liberal arts college were recruited via their
course mailing list. The instructor for one section gave extra
credit for completing the survey. Of 64 students across two
sections, 32 students began the survey. We analyze results from
the 18 students who answered all questions (one skipped one
part of a multi-part comprehension question).

We adapted the initial survey [10], examining the same
seven control flow patterns where there are characteristic
novice versus expert style differences (the original survey is
available at https://tinyurl.com/RICE-Survey-pdf). That survey
included three types of questions: code writing (write a func-
tion to accomplish a task), readability and style (from a set of
code blocks with the same functionality, judge which is most
readable and which is best styled), and code comprehension
(given a function and input, determine the output).

Our survey used the same code blocks as the original survey
[10] for the readability/style questions for three of the seven
patterns (returning Boolean values with and without operators,
and for vs. while loops). For the three patterns where the
experts in the original study disagreed on which block was best

styled (repeating code within an if and else, multiple cases,
and else-ifs vs. ifs) we re-wrote the code blocks. Also,
the prior work [10] may have found high comprehension for
both novice-styled nested ifs and expert-styled && because
the code did not require short-circuit evaluation. This may
have overestimated students’ understanding of the expert-
style pattern, so we wrote new snippets where the expert
version relied on short-circuit evaluation to avoid exceptions.
Surveying three experts found unanimous agreement on the
best-styled blocks for all new code.

The original study [10] found that code writing style was
a stronger predictor than code comprehension of what style
of code a student would prefer, based on a writing task for
one code pattern. To investigate this relationship further, we
included five writing tasks: (1) the original task (returning a
Boolean with an operator); (2) returning a Boolean without
an operator; (3) Nested if vs. &&; (4) one task targeting
both Repeating code within if and else and if statements
vs. if-else; and (5) one task targeting both Multiple Cases
and for vs. while loops. Each task required only a few
lines of code (e.g., “Write a function that takes an arrays of
ints as input and returns an array of ints. The returned
array should have the same content as the input array, but in
reverse order.”), and example inputs and outputs were given.

Code comprehension in the original study was assessed via
multiple choice questions (given an input and a code block,
select the output) [10]. Students performed very well, with
over 70% correct on 12 of the 14 code samples. Those results
[10] found a ceiling effect for comprehension questions on
Boolean returns, so we dropped those items. Since we added
writing and editing tasks, we trimmed some comprehension
tasks to keep the survey under one hour. Instead of presenting
the same inputs for different code blocks, we presented code
samples that followed expert and novice patterns, and asked
which had the same functionality (some were different). We
added items on the number of comparisons performed in
blocks of code that used a sequence of ifs versus if-else
if structure, to assess students’ understanding of differences
in code execution even when overall functionality is the same.
We used the same comprehension questions as before [10] for
the Multiple Cases pattern.

We compiled and tested all code samples for correctness; a
few of the original study’s code samples would have failed to
compile due to missing semi-colons. To encourage students to
focus on functionality instead of searching for syntax errors,
we also removed the option “the code does not compile” from
the comprehension questions, though we left the option that
the code would throw an exception.

Finally, code editing questions were added to the survey in
order to assess whether recognition of expert style is sufficient
for improving the style of novice code. We describe the editing
tasks in detail in their corresponding Results sections.

B. Procedure

Students in the target course received a link to the Qualtrics
survey via an email. For the section receiving extra credit, stu-

dents could choose to complete the survey without consenting
to the research. Students completed the survey at their own
pace, beginning with informed consent. Survey instructions
indicated that the survey should take about an hour.

In the survey, students first completed the five code-
writing questions, then fourteen questions about readability
and style, then the comprehension questions, and finally the
code-editing questions. For all sections but the code editing
section, students were randomly counterbalanced to complete
the questions in forward or reverse order. Questions in the
code-editing section were ordered based expected difficulty,
with easier questions first. After all code-related questions,
students were asked for demographic information, including if
they were majoring or intended to major in computer science.

C. Threats to Validity

This study is subject to similar threats as the original [10].
Further, the sample may skew towards students who enjoy CS
(participants were not compensated), perhaps over-estimating
student abilities. The small number of students who responded
and completed all questions lowers power to detect effects.

