
Teaching Students to Recognize and Implement Good
Coding Style

Eliane S. Wiese, Michael
Yen, Antares Chen

UC Berkeley
Berkeley, USA

{eliane.wiese, mayen,
antaresc} @berkeley.edu

Lucas A. Santos
Federal University of São

Carlos
São Carlos, SP, Brazil

lukeaugusto@berkeley.edu

Armando Fox
UC Berkeley

Berkeley, USA
fox@cs.berkeley.edu

ABSTRACT
Teaching students to write code with good style is important
but difficult: in-depth feedback currently requires a human.
AutoStyle, a style tutor that scales, offers adaptive, real-time
holistic style feedback and hints as students improve their
code. An in-situ study with 103 undergraduate students in a
CS class compared AutoStyle to a control tutor which only
offered ABC score. While students improved the style of
their code in both cases, students working with AutoStyle
were more likely to use an appropriate language idiom and to
improve their recognition of good style. However, students
struggled to implement style improvements, even when hints
recommended specific functions.

ACM Classification Keywords
H.5.m. Information Interfaces and Presentation (e.g. HCI):
Miscellaneous

Author Keywords
Computer science education; programming style tutor; in-situ
experiments

INTRODUCTION: ENCOURAGING BEAUTIFUL CODE
It’s hard to teach programmers to write beautiful code, but it’s
vitally important. We use the term beautiful code to mean code
that is elegant, efficient, idiomatic, and revealing of design
intent [5, 2].

Beautiful code is crucial in professional settings. As Knuth
put it in 1984, “Instead of imagining that our main task is to
instruct a computer what to do, let us concentrate rather on
explaining to human beings what we want a computer to do”
(emphasis in the original) [12]. The importance of human-
readable code has been borne out quantitatively. Robert Mar-
tin, a thought leader in software engineering, recounts replay-
ing a keystroke log of one of his own programming sessions in
his book Clean Code [17]. He discovers that when he creates
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

L@S 2017, April 20–21, 2017, Cambridge, MA, USA

© 2017 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ISBN 978-1-4503-4450-0/17/04. . . $15.00

DOI: http://dx.doi.org/10.1145/3051457.3051469

new code, he spends only 10% of his time typing it out. 90%
of his time is spent reading existing code that the new code
would interact with. Since the vast majority of his time is
spent reading existing code, he concludes that it is imperative
for programmers to write beautiful code that is easy to read.
Indeed, the dominant cost incurred during the lifecycle of a
successful (long-lived) software system is not bug fixing, but
rather maintenance and enhancement of legacy code [8]. Code
that is functional but stylistically poor incurs high maintenance
costs because it is difficult and time-consuming for a new pro-
grammer to understand and modify poor-quality code written
by someone else.

Measuring the Beauty of Code
Beautiful code goes beyond simply adhering to syntactic cod-
ing standards such as indentation, use of whitespace, and the
placement of delimiters (e.g., braces). Ward Cunningham is
quoted in [17] as stating that beautiful code “makes it look
like the language was made for the problem.” The Related
Work section reviews both quantitative and qualitative meth-
ods used by professional programmers to assess the beauty of
their code, but these do not eliminate an expert programmer’s
subjective judgment, including the ability to recognize where
improvements in beauty are possible. For novice program-
mers, therefore, we start at the level of individual methods
(functions) and ask: What makes a short function (5–15 lines)
beautiful, and can we teach students to recognize and improve
code beauty at this level?

Cunningham’s goal focuses on matching the problem to the
facilities and abstractions available in the language and its
core libraries. For example, while both JavaScript and Ruby
have some features associated with functional languages,
the use of collection idioms (e.g., map) is far more preva-
lent in Ruby, whereas the use of higher-order functions is
much more frequent in JavaScript. As another example, both
Python and Ruby include basic control flow constructs such
as if...then, but Ruby also includes unless, and allows
reversing the clauses in a conditional. As these examples il-
lustrate, stylistic usages depend on the language. Therefore,
language-independent guidelines are insufficient.

While Fowler and Beck have stated [7] that “no set of [code]
metrics rivals informed human intuition” for improving code
quality, Mäntylä et al. [15] found empirically that for the

http://dx.doi.org/10.1145/3051457.3051469
Eliane Wiese
Wiese, E.S., Yen, M., Chen, A., dos Santos, L.A., & Fox, A. (2017, April) Teaching Students to Recognize and Implement Good Coding Style. In Reich, J., Thille, C., & Urrea, C. (Eds.), Proceedings of the Fourth Annual ACM Conference on Learning at Scale (41-50). New York, NY: ACM.

simple “code smells” at the method level, there was high inter-
rater agreement between humans and source code metrics on
what refactoring would be appropriate. Informal experimenta-
tion by teaching assistants in our intermediate programming
courses has shown that the Assignment–Branch–Conditional
(ABC) score [6], which measures a weighted sum of three
basic types of statements within a function, is a good proxy
for idiomatic code at the method level. ABC score rewards
conciseness, and code with the best ABC score generally com-
bines an efficient approach and appropriate language idioms.
Consequently, ABC score is one of the metrics computed by
virtually all tools that compute code metrics, including online
services such as CodeBeat.com and CodeClimate.com. While
we use ABC score to operationalize good style at the level
of individual methods, we note that it does not capture all
important style features (e.g., the usefulness of variable names
and comments). As idiomatic code is important and often
unsupported in introductory CS courses, it is our focus here.

Prior Work: The AutoStyle Tutor
Computing the ABC score does not tell students how to im-
prove it. Providing holistic suggestions for improving style
currently requires an instructor to hand-inspect code, a solu-
tion that is asynchronous and does not scale to large courses.

