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Abstract 

What types of scaffolds support sense making in 
mathematics? Prior work has shown that grounded 
representations such as diagrams can support sense making 
and enhance student performance relative to analogous tasks 
presented with more abstract, symbolic representations. For 
grounded representations to support students’ learning of 
symbolic representations, students’ sense making must be 
maintained when both grounded and symbolic representations 
are presented together. This study investigates why students 
sometimes fail to coordinate these representations, in 
particular, why performance is high with fraction diagrams 
alone, but decreases when fraction symbols are included. 
Results indicate that symbols trigger incorrect transfer from 
whole-number procedures, and that students lack the 
qualitative reasoning that the diagrams are intended to tap. 
Specifically, students do not find it obvious that the sum of 
two positive symbolic fractions is larger than its two addends. 
Qualitative inference rules such as this one appear important 
in mediating the sense making process in the context of 
tempting misconceptions even when otherwise-supportive 
grounded representations are available. 
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Scaffolds for Sense-Making 
A common lament in mathematics education is that students 
often execute procedures without understanding: without 
connecting procedural steps to their underlying concepts and 
without connecting symbols to their ‘real-world’ referents 
(Schoenfeld, 1988). One way to reinforce the conceptual 
foundation for procedures is to use visual representations, 
such as strip diagrams. These diagrams are not intended to 
help student execute procedures, but instead support them in 
thinking about the problems qualitatively (e.g., which 
amounts are bigger? Which operation is appropriate?). 
Visual representations are thought to help students apply 
their conceptual reasoning (Beckmann, 2004), and are 
recommended by an Institute of Education Sciences Practice 
Guide (Woodward et al., 2012). However, diagrams may 
not be intuitive for novices, and their presence can decrease 
problem-solving performance for students who have 
difficulty interpreting them (Booth & Koedinger, 2011).   

Prior work on diagrams, including our own, indicates that 
their utility as sense making supports is sensitive to context, 
including the problem type and the students’ prior 
knowledge (Stampfer & Koedinger, 2013). Booth and 
Koedinger (2011) hypothesized that several factors could 
contribute to students’ misinterpretation of diagrams or their 
difficulty mapping between diagrams and problem 
statements, including a lack of domain knowledge and still-

developing formal reasoning. This paper, a follow-up study 
to our 2013 work, investigates alternate hypotheses for our 
results and examines students’ domain knowledge and 
reasoning skills with addition. We briefly review our earlier 
findings and then present the current study.  

Fraction Bars and Fraction Symbols 
Stampfer and Koedinger (2013) examined fraction bars, 
which represent the proper fraction n/d with a rectangle 
divided into d equal pieces, n of them shaded. We used four 
combinations of fraction bars and symbols to examine how 
the presence of symbols affected students’ use of the 
fraction bars. Each scaffold type targeted one piece of 
knowledge: 1) equal areas represent equal amounts; 2) the 
bars represent fractions; 3) if two shaded areas are equal, the 
fractions they represent are equal. Figures 1-4 show sample 
comparison and addition problems for each scaffold type 
(and the Numbers-Only baseline). Comparison problems 
presented two fractions and asked if the first was bigger 
than, equivalent to, or smaller than the second. Addition 
problems presented equations and asked if they were true or 
false. False equations used the incorrect strategy of adding 
the numerators and denominators to obtain the sum. The 
study was within subject: each 5th grade student solved two 
problems of each scaffold type for each task.  

The results (Table 1) show striking differences between 
the scaffold types and between the addition and comparison 
tasks. On the comparison items, all three scaffold types with 
fraction bars yielded uniformly high performance. Low 
performance on the Numbers-Only control confirmed that 
students were not simply comparing the fractions with the 
symbols alone. Fraction addition showed a different pattern: 
performance was significantly different for all scaffold 
types, and decreased steadily as the salience of the numbers 
increased. These results show that the usefulness of fraction 
bars depends on the task. For fraction comparison, students 
display all three necessary skills for interpreting the 
diagrams, as evidenced by equally high performance on all 
scaffold types that included pictures. However, these skills 
are not uniformly shown with fraction addition. Without 
symbols, students can correctly interpret the fraction bars, 
including the multi-colored sum, as evidenced by their 
performance with the Pictures-Only scaffold. However, the 
presence of symbols seems to detract from students’ use of 
the diagrams, such that performance on the Half Pictures 
and Numbers scaffold hovers around chance. Students’ 
dismal performance (21%) with Numbers-Only indicates 
that adding the numerators and denominators is a tempting 
foil, as it draws on students’ incorrect transfer from whole- 
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Figure 1: Pictures-Only. Area equals quantity. 