III. RESULTS

We report on four of the style patterns examined in the
survey. Our full replication will analyze all seven patterns.

A. Boolean Returns (with and without relational operators)

We examined two types of Boolean return items: with
operators (e.g., ==, <,) and without operators (e.g., calling
a method, such as .equals()). Most students produced
functional code for the code-writing items for these patterns
(17/18 and 13/18 students with and without an operator,
respectively). On the writing task without an operator, students
were asked to write a function that returned true when the in-
put String started with “A”. Non-functional solutions typically
used incorrect syntax for the comparison or compared to a
letter other than “A”. Most students used the novice pattern: an
if statement that explicitly returned true or false (17/18
with operator, 12/18 without operator), supporting the pre-
registered hypothesis of the prior and current study: over 20%
of our target population (second semester CS students) will
use the novice pattern for Boolean returns (z-tests, p < .0001,
with and without operators; z = 7.9 and 4.9, respectively).
The true prevalence in this population may be much higher.

Students’ readability opinions were consistent with their
writing style: a minority of students thought expert style was
most readable (four with operator, six without). z-tests on this
sample support the prior work’s hypothesis that over 20% of
our target population will select the novice pattern as more
readable (p < .0001, both with and without operators; Table I).
However, most students correctly identified expert style (72%
with operator, 88% without). For Boolean returns without
operators, students are much more likely to agree that expert
code is best styled rather than most readable (McNemar test,
Bonferroni-corrected p = .031; odds ratio is 8).

While most students could recognize expert style, that did
not lead to correct editing for style. Code for the editing
task between checked if the input was less than one number
and greater than another. It used two nested if-statements
and then returned true or false, using novice patterns for
Boolean returns and nested if’s instead of &&. 13 students
did some editing, but only two students combined the two
conditions into one and returned it directly (without an if).
Of these two students who edited correctly, neither used expert
style on the corresponding writing task, but both correctly
recognized expert style on the corresponding opinion question.
It is notable that 11 additional students recognized what expert
style was, but did not edit correctly for this topic (including
the one student who used expert style on the writing task).

The editing task without operators checked if an input
String ended with “ed” or “ing” (using a single if with
an “or” (||) conjunction). Five students copied and pasted
the original code without any editing; nine changed brackets or
whitespace; and four returned the Boolean expression directly.
Of the four students who edited correctly, only two used expert
style on the corresponding writing task; all recognized expert
style on the corresponding opinion question. As in the editing
task with an operator, many students (here, 12) recognized
expert style and yet did not edit correctly (including four
students who used expert style on the writing task).

One unexpected result was that one of the two students
who edited correctly on both tasks seemed to over-generalize
the pattern. On the editing task targeted at removing special
cases, this student also re-wrote all return statements to avoid
returning true or false. However, in this task explicitly
returning true and false was stylistically appropriate, and
the change obscured the meaning of the code.

B. Nested if-statements vs. &&

The writing, readability/style, and comprehension questions
addressing nested if statements and && required conditions
to be ordered in a particular way to avoid exceptions (e.g.,
checking if a position was within the bounds of an array before
examining the element at that position). The writing task asked
for a function that takes two ints as input and returns the
String “Ok” if the first input divided by the second is 5
or larger, and the first input is bigger than 10. Otherwise,
the function should return the String “Not Ok”. While an
example input showed the function should return “Not Ok”
if the second input was 0, students were not explicitly told
to avoid dividing by 0, and only one student checked if the
second input was 0 before using it as a divisor. Yet, that code
was incorrect - it checked if the quotient was larger than 2.

We classified 14 students as using expert style for this task
because they used at least two conditions (out of a necessary
three for correct functionality) and no more than one if-
statement; some answers avoided ifs by returning Booleans
with a conjunction instead of a String, and these were marked
as expert style. Two students used nested if statements,
including the one student who checked if the divisor was 0.
Two students checked only one condition (in a single if).