AutoStyle [4] is a research system that provides automated,
adaptive style hints. The hints suggest syntax shortcuts and
offer better approaches to solving the problem. Hints may also
include code skeletons, in which the control flow is given but
the student must fill in missing lines. AutoStyle’s hints are
intended to help the student improve their code’s ABC score.
A prior, randomized, controlled study of AutoStyle with 80
paid participants (students in an introductory computer science
class) showed that AutoStyle helped students improve their
code [4]. Students were given the standard “style manual”
created for the course and were asked to write code that solved
a programming problem and achieved a target ABC score. All
students were allowed unlimited attempts, and received their
ABC score after each one. The intervention group additionally
received hints from the AutoStyle tutor [4]. In that study,
70% of the AutoStyle condition reached the style threshold,
compared to 13% of the control group.

While this initial evaluation is promising, it examines perfor-
mance, not learning - it does not demonstrate that students
can apply new knowledge or practices outside of the tutor. A
follow-up study [3] found that students could learn a coding
idiom from AutoStyle and correctly apply while working in-
dependently, but it did not compare AutoStyle to a control
condition. Finally, while both experiments measured how well
students could write beautiful code, they did not examine how
well students could recognize beautiful code. Recognizing
beautiful code is important when deciding between different
code implementations, and when identifying areas of one’s
own code for improvement.

Research Questions
We address our research questions by comparing AutoStyle
to a control condition in which students see their ABC score

but do not receive hints. Our research questions and brief
summary of our results are as follows:

1. RQ1. Does working with a style tutor help students write
beautiful code? Yes, like [4], and students use more appro-
priate idioms with AutoStyle.

2. RQ2. Does working with a style tutor help students write
beautiful code independently? No, unlike [3].

3. RQ3. Does working with a style tutor improve students’
ability to recognize beautiful code? Yes, and students im-
prove more with AutoStyle.

To investigate these questions we conducted an in situ experi-
ment during the summer offering of an introductory program-
ming course. The experiment consisted of three parts: code
improvement, multiple choice questions, and coding from
scratch. After completing two coding assignments for the
course, students were asked to improve the style of their code
to meet an ABC score threshold. All students received their
ABC score on each attempt, with some students assigned to
receive additional hints from AutoStyle. Before and after the
code improvement task, multiple-choice questions measured
recognition of beautiful code by asking students to select the
example with the best style. Finally, students did a code-from-
scratch challenge without any feedback.

RELATED WORK
The existing literature on teaching coding style is sparse, both
in terms of practical suggestions for teaching and theory for
guiding future designs and experiments. This is in contrast to
the literature and systems for teaching code correctness, which
includes identification of student errors and synthesis of feed-
back that might help the student transform a defective program
into a correct one. Real-time adaptive feedback is a hallmark
of these systems, whether given by peer evaluation [13] or
automated tools [10].

While automated, real-time feedback is an obvious instruc-
tional strategy for coding style, it has not been feasible to
provide. Ideally, such feedback would offer personalized,
holistic suggestions for improving style. However, currently
there are few techniques and tools designed to offer any help
on coding style at all.

Current style checkers similar to lint [11, 14] can provide
style feedback, but only for relatively low-level stylistic prob-
lems such as redundant use of Boolean expressions (e.g. short-
ening if (b!=false) to if (b)) [1]. Another tool, Ugly-
Code [18] can illustrate the importance of good style. Ugly-
Code starts with good code and allows the student or teacher
to apply transformations to obfuscate variable names, mess
up indentation/line breaks, add useless comments, etc., to
teach good style by uglifying a good piece of code rather than
improving a bad one. Foobaz helps students choose useful
variable names [9].

However, writing beautiful code goes beyond the low-level
transformations addressed by these tools. Grady Booch, a pio-
neer in object-oriented design, writes: “Clean code is simple
and direct. Clean code reads like well-written prose. Clean

code never obscures the designers’ intent but rather is full of
crisp abstractions and straightforward lines of control” [2]. Ad-
hering to low-level code formatting guidelines is insufficient
to produce code with these properties.

Refactoring, in which the structure of code is improved with-
out changing its behavior, is closely tied to good code style.
However, most scientific work on analyzing refactoring has fo-
cused on identifying refactoring opportunities, either by using
formal methods and tools or (more widespread) identifying
code smells, which are (anti-)patterns in source code that in-
crease the cost of maintaining and enhancing it by creating
unnecessary complexity [19]. In contrast, the role of humans
as decision makers in refactoring has been largely neglected
in the professional software engineering literature [16].

OVERVIEW OF THE STYLE TUTOR

Pedagogical Framework
Coding with good style is a metacognitive task: it involves
not just producing code, but assessing, planning, and evaluat-
ing changes. Closely related to practicing good coding style
is refactoring - improving the structure of a piece of code
without changing its functionality. While refactoring typically
occurs across methods or classes, the techniques used can also
be applied to individual methods. Our three-step process for
improving style draws on a six-step process for refactoring: (1)
recognize that a piece of code needs refactoring, (2) determine
which refactoring techniques to apply, (3) ensure the refac-
toring preserves correct behavior, (4) apply the refactoring,
(5) assess the effect on quality (i.e. whether further refactor-
ing is needed), (6) modify related artifacts such as technical
documentation to reflect the changes [19].

Our three steps for improving coding style are intended to
guide assessment and instruction:

i Assessment. Identify areas for style improvement. A
novice may have no basis for doing this step. This step is
similar to step 1 for refactoring.

ii Information Retrieval. Efficiently search for a better
idiom or strategy. This step is similar to step 2 for refac-
toring. While experienced programmers don’t memorize
every language idiom, they do know how to look for them.
Novices may not know how to conduct such a search or
how to recognize what information is likely to be helpful.
Further, even when a novice is familiar with a useful lan-
guage idiom, they may not realize that it is applicable to
their current problem.

iii Implementation. Correctly apply the new idiom or strat-
egy to the particular coding task. This step is similar to
step 4 for refactoring. This step may be particularly dif-
ficult for a novice, as incorporating unfamiliar language
idioms may introduce bugs.

This three-step procedure should be repeated as necessary
(similar to step 5 for refactoring). This pedagogical frame-
work was developed after AutoStyle was implemented. Con-
sequently, AutoStyle performs step 1 (assessment), supports
students in doing step 2 (information retrieval), and does not
support step 3 (implementation). AutoStyle detects which

aspect of the code should be improved and suggests a function
or an approach. When offering syntax hints, the tutor provides
the name of a function and directs students to online documen-
tation for more details. This is intended to give the students
practice using documentation. AutoStyle does not offer hints
on code that is not functionally correct.