 

 
Figure 2: Pictures and Numbers. Bars represent fractions. 

 

 
Figure 3: Half Pictures and Numbers. Mapping relationships 

from images to symbols. 
 

 
Figure 4: Numbers-Only. Evaluating solved problems. 

 
Table 1: Fall 5th Grade Percent Correct 

 
Scaffold Comparison Addition 
Pictures Only .82 .79 
Pictures & Numbers .81 .64 
Half Pics & Nums .83 .46 
Numbers Only  .50 .21 

 
number addition. However, our prior study did not have 
sufficient error-type data to confirm this suspicion.  

Why did symbols decrease students’ performance on the 
addition task? Students’ performance with comparison 

indicates that they can extract information equally from all 
three fraction-bar scaffold types. What prevents them from 
using this information with addition? We hypothesize a 
sense making process that demands recognition of two basic 
properties of positive-number addition for effective use of 
the fraction bars: 1) the magnitude of the sum equals the 
combined magnitudes of the addends; and 2) the sum is 
larger than each of the addends. With this knowledge, the 
incorrect symbolic addition equations should be easy to 
reject, since all propose a sum that is smaller than one of the 
addends. The present study examines whether students 
know the second, presumably more difficult, property.  

The prior study also left other open questions. First, the 
‘true or false’ options did not give any insight into students’ 
reasoning. Second, the comparison items with non-
equivalent fractions did not use foils based on possible 
misconceptions. Instead, they used fractions with similar 
magnitudes. Perhaps students have systematic 
misconceptions about equivalence, as they do with addition, 
but those misconceptions were simply not elicited. In the 
next section we describe the experimental design of the 
present study and then the test items that address these 
questions, with the results and discussions interleaved.  

Follow-Up Study 
The present study addresses three questions about sense 
making support for fractions: 1) Is it obvious to students that 
the sum of two positive symbolic addends is larger than 
each addend individually? 2) When students do not 
recognize the correct sum of a fraction addition equation, is 
it due to incorrect whole-number transfer? 3) Are students 
tempted by systematic foils for fraction equivalence?  

The present study was conducted with the same fifth-
grade public-school students as the prior study. The prior 
study took place in the fall and the present study took place 
in the spring. Thus, students had about 5-6 months more 
classroom instruction in the present study than the previous 
one, explaining their higher scores on comparable tasks. 160 
fifth-graders were given 20 minutes to complete the 34-item 
test forms, administered by their classroom teacher during 
the normal school day. The school tracked students into 
three achievement levels, which we refer to as High, 
Middle, and Low. To control for ordering effects, question 
order was determined randomly and half of the test forms 
were printed in reverse order. Within each class, students 
were randomly assigned to one of the four test forms, 
printed in either forward or reverse order. Two items were 
inadvertently left off the test forms of 19 students, and we 
account for this discrepancy in our analysis.  Some research 
questions were addressed with between-subjects design, and 
some with within-subjects design. We discuss the particular 
research design for each set of items individually. 

Comparing Addends and Sums 
To see if students knew that the sum of two positive, 
symbolic addends was bigger than each addend alone, items 
presented a correct addition equation and asked if the sum 



 
 

Figure 5: Addend-Sum item with whole numbers 
 

 
 

Figure 6: Addend-Sum item with decimals 
 

 
 

Figure 7: Addend-Sum item with fractions 
 
was bigger than each added (or visa versa). Response 
options were True, False, and Can’t tell from the 
information given. Items had either whole numbers, 
decimals, fractions, or variables (Figures 5-8). Items with 
variables had two presentations. We used a between-
subjects design, assigning each student to one of the four 
number types, with 5 problems of that type. To control for 
students simply selecting true or false for all of the 
problems, 3 problems asked if the sum was bigger than each 
addend, and 2 problems asked if each addend was bigger 
than the sum. Students in the variables condition had 3 
problems with shapes and 2 with people (Figure 8). 
 