TABLE I
SURVEY RESULTS: WRITING AND SELECTION OF EXPERT CODE AS MOST READABLE AND BEST STYLED

Topic
Wrote with Wrote Functional Solutions: Agreed Expert Code Was:

z-test
Good Style Good Style Novice Style Most Readable Best Styled Both

Boolean Returns with Operator 1 1 16 22% 72% 17% p < .0001∗
Boolean Returns without Operator 6 4 9 33% 88% 33% p < .0001∗
Multiple Cases with General Solution 18 5 0 61% 50% 28% p = .055

Nested if statements vs. && 14 0 0 61% 61% 44% p = .9

*Bonferroni-corrected p < .05 (raw p-value < .007). p-values given above are raw.
z-tests (topics above the line): ≥ 20% of the population thinks novice code is more readable than expert code. Below the line: ≤ 20%.

While 14/18 students demonstrated that they could use the
conjunction && rather than nested ifs, these students only
checked the two conditions where the order didn’t matter.
These results are consistent with results on the editing task,
which presented nested if statements where the ordering of
the conditions did not matter: all 13 students who edited the
code used && to combine the two conditions. Thus, it is
unclear whether students could have produced expert style or
modified novice code correctly in a situation requiring short-
circuit evaluation.

Results from the comprehension questions suggest that stu-
dents do not understand how the order of conjoined conditions
affects execution. Both comprehension questions targeting this
pattern required students to identify the output of code blocks
based either on inputs they provided or inputs that were given
to them. All code blocks did the same task: checking if a letter
at a given position in a String was greater than some other
letter. This task necessitated checking if the given position was
in bounds. Two code blocks used nested if statements, one
in an order that would never throw an exception and one that
would (checking the position in the String before checking
that the position was in bounds), and two code blocks used
&&, with conditions in the same two orders as for the nested
if versions. When giving an output for an input that was
out of the bounds of the String, the majority of students gave
the correct output when the conditions were in an order that
wouldn’t lead to an exception (12/18 for &&, 13/18 for nested
ifs). However, code that would throw an exception led to
far more comprehension errors: only 6/18 students answered
correctly for the nested if version, but this was actually higher
than the 1/18 students who responded correctly to the &&
version of the same code. This suggests that students struggle
with understanding ordered conditionals overall, but that they
have particular difficulty comprehending expert-style code for
conditionals with multiple conditions where the order of the
evaluation of these conditions matters.

The code in the readability/style questions included three
conditions, two checking that a position was within the bounds
of an array and one examining the element at that position.
8/18 students chose the single if-statement with conjunctions
as both best styled and most readable. Only 11/18 students
recognized this expert solutions as best styled, suggesting that
recognizing expert style is more difficult for this pattern than
for the Boolean returns patterns, although readability and style

opinions tend to be more aligned for this pattern.

C. Multiple Cases vs. General Solution

All students used a single general case for the writing
task. However, no student was completely successful on the
editing task, which included one necessary special case and
two unnecessary special cases. Of the 12/18 students who
made at least some edits, only four edited the number of cases:
two removed one but not both unnecessary cases, and two
removed all special cases, changing the code’s functionality.

While no students wrote with multiple cases, 7/18 students
thought that unnecessary cases made the sample code more
readable. This was the only topic where students were less
likely to agree with expert opinions for style than readability:
11/18 thought a single general case was most readable, but
only 9/18 thought it had the best style. Of the four students
who deleted at least one unnecessary case on the editing task,
none thought that the expert style was the most readable and
recognized it as the expert style.

Overall, comprehension was higher on the code written with
multiple cases compared to the general solution (92% and
77%, respectively). The comprehension tasks gave three dif-
ferent inputs and asked what the outputs would be. Two inputs
targeted special cases in the novice-styled code, and, perhaps
unsurprisingly, for these inputs students were more likely to be
correct on novice-styled code than expert code (94% vs. 77%).
However, students were also more likely to be correct with the
novice-styled code with the input that was not targeted to a
special case (88% vs. 77%). A logistic regression on response
variable item correctness, with explanatory variables of input
type, code style, and an interaction term for input type * style
found a marginal effect for style (t(102) = 1.94, p = .056).
This trend also held within the 11 students who thought the
expert-styled code was most readable.