Implementation
We briefly review the description of the style tutor; for further
details see [4]. In order for AutoStyle to automatically gen-
erate hints, a corpus of several hundred previously collected
submissions is needed to capture the style variations in stu-
dents’ submissions. Each submission’s style is measured with
the scalar quantity of Assignment–Branch–Condition (ABC)
complexity, also known as ABC score.

Whereas [4] calculates the ABC score as the weighted L2 norm
of the ABC vector, we used the equivalently weighted L1 norm,
which allowed us to calculate ABC score gains and compare
the progression of students’ improvements. We preferred the
linear properties of the L1 norm since code complexity should
scale linearly with the number of operations. The original
inventor of the ABC metric, who used the L2 norm, has stated
that using a different vector norm may be preferable [6].

The corpus of submissions is clustered using density-based
clustering, which is superior to K-means in that outliers far
away from a cluster centroid are not “forced” into a cluster;
this allows the instructor to identify students who may require
more general guidance on problem strategy as opposed to hints
for fine-tuning a sound strategy. Normalized tree edit distance
is used as a distance metric. Previous studies have shown
that clustering ASTs using this distance metric often captures
groups of code with similar high-level design [4]. Through the
instructor interface, an instructor can provide hints tailored to
a specific cluster. In our implementation, AutoStyle provides
instructor-written (A) approach hints that include links to
resources such as language documentation, and (B) skeletons
created by redacting a similar-but-correct submission from the
corpus. Scale is effectively handled as instructor-created hints
are proportional to the number of clusters, not the number of
submissions, and in general the number of clusters and the
number of submissions do not correlate [4].

Upon receiving a submission from a student, AutoStyle grades
the submission for correctness by running a suite of test cases.
If the code is functionally correct, its abstract syntax tree
(AST) is extracted and compared to all other submissions to
determine which cluster it would best fit into. Submissions
mapping to “weak” clusters (poor ABC scores) are shown
approach hints, skeletons, or both.

Submissions mapping to "strong" clusters are shown one or
more automatically generated syntax hints. Syntax hints are
generated by identifying another submission that has a similar
structure but a better ABC score. Features that are present
(or absent) from the superior submission are extracted and
displayed to students as features they may want to add (or
remove) from their submission. Hints can be provided until
the student reaches the best ABC score in the corpus. Noted
software engineer Michael Feathers says of clean code that

“There is nothing obvious that you can do to make it better” [5].
His definition is operationalized by our approach, in which
students improve their code style until reaching an optimal
threshold determined by examining a corpus of submissions
assumed to contain at least one “ideal” exemplar. AutoStyle
supports students in improving their code incrementally, by
pointing them to idioms and approaches that make their code
slightly better. Students are not immediately pointed to the best
style solution, since the differences between a poor solution
and and the best one may be hard to understand in one jump.
Figure 1 shows hints provided to an AutoStyle student.

EXPERIMENT
This study examined the effect of AutoStyle in the context of
a large introductory CS course. On two selected homework
problems, after writing a functional solution, students could
work on improving their code’s style for extra credit. Students
who wanted the extra credit were invited to participate in the
study (unpaid). Only study participants were given AutoStyle.
Students did untutored problems as assessments.

Class Context and Materials
330 students were enrolled in the summer offering of the on-
campus introductory CS course. This course, geared toward
rising sophomores, is intended to be students’ first CS class
and is required for the major. Style is a component of this
course, and students’ large programming projects are hand-
graded for style. Of the style features that determined students’
style grades in the course, some overlap with measures that
ABC captures (e.g., avoiding unnecessary function calls and
variable assignments, avoiding code that is never called) while
others are distinct (e.g., meaningful variable names, clear and
useful comments). ABC was not used directly to determine
style grades in the course.

In study sessions 1 and 2, students revised a completed home-
work problem to improve its style (AddUp and Permute). In-
structors did not grade those problems for style. We selected
these two problems because past students’ answers had a wide
range of style quality, suggesting both that students may bene-
fit from style support and AutoStyle could construct chains to
provide it automatically. For AddUp and Permute, we used ap-
proximately 500 historical submissions to set up the clustering
and hints in the AutoStyle tutor. For sessions 1 and 2, students
worked with a tutor to improve their style on their homework
problems, and then independently did experimenter-created
tasks that drew on key idioms and concepts targeted in the
homework (Letters and CountAnagrams). For study ses-
sion 3, students only did an untutored, experimenter-created
coding task, which drew on functions from students’ most re-
cent homework. All of the problems in the study can be solved
in 4-10 lines of Python. The tutored homework problems and
independent coding challenges were:

(1) Session 1 - with tutoring. AddUp: Given an integer n and
a list of integers lst, return true if there exists two unique
elements in lst that add up to n.

(2) Session 1 - independent. Letters: Given a list of
words lst, return a Python set of letters that are com-
mon amongst all words in lst.

(3) Session 2 - with tutoring. Permute: Given a list of unique
integers lst, implement a Python generator that returns
all possible permutations of lst.

(4) Session 2 - independent. CountAnagrams: Given a word
word as well as a list of valid words word_list, return the
number of anagrams for word that are also in word_list.

(5) Session 3 - assessment. MaxDepth: Write a function that
takes a deep list, and determines its maximum depth. You
may use any built-in python functions.

We chose these problems to examine AutoStyle in a natural
setting with normal coursework. While we designed the tasks
to be suitable for students’ prior knowledge, the course had
not taught students to use the target functions to minimize
ABC score in their code. In these problems and throughout
the course, instructors asked students to write their own logic
rather than using built-in functions. While this gives students
practice coding, it does not mimic professional practices.

The multiple-choice questions presented a programming prob-
lem and 6 or 7 solutions. Part one of each question asked
students to select the correct solution with the best style (Fig-
ure 2). To see if students were overlooking good solutions
because they mistakenly thought they were not functional, part
two asked students to select all functionally correct solutions.
To avoid ordering effects, the answer order was randomized at
pre-test and post-test for each student.