Addend-Sum Results Questions were scored 1 if correct 
and 0 otherwise. Table 2 shows overall percent correct for 
each number type. Figure 9 shows performance for each 
number type by tracking level. We ran an ANOVA on 
percent correct (dependent) with test form, tracking level, 
and question order (forward vs. reversed) as fixed factors. 
Question order was not significant and there were no 

 

 
 

Figure 8: Addend-Sum items with variables  
 
significant interactions with order, so we re-ran the analysis 
using only test form and tracking level. There was a 
significant effect of form, tracking level, and a significant 
interaction (all p<.01). Post-hoc Tukey tests showed 
significant differences between Variables and Whole 
Numbers and Variables and Decimals (both p<.01), and 
Fractions and Whole Numbers (p=.022). 
 

Table 2: Percent Correct for Addend-Sum Items 
 

Whole Decimals Fractions Variables 
79% 75% 61% 51% 

 
Addend-Sum Discussion Except for the High group, most 
students could not apply the addend-sum relationship to all 
four number types. This evidence supports the hypothesis 
that students’ difficulty interpreting the fraction-addition 
diagrams arises from a gap in prior knowledge: they do not 
always recognize the significance of a proposed sum being 
smaller than one of the addends because they do not have a 
strong, fluent knowledge of the qualitative addend-sum 
relationship. Confusion may stem from addition with 
negative numbers (addition does not always make bigger) or 
fraction multiplication (even for positive numbers, 
operations do not always go in the same direction). Students 
can solve the whole number and decimal problems by 
directly comparing the numbers in each question without 
considering the addend-sum relationship. It is much harder 
to directly compare unlike-denominator fractions, and 
impossible for variables.  This difference in strategy likely 
explains the significant differences between Variables and 
Wholes/Decimals. Performance by tracking level suggests 
how mastery of this relationship may develop. Whole-
Number performance is about the same with all three tracks, 
likely reflecting a direct-comparison strategy and familiarity 
with whole numbers. Decimals performance is low for Low- 
track students (~50%), likely reflecting unfamiliarity with 



 
 

Figure 9: Percent correct on Addend-Sum items by form 
and class tracking. Points differing by < 3% were averaged. 

 
decimal comparison, but rises to Whole-Number level with 
Middle-track students. With Variables, Low-track students 
perform just below chance, indicating that they do not 
understand how addends and sums relate in the abstract. 
This abstract understanding trails fraction performance for 
Middle- and Low-track students. Although this qualitative 
relationship is important for reasoning about addition, these 
results suggest that students may not fully grasp the addend-
sum relationship until they have extensive practice adding 
numbers of many types. This finding is in line with the 
theory that procedural and conceptual skills develop 
iteratively (Rittle-Johnson, Siegler, & Alibali, 2001). 

Fraction Addition Items and Equivalence Foils 
Addition and comparison items used the same types of 
scaffolds as the prior study, so we do not give examples of 
all types. However, this time addition items offered three 
responses: the sum could be too small, correct, or too big. 
Comparison items with non-equivalent fractions aimed to 
assess the extent of three potential misconceptions: fractions 
with the same numerator are equivalent, regardless of 
denominator (e.g., 3/4 and 3/16); squaring the numerator 
and denominator maintains equivalence (e.g., 2/5 and 4/25); 
and adding the same number to the numerator and 
denominator maintains equivalence (e.g., 11/12 and 14/15). 
 

 
 
Figure 10: Half Pictures and Numbers, one-less foil (left) 

and correct addition (right) 

We refer to the foil types that target these misconceptions as 
same numerator, squaring, and one-less, respectively (one-
less refers to the addition misconception since each 
numerator is one less than its denominator). Figure 10 gives 
an example of the Half-Pictures-and-Numbers scaffold with 
the One-Less foil and correct addition. This study used a 
between-subject design for scaffold (with each test form 
using only one of the four scaffold types) and a within-
subject design for task (each student did comparison and 
addition items). Tests included 6 addition items and 12 
comparison items. 
 