IV. DISCUSSION

A. Comparing Results: Original Study and Pilot Replication

The prior study [10] found that students were in significantly
more agreement with expert choices for style than for read-
ability. Our pilot study replicated this finding, with a logistic
regression on agreement with expert choices, and explanatory
variables for style vs. readability (t(250) = 4.34, p < .0001),
for topic, and random effect for student. For individual pat-
terns, we replicated some of the prior results but not others. For
Boolean Returns, we replicated the finding that at least 20% of

the target population would agree that expert-styled code was
less readable than novice code and at least 20% would write
with novice style on the task with an operator; we also extend
these findings to a Boolean Returns writing task without an
operator. A similar percentage of students across both studies
recognized expert style for these patterns (71%-88%).

For the Multiple Cases pattern, they [10] also found that at
least 20% of the target population would see expert-styled code
as less readable than novice code. Our results do not contradict
those findings (39% of our sample agreed that extraneous cases
improved readability), but they did not reach statistical signif-
icance. In the original study [10], comprehension scores were
higher when the code included extraneous cases compared to a
single general solution (81% vs. 72%). Our results also show a
marginal trend in this direction (p = .055). We expect the full
replication to replicate both results from the original study.

For Nested ifs vs. &&, students in our survey were less likely
to find the expert-style more readable (61% here versus 90% in
the prior study, [10]). However, our survey used more complex
code for this pattern, relying on short-circuit evaluation to
avoid exceptions. Future work should compare expert and
novice styles for this more complex code versus code where
the ordering of the comparisons doesn’t matter.

Wiese, Rafferty, and Fox [10] found that readability pref-
erences were predictive of writing style for the one writing
task on the survey. We did not replicate that finding on either
the Boolean Returns tasks or the Nested ifs vs && task. For
Boolean Returns, this non-replication is likely due to our small
sample size and the small percentage of students writing with
expert style. For the Nested ifs vs && writing tasks, 17/18
students neglected a key condition in the prompt, writing
code that did not rely on short-circuit evaluation to avoid an
exception while judging readability on code that did. Further,
our results suggest that this pattern will not hold for Multiple
Cases, where no students used novice style on the writing task,
but 39% preferred it for readability.

B. Lessons Learned

Recognizing good style was not sufficient for making cor-
rect style edits. Exposure to good style and learning to recog-
nize it may not be enough for students to actually code well.
We must explore instruction to address this gap. Further, style
is not a binary skill that students either have or don’t: it is com-
prised of sub-skills, and students’ mastery of each can vary.
Consider the student who avoided all return true/false
statements in editing tasks. This student used novice style on
the corresponding writing task, but edited correctly on both
Boolean Returns editing tasks, suggesting the student learned
from the survey. While encouraging that students may improve
coding style from a brief style exercise, this shows that using
good style is not simple. Novices may need to be taught the
specific contexts in which an expert style pattern applies.

C. Plan for Full Replication

We plan to do a full replication and extension of the original
work [10]. Some instructors at the liberal arts college do

not allow extra credit, so in our full replication we will pay
participants to ensure a large enough sample size.

While the prior study [10] suggested a strong correlation
between how students write and what style they find most
readable, this relationship was based on one writing task. Our
full replication, like our pilot, will include writing tasks for
more patterns. Our initial results indicate that writing choices
don’t always predict readability preferences. No students wrote
with multiple cases, but 39% preferred to read it. However,
students may have been reacting to the different functionalities
of the code they were writing vs. reading. To examine this rela-
tionship more closely, our full replication will counterbalance
the task (writing, opinions on style/readability, comprehension,
and editing) with the particular coding problem. This way,
we can be sure that overall differences in students’ responses
are due to the task and the code style, not the functionality.
Further, while 14/18 used && to conjoin Booleans (instead of
using nested ifs), none of these students checked the inputs to
make sure their code did not divide by 0. Our full replication
will include a reminder to avoid throwing this exception, so
we can examine writing style when the order of the conditions
matters.