Participants
200 students participated in at least one study activity. The
analysis below only includes the 103 students who participated
in study activities for sessions 1 and 2. 99 of those students
also participated in session 3. Students were randomly as-
signed to three groups: (1) get AutoStyle for the first assign-
ment only, (2) for both assignments, or (3) for none of the
assignments. Students’ random assignment into study condi-
tions did not affect the instruction they received in class. Each
study session was limited to a two-hour block (see Method),
and students did not receive class instruction during the study
sessions. Therefore, it is unlikely that any differences between
conditions across the study, and especially within a single
study session, were caused by the course instruction.

Method
For sessions 1 and 2, students began by writing a working
solution to their homework problem and submitting it to the
course auto-grader. This solution had to pass a set of instructor-
written test cases. If the solution was correct, the student could
open the extra-credit interface from the auto-grader and work
on improving the code’s style. At this point, students were
invited to participate in the study.

Consenting students did a pretest of two-part multiple-choice
questions (two questions in session 1 and and one in session
2). Then students worked with their assigned style tutor (Au-
toStyle or ABC score only) until they reached a target ABC
score (9 or below; lower scores are better), or until 45 minutes
elapsed. We used 9 as the score threshold after examining
prior submissions. Those submissions showed acceptable

Figure 1. A student’s submission and AutoStyle hints. Students in both conditions are also shown their ABC score (not pictured here).

style, with the best ones scoring around 2. Students had unlim-
ited submissions. After each functionally correct submission,
students were shown their ABC score. If a submission was not
functionally correct, students were shown the expected and
received results of experimenter-written test cases.

After working with the style tutor, students did a post-test
(with the same multiple-choice questions as the pre-test). Fi-
nally, students were given a coding challenge, where they were
asked to solve a new programming problem, from scratch,
without hints or ABC score feedback. Students had an unlim-
ited submissions, and worked until their program passed all
experimenter-written test cases, or until 2 hours had elapsed
for the whole experiment session. The third study assignment
was a cumulative assessment with multiple-choice questions
(one each from the previous assignments and one novel) and
an independent coding challenge.

RESULTS
103 students participated in sessions 1 and 2 (respectively, 72
AutoStyle and 31 Control, and 49 AutoStyle and 54 Control).
One AutoStyle student and three Control students each from
session 1 and 2 did not do session 3.

Coding Style Improved
On each problem, a few students (≤ 6) did not submit any
functional solutions. Only students who submitted at least
one functional solution are included in the analyses of coding
style. Students improved their style when they worked with
either tutor (AutoStyle or ABC score only), but did not im-
prove their style on the untutored coding challenges. Most
students submitted at least two unique, functional solutions for
the tutored problems, indicating that the feedback prompted
revisions. By their last submissions, most students surpassed

the ABC threshold for the tutored problems (AddUp: Control -
71%, AutoStyle - 74%; Permute: Control - 75%, AutoStyle
- 78%). Means for ABC scores improved from first to last
attempts for the tutored problems (from 11.7 to 8.5 for AddUp
and from 11.3 to 8.7 for Permute). For the untutored prob-
lems Letters and CountAnagrams, few students submitted
more than one functional solution, and scores did not improve
on those problems. For the untutored problem MaxDepth, 7
AutoStyle students and one control student improved their
code through revision, resulting in a slight improvement in
scores for the AutoStyle condition but not the control. Table 1
shows how many students in each condition completed each
problem and revised their work, along with initial and final
style scores.

Although students’ style scores do not satisfy the Shapiro-
Wilk test for normality, we proceeded with ANOVAs and
t-tests under the assumptions of the Central Limit Theorem
since there were more than 30 students in each condition.
Within-condition paired t-tests indicate significant differences
in initial and final style scores on the tutored problems for
both conditions, indicating that both tutors helped students
improve through revision. The only untutored problem that
showed a significant difference in initial and final style score
was MaxDepth, and only for the AutoStyle condition, indi-
cating that AutoStyle students improved their score through
revision while working independently. However, while the
result is statistically significant, the improvement was small
(see table 1 for means, p-values, and t-values). To compare im-
provement on tutored vs. untutored problems, we ran separate
repeated measures ANOVAs for ABC scores in study sessions
1 and 2. These ANOVAs followed the pattern suggested by
the means: students in both conditions improved on the tu-
tored problems but not the untutored ones, and there were

Figure 2. Answer options for a multiple choice question: Given two sets,
set1 and set2, how would you find their common element? Students were
asked to select the best style solution and then identify all functionally
correct solutions. The middle two choices are the best stylistically, and
the last two are not functionally correct.

no differences in improvement by condition. The repeated
measures ANOVAs were run on students’ ABC scores by
submission time (first/last), if the problem was tutored (true/-
false), and by assigned condition (AutoStyle/Control). These
analyses were done with the 101 students who submitted func-
tionally correct code for both AddUp and Letters, and with
the 97 students who submitted functionally correct code for
both Permutation and CountAnagrams. Submission time
(F(1) = 67.99;41.9), tutoring (F(1) = 18.3;209), and their
interaction (F(1) = 69.1;40.9) were significant in both analy-
ses (Pillai’s Trace: p < .001 for all), while condition was not
significant as a main effect (F(1) = 1.1; .22, p = .3; .6) or in
interactions with submission time (F(1) = .39; .31, p = .5; .5;
values are given for session 1 and 2, respectively). To com-
pare condition differences in improvement on the untutored
problem MaxDepth, we ran an ANOVA on data from the 98
students who completed the problem. We ran the ANOVA on
final ABC score for MaxDepth, with initial ABC score as a co-
variate. Condition was not significant (F(1) = 3.65, p = .059).
The t-test for the 70 students who had used AutoStyle was
driven by 10 students who made two attempts on MaxDepth
instead of one. Seven of those students improved their score,
and three maintained their score. Of the 28 control students,
five made more than one attempt. One student improved their
score, one maintained it, and three worsened their score (note,
students did not get ABC score as feedback on the coding
challenges).