Picture and Symbol Scaffold Results 19 tests 
inadvertently had 11 comparison items instead of 12, so we 
used percent correct instead of raw scores in all analyses. 
An ANOVA with task (comparison and addition) as a 
repeated measure, and with scaffold type, tracking level, and 
question order (forward vs. reversed) as fixed factors 
showed that question order was not significant and had no 
significant interactions, so we re-ran the analysis without it. 
We found a significant effect of task (p<.01) but no 
significant task by scaffold interaction. For each task 
(comparison and addition) we ran an ANOVA on percent 
correct (dependent) with scaffold type and tracking level as 
fixed factors. For comparison items, there was a significant 
effect of scaffold and class level (both p<.01), with a 
scaffold by class level interaction (p=.013). Post-hoc Tukey 
tests showed significant differences between Numbers Only 
and all other scaffold types (all p<.001) but no other 
significant differences. For addition items, scaffold and 
class were again significant, with a marginal interaction 
(p=.058). Post-hoc Tukey tests showed significant 
differences between Numbers Only and all other scaffold 
types (all p<.015); Pictures Only and Pictures and Numbers 
(p<.01); and a marginal difference between Pictures Only 
and Half-Pictures-and-Numbers (p=.087). Since those tests 
revealed no differences between the two scaffold types with 
both representations and did reveal differences between 
them and the scaffold types with one representation, we 
collapse those two scaffold types for further analysis. An 
ANOVA with the three scaffold groups and class level as 
fixed factors showed significant main effects (p<.01) and a 
significant interaction (p=.031). Post-hoc tests show 
significant differences between all three scaffold groups (all 
p<.01). Figure 11 shows performance for the three groups. 
 

 
 
Figure 11: Percent correct on comparison and addition items 

by scaffold type, with standard error bars 



Picture and Symbol Scaffold Discussion These results are 
consistent with the progression of performance on these 
scaffolds from 5th through 7th grade (Wiese & Koedinger, 
2014). Like 6th graders, for the spring 5th graders addition is 
harder than comparison, but the scaffolds affect the 
difficulty of both tasks in the same way. Also, their pattern 
of differences in addition scores between scaffold types is 
closer to that of 6th graders (in the fall, all differences were 
significant). Finally, the comparison results were replicated 
with systematic equivalence foils. 
 
Error Analysis Incorrect transfer from whole numbers is 
demonstrated when students say the strategy of adding both 
numerators and denominators (add-both) is correct, or when 
they say the correct answer is too big (since the numerator 
and denominator are both larger than the corresponding 
result of add-both). This error can also occur with the 
Pictures-Only scaffold if students count the number of 
shaded segments instead of comparing the overall sizes of 
the shaded amounts. Figure 12 shows the rate of correct 
responses and three error types (whole number error, other, 
and blank) for all of the addition items by scaffold type. 
Each student had 6 questions, and that many opportunities 
to make this error. Figure 13 shows how many whole-
number errors each student made within each scaffold type. 
For example, 20% of students in the Pictures condition 
made 1 or 2 whole-number errors, while 20% of students in 
 

 
 

Figure 12: Responses to the addition items, by scaffold type. 
 

 
Figure 13: Whole-number errors made by each student, by 

scaffold type. 

the Numbers condition made 5 or 6 whole-number errors.  
The majority of errors are consistent with whole-number 

thinking. These errors are most pronounced with Numbers-
Only, but are mitigated by the diagrams, suggesting that the 
fraction symbols trigger this misconception. Together with 
the Addend-Sum results, mediocre performance on the 
Pictures with Numbers scaffolds (70%) suggests that the 
diagrams do not help some students tap their conceptual, 
qualitative understanding of addition with numbers because 
that qualitative understanding is not fully in place. 
Therefore, combining diagrams with numbers improves 
performance relative to numbers-only, but does not make 
the answers obvious for all students. 
 