Finally, Wiese, Rafferty, and Fox [10] proposed that since
most novices could recognize expert style, they should be able
to improve their novice-styled code when prompted. However,
in this study, many students who recognized expert style for
a given pattern did not edit correctly for that pattern. It may
be harder for students to edit someone else’s code than to edit
their own. In our full replication, we will automatically check
for some style errors, and ask students to revise if they make
those errors on the writing tasks. To investigate how much
help students need to edit their own code, we will offer a hint
if students cannot revise correctly on their own, and we will
offer a worked example if students do not understand the hint.

D. Conclusion

A full replication of the initial study [10] with our additional
writing, editing, and revision items will empirically show
which novice style errors are the most common, and which
indicate problems with comprehension. This work will help
instructors design effective lessons and assignments, includ-
ing those that focus on code reading and editing (not just
code writing). In our population of students with less Java
experience than those in the original study [10], and who are
less likely to be as attuned to style concerns, we found that
exposure to good style in code examples is not sufficient for
many students to distinguish good style from poor style for all
style issues. As in the prior study, [10], we also find that when
students can identify expert style code, they do not necessarily
believe it is more readable. Our range of tasks show that style
knowledge is multi-faceted, and that students do not acquire
the skills of recognition, usage, comprehension, and editing
at the same time. Untangling the relationships between these
skills is important for creating effective style instruction.

REFERENCES

[1] S.-N. A. Joni and E. Soloway, “But My Program Runs! Discourse Rules
for Novice Programmers,” Journal of Educational Computing Research,
vol. 2, no. 1, pp. 95–125, 1986.

[2] E. Soloway and K. Ehrlich, “Empirical Studies of Programming Knowl-
edge,” IEEE Transactions on Software Engineering, vol. SE-10, no. 5,
pp. 595–609, 1984.

[3] P. W. Oman and C. R. Cook, “A Taxonomy for Programming Style,” in
Proceedings of the 1990 ACM Annual Conference on Cooperation CSC
’90, Washington, DC, 1990, pp. 244–250.

[4] S. C. B. de Souza, N. Anquetil, and K. M. de Oliveira, “A study of the
documentation essential to software maintenance,” in Proceedings of the
23rd Annual International Conference on Design of Communication:
Documenting & Designing for Pervasive Information, ser. SIGDOC
’05. New York, NY, USA: ACM, 2005, pp. 68–75. [Online]. Available:
http://doi.acm.org/10.1145/1085313.1085331

[5] E. L. Glassman, L. Fischer, J. Scott, and R. C. Miller, “Foobaz: Variable
Name Feedback for Student Code at Scale,” in Proceedings of the 28th
Annual ACM Symposium on User Interface Software & Technology -
UIST ’15, 2015, pp. 609–617.

[6] E. S. Wiese, M. Yen, A. Chen, L. A. Santos, and A. Fox, “Teaching
Students to Recognize and Implement Good Coding Style,” in Proceed-
ings of the 4th ACM conference on Learning at Scale. Cambridge,
MA: ACM, 2017, pp. 41–50.

[7] C. Hundhausen, A. Agrawal, D. Fairbrother, and M. Trevisan,
“Integrating pedagogical code reviews into a cs 1 course: An
empirical study,” in Proceedings of the 40th ACM Technical
Symposium on Computer Science Education, ser. SIGCSE ’09. New
York, NY, USA: ACM, 2009, pp. 291–295. [Online]. Available:
http://doi.acm.org/10.1145/1508865.1508972

[8] M. Woodley and S. N. Kamin, “Programming studio: A course for
improving programming skills in undergraduates,” in Proceedings of the
38th SIGCSE Technical Symposium on Computer Science Education,
ser. SIGCSE ’07. New York, NY, USA: ACM, 2007, pp. 531–535.
[Online]. Available: http://doi.acm.org/10.1145/1227310.1227490

[9] J. Whalley, T. Clear, P. Robbins, and E. Thompson, “Salient elements
in novice solutions to code writing problems,” Conferences in Research
and Practice in Information Technology Series, vol. 114, pp. 37–45,
2011.

[10] E. S. Wiese, A. N. Rafferty, and A. Fox, “Linking Code Readability,
Structure, and Comprehension among Novices: It’s Complicated,” in
Proceedings of the 41st ACM/IEEE International Conference on Soft-
ware Engineering, 2019.