Students were allowed unlimited code submissions. Submis-
sions that were not functionally correct were not given an
ABC score. Further, some students submitted the same exact
code several times in a row. Therefore, in examining students’
attempts to improve their code, we consider an attempt to be a
functional solution that is not a duplicate of the immediately-
preceding submission. Across conditions, students averaged
about 4 attempts when they worked with a style tutor (4.7
and 4.1 for AddUp and Permutation, respectively). 90% of
AutoStyle students and 87% of control students made two or
more attempts on AddUp. 67% of AutoStyle students and 64%
of control students made two or more attempts on Permute
(see table 1 for raw numbers). Most of the remaining students
met the style threshold on their first attempts. Only one stu-
dent in each condition (for AddUp) and one control student
(for Permute) made only one attempt without meeting the
style threshold. Repeating the ANOVAs above without stu-
dents who met the style threshold on their first attempt does not
change the significance levels of the results. Students averaged
1 attempt on the coding challenge, when they did not receive
any feedback or have a style threshold (1.1, 1,1, and 1.2 for
Letters, CountAnagrams, and MaxDepth). Fewer than 20%
of students made multiple attempts on these problems.

Identification of Good Style Improved
Students improved in their identification of the best style so-
lution from a given set. Multiple choice questions on each
assignment were given before and after the tutored coding
problem. These questions presented a coding problem and
sample solutions, and asked which solution exhibited the best
style. Answers were scored 1 if correct and 0 if incorrect or
blank. Session 1 included two of these questions and session
2 had one. On AddUp question 2 and on the question for
Permute, AutoStyle students improved more than the control,
with no significant difference in improvement on AddUp ques-
tion 1 (see table 2 for mean scores). Three separate logistic
regressions on the post-test scores, with tutoring condition
and corresponding pre-test score as factors, indicate signifi-
cant effects for pre-test score (all p < .015), with significant
effects for condition on question 2 for AddUp (p = .04) and
on the question for Permute (p = .03), in favor of AutoStyle.
Nagelkerke’s pseudo R2 for the three regressions are .15, .38
and .16, respectively. These analyses were done on all 103
students who participated in the study. Additional logistic
regressions were run on scores from session 3, with corre-
sponding pre-test scores from session 1 or 2 and exposure to
AutoStyle as factors. Condition was not significant in any of
those analyses, suggesting that AutoStyle outperformed the
control on immediate learning but not longer term retention.

While students improved on their identification of the best
coding style, they did not improve on their identification of
which code blocks were functionally correct. After asking
which solution exhibited the best style, a follow-up question
asked which ones correctly solved the problem. For each of the
6 code samples, students got 1 point if they correctly identified
it as functional or not. Students’ improvement on these items
were not significant from pre- to post-test or significantly
different by condition, as indicated by a repeated measures
ANOVA on the three questions (AddUp 1 and 2, and Permute)

Task AutoStyle Mean Initial Final Paired Control Mean Initial Final Paired
N Attempts style style t-test N Attempts style style t-test

AddUp 71 3.6 11.9 8.5 p < .001 31 7.2 11.4 8.4 p < .001
(tutored) (64) (2.4) (6.4) (5.7) (27) (5.9) (4.3) (4.1)
Letters 70 1.0 15.4 15.4 same 31 1.3 13.5 13.6 p = .432
(no tutor) (2) (0.17) (9.2) (9.2) mean (6) (0.63) (4.5) (4.4)
Permute 49 5.0 11.1 8.6 p < .001 53 3.4 11.5 8.7 p < .001
(tutored) (33) (6.07) (4.6) (2.70) (34) (4.26) (4.7) (3.1)
CountAnagrams 48 1.0 22.5 22.5 p = .159 49 1.1 21.4 21.4 p = .322
(no tutor) (2) (0.20) (7.4) (7.4) (4) (0.27) (7.4) (7.5)
MaxDepth 70 1.1 18.3 18.1 p = .017 28 1.3 17.9 18.0 p = .395
(no tutor) (10) (0.35) (5.34) (5.31) (5) (0.59) (4.7) (4.8)

Table 1. For each task, the number of students who submitted a functional solution (and who submitted at least two attempts). Means (and standard
deviations) for number of attempts, and for initial and final ABC scores. Students are divided by condition. Paired t-tests compare the first and last
ABC scores of each problem, by condition, to determine if the improvement is significant. t-values for each test are (left to right): 7.9, 4.7, NA, -.80, 4.4,
4.9, -1.4, 1.0, 2.4, -.86. In session 3 (MaxDepth, untutored), students who had used AutoStyle previously improved their score with revision.

Multiple Group Pre- Post- Session Condition
Choice test test 3 (pre-post)
AddUp AS .86 .92 NA p = .7
Q1 Control .71 .90
AddUp AS .28 .46 .44 p = .04
Q2 Control .26 .26 .36
Permute AS .18 .31 .31 p = .03

Control .17 .13 .24
Table 2. Multiple-choice questions at pre- and post-test asked students
which code example was stylistically best (two questions for session 1,
one for session 2). Two of these questions were repeated at session 3. Per-
cent correct for each condition shows more improvement for AutoStyle.
Logistic regressions on post-test scores with pre-test as a covariate show
that the greater improvement in the AutoStyle condition for AddUp Q2
and for Permute are significant. This table includes all participants.

by test time (pre or post), with condition as a fixed factor
(p > .05 for test time, test time * question, condition, and
condition * test time; n = 103).

STUDENTS’ INTERACTIONS WITH THE TUTORS
AutoStyle is intended to help students by pointing them to
new style idioms and approaches, which the student ideally
implements. Case studies illustrate how students actually in-
teracted with AutoStyle and the control tutor. Our case studies
come from three categories: AutoStyle students who improved
their code and met the style threshold on their last attempt;
AutoStyle students who did not meet the style threshold de-
spite multiple attempts; and Control students who improved
their code and met the style threshold on their last attempt.
We selected one student from each group, choosing cases
where we felt most confident interpreting students’ intentions
and where students’ actions highlighted shortcomings of Au-
toStyle. These case studies are from AddUp (session 1).