Equivalence Foil Results All test forms included questions 
with all foil types: 3 equivalent, 5 same numerator, 2 
squaring, and 2 one-less (19 students only had one). Table 3 
shows scores by foil and scaffold type. An ANOVA on 
percent correct with foil type as a repeated measure and 
scaffold and class level as fixed factors showed a significant 
effect of foil (p<.01) and a significant foil by scaffold 
interaction (p=.023). We then ran ANOVAs for each 
scaffold type separately (individual question score as 
dependent, foil type and class level as fixed factors and 
student as random factor). For Pictures Only and Pictures 
with Numbers, foil type was significant (p<.01) and post-
hoc Tukey tests showed the One-Less foil was different 
from all the others (all p<.02). For Numbers Only, there was 
no significant effect of foil type. 
 
Error Analysis and Discussion Since the three scaffold 
types with pictures had similar results, we combine them for 
the error analysis. For each equivalence foil, the three error 
types are: mistaken for equivalent, wrong direction of 
inequality, and blank. Figure 14 shows the percentage of 
responses for each equivalence foil for scaffolds with 
pictures. Figure 15 shows the same for Numbers Only.  

Without diagrams, all four comparison items are similarly 
difficult, giving no evidence for consistent misconceptions. 
With diagrams, performance is high on all but the One-Less 
foil. The error analysis shows that the most popular 
incorrect response on the One-Less problem is that the 
fractions are equivalent. This error pattern is not repeated 
for the other foil types with pictures or for any foil type with 
numbers only (for numbers only the equivalence error 
occurs at a similar rate in terms of overall responses, but not 
as a percentage of erroneous responses). Perhaps students 
who do not look closely at the pictures are fooled by the 
small (< 3%) size difference of the One-Less pairs. That 
 

Table 3: Percent Correct by Foil and Scaffold. 
 

Scaffold Equivalent Same 
Numerator 

Squaring One 
Less 

Pictures Only .97 .98 .95 .86 
Pics w. Nums .91 .91 .93 .76 
Numbers  .74 .69 .61 .61 



difference is much smaller than the ~7% average difference 
between non-equivalent fractions in the prior study. 
Alternatively, perhaps students noticed the discrepancy and 
decided it did not matter because 1) it was close enough; 
and 2) adding the same number to the numerator and 
denominator seems similar to the correct procedure.  
Although pictures improved performance overall, this result 
is one example of their potential drawbacks: depending on 
their scale they may appear to show untrue relationships, 
and could possibly reinforce misconceptions. 

 

 
 
Figure 14: Responses to foils for all scaffolds with pictures. 
 

 
 

Figure 15: Responses to foil items for Numbers condition 

Conclusion 
Diagrams are thought to aid sense making by helping 
students apply conceptual (often qualitative) reasoning to a 
problem (e.g., which amounts are equal? What operation is 
needed?). This study provides evidence for diagrams’ 
overall sense-making support, but also offers an explanation 
for why students do not always use diagrams effectively: 
they may lack that conceptual, qualitative reasoning that 
diagrams are intended to tap. This prior knowledge (e.g., 
that the sum of two positive addends is larger than each 
addend) may be obvious to adults but not to students. 
Further, students may be able to apply this knowledge in 
some contexts (e.g., with diagrams alone) but not others 
(e.g., the addend-sum items with fraction symbols). These 
findings, that students do not always know how to use 
visual representations, support the IES Practice Guide 

recommendations that students be taught these skills 
explicitly (Woodward et al., 2012). However, the current 
recommended instruction focuses on mapping between a 
story problem and a visual representation, and then the 
visual representation and symbols. The results from this 
study suggest that students may also benefit from instruction 
on what type of qualitative reasoning is relevant to the 
problem, and how to apply that reasoning. 

More generally, it seems more caution is needed in 
applying expert intuitions about sources of support for 
student sense making. While qualitative inferences may 
support sense making with quantitative problems, that 
qualitative reasoning itself may develop slowly through 
quantitative experience. That is, students may not apply the 
general relationships between addends and sums, or 
multiplicands and products, etc., until after they have 
extensive practice with those operations or equations.  
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