Implementation Is Hard. Case Study: Diligent Student
The Diligent Student begins with an acceptable solution: using
a for-loop over all elements in lst, which yields an ABC score
of 11.6 (slightly higher than the goal, 9). AutoStyle suggests
using the Python built-in function list. This change would
make the code better incrementally, but would not immediately
lead to the best solution. The student tries to implement the
suggestion, but makes a very simple typo. The student has a

variable lst, and calls lst instead of list. This introduces
a bug, and the code does not compile. It takes the student six
submissions to fix this bug (see figure 3). From the code alone,
it is not clear if the student misunderstood the hint, or if the
student made a typo and struggled to identify it. While no
students in the control condition made this exact error, 5 other
students in the AutoStyle condition did (8.5% of the AutoStyle
condition).

In many ways, this student exemplifies the ideal user of the
system. After 45 minutes of working with the tutor, students
could still get extra credit even if their code did not meet the
threshold. Diligent Student continues to struggle with imple-
menting some hints, working beyond the required 45 minutes.
Ultimately, Diligent Student implements hints designed for
strong clusters, and achieves an ABC score of 5.4, one of the
top style solutions for the homework assignment. This case
study illustrates that students cannot just write correct code
and then move on to improving its style - even diligent stu-
dents may regress to non-functional code in the process. For
less-diligent students, the bugs they introduce may become
insurmountable obstacles.

This student was not the only one who struggled to implement
hints. On average, after an AutoStyle student receives a hint,
it takes four tries for the student to implement the change
in a functionally correct manner. The lack of hints for non-
functional code is a weakness of AutoStyle.

Large Changes Are Hard. Case Study: Confused Student
AutoStyle requires students to start with working code. How-
ever, all working code is not equal. Confused Student started
with a ABC score of 55.6, a big difference from Diligent Stu-
dent’s 11.6. Confused Student solved the homework problem
by breaking the problem down into many (and sometimes re-
dundant) edge cases instead of crafting one holistic solution.
AutoStyle does not provide hints that are specific to that start-
ing point, so Confused Student got the same hints as Diligent
Student. Confused Student did not successfully implement any
of AutoStyle’s hints. Many attempts resulted in non-functional
code, and the few submissions that were functionally correct
actually made the ABC score worse.

Figure 3. Diligent student gets a skeleton hint suggesting list (top left) and makes a typo in trying to implement it (top right). After correcting the
typo, the student gets a hint to use set, which is implemented correctly (middle row). The student gets further hints throughout the session (bottom
left) ending with a stylistically good solution (bottom right).

AutoStyle leads students down an incremental path of code
improvement: suggestions point students to solutions that are
a little bit better. The assumption underlying this approach
is that students will not be able to implement drastic changes
in one revision. Confused Student’s interaction support this
notion. In total, 13 students started AddUp with ABC scores
above 20. Eight students exhausted the required 45 minutes
and still had a score above 20 at the end. Two students ended
between 20 and 9, and only one met the target threshold.
Two students had ABC scores above 20 for the majority of
their session, but achieved the best ABC score on their last
submission (likely gaming the system).

The general lack of improvement for students who started with
very poor code suggests that AutoStyle’s current hints may
only be advantageous for students who demonstrate a com-
plete understanding of the preexisting assignment. Students
may struggle when AutoStyle asks them to take a perspective
that is radically different from the student’s current understand-
ing. Since starting with working code can inhibit large-scale
changes [3], some students may benefit from approach hints
before they start coding.

Self Assessment Is Hard. Case Study: Myopic Student
Myopic Student is a control student, and only received ABC
score as feedback. Myopic Student did improve their code
style, but demonstrated difficulty in assessing where and how
to do so. The student’s first submission is good: it solves the
assignment using a for-loop and a call to Python’s set oper-
ations, with an ABC score of 9.84. Myopic Student’s initial
submission has an identical control flow to Diligent Student’s
submission code block 2 in Figure 3. While Diligent Stu-
dent has AutoStyle’s suggestions to follow, Myopic Student
demonstrates a lack of direction in attempts to improve coding
style. The student makes a series of simple transformations by
removing whitespace and adding redundant test cases in the
for-loop body, which only serves to vary the student’s ABC
score between 9.84 and 10.92. At some points it seems like
this student is just testing out what will make the ABC score
go up or down. Shorter code is often more concise and our

style metric rewarded students for using fewer lines. However,
this measure is vulnerable to gaming, and several students
"improved" their style by cramming the whole solution into
one line. This brevity reward will not be used in future work.
Myopic Student finds that shorter submissions (e.g., with-
out blank lines) result in better ABC score, and then tries to
shorten the code further re-ordering the control flow. However,
Myopic Student never attempts to implement an operation that
wasn’t contained in the original submission. Myopic Student’s
submissions illustrate the difficulty in assessing what improve-
ments can be made (step 1in our pedagogical framework).

Figure 4. Myopic Student’s final submission. The Python built-in func-
tion list does not yield the best style solution.

Although this student started with AutoStyle’s suggested func-
tion, set, this student replaces it with a call to list. A
solution using list allows the student to achieve an ABC
score better than the threshold, but does not achieve the best
solution (see figure 4). As students in the introductory pro-
gramming course are taught how to use list before set, the
student seems to fall back on previous knowledge instead of
discovering new information on how to use set to achieve a
more stylistic solution. This illustrates a student attempting
to do step 2 (Information Retrieval) from prior knowledge,
without the foresight of how the change will affect the code’s
style.

DISCUSSION
AutoStyle helped students write and recognize beautiful code.
Students in both conditions improved their style while work-
ing with a tutor. However, overall, students’ submissions on
the coding challenges did not demonstrate that AutoStyle pro-
moted better independent work. While students may not have

learned enough from the tutor to make those revisions, an-
other explanation is that students were not well-motivated to
improve their style. Students received extra credit for writing
any functional solution to the coding challenge, and there was
no target ABC score.

Although AutoStyle and the ABC-only tutor produced similar
style improvements, students’ paths through the two tutors
were different. Considering only the students who met the
style threshold for AddUp, AutoStyle students were much more
likely to use the target function set (11/22 with the control,
42/51 with AutoStyle). However, it was not the case that
students were unfamiliar with set before working with Au-
toStyle. Almost all students used set in their independent
coding challenge (where its relevance was more apparent), and
students correctly identified functional solutions with set in
the multiple-choice questions. Rather, it seems that without
AutoStyle, proportionally more students did not recognize
that set would be a good style choice for the AddUp problem.
This underscores why the Information Retrieval step in our
pedagogical framework applies to a student’s prior knowledge
as well as to new information.

Further, ABC score alone was not as helpful in teaching stu-
dents to recognize good style. While students appeared to be
at ceiling for the best-style multiple-choice question AddUp
1, the majority of students were not correct on AddUp 2 or
Permute, even at post-test. Identifying good style is not triv-
ial for novice students, likely because their conceptions of
good style do not match those of experts. Students in the con-
trol condition, like Myopic Student, may have improved their
ABC score through guess-and-check without uncovering the
meaningful features that affect style. The easiest feature to un-
cover is superficial: shorter is usually better. Since AutoStyle
provided text hints, students did not need to guess at which
features mattered for style. This may explain why AutoStyle
students improved more than the control on two of the three
multiple-choice questions that asked students to select the best
style solution. Recognizing good style was not cited as a goal
of the original AutoStyle work [4, 3], illustrating how our
pedagogical framework can improve the design of style assess-
ments. Overall, students did not improve on their recognition
of which options were functional, indicating that improvement
on selecting the best style was driven by students’ new ideas
about style, not correctness.

Our data suggets that each step in our framework is indeed
distinct. Many novices cannot easily identify good style on
multiple-choice questions, or retrieve the information neces-
sary to improve their style, even when that information resides
in their own prior knowledge (e.g., Myopic Student). Finally,
even when students know which function to use, implementa-
tion is not trivial (e.g., Diligent Student). These findings show
initial validity for our framework, and suggest that style tutors
should support all three steps.

Recommendations for CS Educators
If nothing else, show the student their style score while they’re
coding and provide a target score based on a reference solution.
The quantitative results showed that students improved their
code with ABC score alone. This suggests that simply making

students aware that style can be measured, and telling them
when there is room for improvement, seems to drive them to
improve it. However, students are unlikely to learn what good
style is with ABC feedback alone. Showing students example
code of similar lengths and explaining why one has better style
may dissuade students from simply thinking that shorter is
better.

Future Work: Improving AutoStyle
Process measure and case studies illustrate where AutoStyle
could provide more supportive feedback. First, students need
style support even when their code is not functional. There is
no clear distinction between getting code to work and improv-
ing the code’s style. For the Diligent Student, the Confused
Student, and many others, attempts to improve style introduced
bugs. These bugs also show the difficulty of Implementation
(step 3 in our pedagogical framework). Telling students what
function to use is not always enough. In large-enrollment
courses, students may make the exact same mistake when
trying to implement a change (e.g., 8.5% of the AutoStyle
condition tried to call a function with the typo lst instead of
the name list). AutoStyle could provide specific feedback
for common mistakes.

Second, when students start off with working but stylistically
horrible code (like Confused Student), AutoStyle may be more
effective if it tells the student to start from the beginning.
Including one instructor-written approach hint for these cases
may help students who otherwise wouldn’t be able to start
down the style-improvement path.

Third, while AutoStyle points students to documentation, it
does not help them interpret the documentation. AutoStyle
may be more effective if it scaffolds students in how to use
online resources - this may also reduce the instance and sever-
ity of implementation errors. AutoStyle could also become
more adaptive: if the student receives a hint but seems unable
to successfully apply it to their own code upon resubmission,
the student may need tutoring in interpreting the language doc-
umentation or in modifying an example in the documentation
to apply it to their own code.

Future Work: Targeted Assessments
This study did not replicate the striking results from [4], where
70% of AutoStyle students vs. 13% of the control reached
the best style solution. However, our non-replication was not
because AutoStyle students did poorly, but rather because
the control students did well. One explanation may be the
differences between the particular problems and style thresh-
olds in the two studies. In [4], students needed to use the
AutoStyle-recommended syntax to get under the style thresh-
old. In AddUp, students could reach the style threshold without
using the syntax that AutoStyle recommended (though it was
necessary for the best possible solution). Selecting a lower
threshold may have resulted in stronger relative benefits for
AutoStyle in our study. For Permute, the main style recom-
mendations related to approach and control flow, not syntax.
This made it more difficult to automatically detect the effect of
AutoStyle in students’ code. Additionally, AutoStyle’s current
approach hints may not be as effective as the syntax hints.

Likewise, we did not replicate the results from [3], where
students demonstrated style improvements independently. The
independent problems in [3] required the same syntax, used in
the same way, as the corresponding tutored AutoStyle problem.
This tight connection between the tutored problem and the
independent problem was not present in the current study.
Future work will develop a range of assessments that allow
students to demonstrate both near and far transfer.

CONCLUSIONS
On course homework assignments, both AutoStyle and ABC
feedback helped students improve their style. AutoStyle ad-
ditionally helped students recognize code with good style.
This in situ study shows AutoStyle’s effectiveness in a large-
enrollment course. Results from the style-recognition ques-
tions and from logged student interactions provide initial vali-
dation for our 3-step pedagogical framework by showing that
the three steps are distinct, and students need support in each.
Although AutoStyle was not designed to promote recognition
of good style, students did improve on this measure, a key
component of Assessment (step 1 in our framework). While
an important aspect of AutoStyle is that it directs students to
code documentation and online resources, this study showed
the importance of helping students incorporate their own prior
knowledge (part of Information Retrieval, step 2). Finally,
case studies and log data show that students still struggle with
Implementation (step 3) even when step 2 is complete.

Acknowledgements
This work was supported by an IBM Faculty Award, a gift
from Google Inc, and the National Science Foundation (Grant
No. DRL-1418423 and INT-1451604). Opinions, findings,
conclusions, or recommendations expressed here are those of
the authors and do not necessarily reflect the views of the NSF.

REFERENCES
1. Hannah Blau and J. Eliot B. Moss. 2015. FrenchPress

Gives Students Automated Feedback on Java Program
Flaws. In Proceedings of the 2015 ACM Conference on
Innovation and Technology in Computer Science
Education (ITiCSE ’15). ACM, New York, NY, USA,
15–20. DOI:http://dx.doi.org/10.1145/2729094.2742622

2. Grady Booch, Robert A. Maksimchuk, Michael W. Engle,
Bobbi J. Young, Jim Conallen, and Kelli A. Houston.
2007. Object-Oriented Analysis and Design with
Applications (3rd Edition). Addison-Wesley Professional.

3. Antares Chen, Eliane Wiese, HeZheng Yin, Rohan
Choudhury, and Armando Fox. 2016. Preliminary
evidence for learning good coding style with AutoStyle.
In Third Symposium on Learning With MOOCs
(LWMOOC III). Philadelphia, PA.

4. Rohan Roy Choudhury, HeZheng Yin, and Armando Fox.
2016. Scale-Driven Automatic Hint Generation for
Coding Style. In 13th International Conference on
Intelligent Tutoring Systems (ITS 2016). Zagreb, Croatia.

5. Michael Feathers. 2004. Working Effectively with Legacy
Code. Prentice Hall.

6. J. Fitzpatrick. 2000. Applying the ABC Metric to C, C++,
and Java. In More C++ Gems. Cambridge University
Press, New York, NY, 245–264.

7. Martin Fowler, Kent Beck, John Brant, William Opdyke,
and Don Roberts. 1999. Refactoring: Improving the
Design of Existing Code. Addison-Wesley Professional.

8. Robert L. Glass. 2002. Facts and Fallacies of Software
Engineering. Addison-Wesley Professional.

9. Elena L. Glassman, Lyla Fischer, Jeremey Scott, and
Robert C. Miller. 2015. Foobaz: Variable Name Feedback
for Student Code at Scale. In Proceedings of the 28th
Annual ACM Symposium on User Interface Software I&
Technology. ACM, Charlotte, NC, 609–617.

10. Petri Ihantola, Tuukka Ahoniemi, Ville Karavirta, and
Otto Seppälä. 2010. Review of Recent Systems for
Automatic Assessment of Programming Assignments. In
Proceedings of the 10th Koli Calling International
Conference on Computing Education Research (Koli
Calling ’10). ACM, New York, NY, USA, 86–93. DOI:
http://dx.doi.org/10.1145/1930464.1930480

11. S. Johnson. 1977. Lint, a C program checker. Technical
Report 65. Bell Labs.

12. D. E. Knuth. 1984. Literate Programming. Comput. J. 27,
2 (1984), 97–111.

13. C. E. Kulkarni, M. S. Bernstein, and S. R. Klemmer.
2015. PeerStudio: Rapid Peer Feedback Emphasizes
Revision and Improves Performance. In Proceedings of
the 2nd ACM Conference on Learning@Scale. ACM,
New York, NY, 75–84.

14. Jin-Su Lim, Jeong-Hoon Ji, Yun-Jung Lee, and Gyun
Woo. 2011. Style Avatar: A Visualization System for
Teaching C Coding Style. In Proceedings of the 2011
ACM Symposium on Applied Computing (SAC ’11).
ACM, New York, NY, USA, 1210–1211. DOI:
http://dx.doi.org/10.1145/1982185.1982451

15. M Mäntylä. 2005. An experiment on subjective
evolvability evaluation of object-oriented software:
explaining factors and interrater agreement.. In ISESE.
134–138. http:
//lib.tkk.fi/Diss/2009/isbn9789512298570/article3.pdf

16. M Mäntylä and Casper Lassenius. 2006. Drivers for
software refactoring decisions. Proceedings of the 2006
ACM/IEEE International Symposium on Empirical
Software Engineering (ISESE) (2006), 297–306.
http://dl.acm.org/citation.cfm?id=1159778

17. Robert C. Martin. 2008. Clean Code: A Handbook of
Agile Software Craftsmanship. Prentice Hall.

18. K McMaster, S Sambasivam, and Stuart Wolthuis. 2013.
Teaching Programming Style with Ugly Code. In
Information Systems Educators Conference. San Antonio,
TX. http://citeseerx.ist.psu.edu/viewdoc/download?
doi=10.1.1.400.9411&rep=rep1&type=pdf

19. Tom Mens and Tom Tourwé. 2004. A survey of software
refactoring. IEEE Transactions on Software Engineering
30, 2 (2004), 126–139. DOI:
http://dx.doi.org/10.1109/TSE.2004.1265817

http://dx.doi.org/10.1145/2729094.2742622
http://dx.doi.org/10.1145/1930464.1930480
http://dx.doi.org/10.1145/1982185.1982451
http://lib.tkk.fi/Diss/2009/isbn9789512298570/article3.pdf
http://lib.tkk.fi/Diss/2009/isbn9789512298570/article3.pdf
http://dl.acm.org/citation.cfm?id=1159778
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.400.9411&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.400.9411&rep=rep1&type=pdf
http://dx.doi.org/10.1109/TSE.2004.1265817

	Introduction: Encouraging Beautiful Code
	Measuring the Beauty of Code
	Prior Work: The AutoStyle Tutor
	Research Questions

	Related Work
	Overview of the Style Tutor
	Pedagogical Framework
	Implementation

	Experiment
	Class Context and Materials
	Participants
	Method

	Results
	Coding Style Improved
	Identification of Good Style Improved

	Students' Interactions with the Tutors
	Implementation Is Hard. Case Study: Diligent Student
	Large Changes Are Hard. Case Study: Confused Student
	Self Assessment Is Hard. Case Study: Myopic Student

	Discussion
	Recommendations for CS Educators
	Future Work: Improving AutoStyle
	Future Work: Targeted Assessments

	Conclusions
	Acknowledgements

	References

