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Abstract 

Instruction often employs visual representations to support 
deep understanding. However, students‟ prior misconceptions 
may override the meaning in these scaffolds. We investigate 
fraction bars, a common representation intended to promote 
sense-making. Our prior work found that students often did 
not use the fraction bars effectively. This difficulty factors 
assessment compares four scaffold types: pictures only, two 
forms of pictures with numbers, and numbers only, to assess 
which interpretation steps were difficult.  On equivalence 
items, students performed equally well with all scaffolds that 
included pictures, but worse with the numbers-only scaffold, 
indicating that fraction bars improved scores for equivalence. 
However, including numbers with the pictures decreased 
performance for fraction addition. Although students 
demonstrated competence with fraction bars in fraction 
equivalence, they did not transfer this knowledge to addition. 
These results suggest caution in designing and teaching 
representations for sense-making. 
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Many researchers strive to identify ways to 

support deep understanding, as it is thought to 

promote robust and adaptable learning. One 

strategy has been to use multiple representations, 

particularly ones that connect to students‟ prior 

knowledge and aid sense-making. However, there 

is little data on what representations will make 

sense to the students.  Singapore textbooks and 

the NCTM standards, for example, advocate using 

concrete visual representations in mathematics as 

a bridge to more formal, abstract thinking 

(NCTM, 2013; Leinwand & Ginsburg 2007). But, 

perhaps we should question the benefits of these 

representations (Rittle-Johnson & Koedginer, 

2001; Booth & Koedinger, 2012): Are they 

actually easy entry points for students? 

Our tutors for 5
th
 graders aim to support sense-

making by providing conceptual representations 

as feedback, a strategy that appears effective with 

adults (Mathan & Koedinger, 2005; Nathan, 

1998).  In our fraction-addition tutor interfaces, 

equally-divided rectangles, or fraction bars, 

provide immediate feedback by dynamically 

showing the fractions that students enter 

numerically. We hypothesized that fraction bars 

would be a more intuitive representation than 

symbolic fractions, and having students input 

symbolic fractions and get feedback from fraction 

bars would prompt thinking on how the two 

representations were related. Also, we thought it 

would show students that the common mistake of 

adding both numerators and denominators was 

incorrect. We termed this feedback grounded 

feedback because it was grounded in student‟s 

prior knowledge, and grounded an unfamiliar 

representation (fraction symbols) in a more 

intuitive one (fraction bars). An initial think aloud 

study showed promise. The 5
th

 grade participants 

seemed to understand what the fraction bars 

meant, and used them to find and correct fraction-

addition errors (Stampfer, Long, Aleven, & 

Koedinger, 2011). An experimental study found 

learning benefits with a fraction bar tutor 

(interface in Figure 1) (Stampfer & Koedinger 

2012). This tutor does not indicate explicitly if an 

individual step is right, but students cannot 

advance to the next problem until all steps have 

been solved correctly.  

Although students learned from the tutor 

(improved from pre-test to post-test), process 

measures show incorrect interpretations of the 

fraction bars. Students often indicated they were 

done solving the problems even though the 

fraction bars did not line up. They clicked the 

“done” button on the tutor screen an average of 

about 2.5 times per problem (rather than the one 

necessary click). This finding revealed that one of 

our key assumptions about this form of grounded 

feedback for these students was not fully satisfied.  

It appeared that the fraction bar representations of 

addition were not as meaningful to all students as 

the think-aloud results suggested. Thus, we were 

led to investigate more deeply the cognitive  
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Figure 1: Fraction Addition Tutor. Top row of 

fractions and fraction bars are given, second row 

reflects students‟ inputs, typed in the boxes at the 

bottom. Text hints appear below when requested. 

  

mechanisms required for processing these 

representations and, in particular, to attempt to 

identify the sticking points where student 

processing deviates from expectation. This 

difficulty factors assessment (cf., Koedinger, 

Alibali, & Nathan, 2008) examines how students 

understand fraction bars in the context of the 

fractions they represent; if this process changes 

depending on the topic (addition vs. equivalence); 

and how each processing step affects 

performance.   

Difficulty Factors: Pictures and Numbers 

Using a theoretical cognitive task analysis, we 

identified three likely skills needed to understand 

the fraction bar representations for fraction 

addition: 1) equal areas represent equal amounts; 

2) the rectangular bars represent the symbolic 

fractions written above or below them; 3) if two 

shaded areas are equal, the fractions they 

represent are equal. We developed matched test 

items intended to isolate those skills (Figures 2-5). 

Fraction addition items presented a fully solved 

problem and students indicated whether it was 

solved correctly (true or false). Fraction 

equivalence items presented two fractions and 

students indicated if the first fraction was bigger 

than, equivalent to, or smaller than the second 

fraction. The four question presentations are 

intended to isolate the skills needed to make sense 

of the tutor interface in Figure 1. The pictures 

format (Figure 2) assesses if students know that 

the shaded rectangles use area to represent 

quantity, such that two rectangles with equal-sized  

 
 

Figure 2: Pictures. Does area equal quantity? 

 

 
 

Figure 3: Pictures and Numbers. Are images 

comprehensible as fractions? 

 

 
 

Figure 4: Half Pictures and Numbers. Can 

students map relationships from images to 

symbols? 

 

 
 

Figure 5: Numbers-Only Control. Can students 

evaluate solved problems? 

 



shaded areas represent equal quantities. Pictures-

and-numbers items (Figure 3) include fraction 

symbols with the fraction bars, to test if students 

can understand the fraction bars as representations 

of fractions. Half-pictures-and-numbers items 

(Figure 4) also include both fraction bars and 

fraction symbols, but only presents the fraction 

bars as the hint at the top of the problem. This 

determines if students can find the relationship 

between the two fraction bars, map that 

relationship to the symbolic fractions represented, 

and then select the relationship that the symbolic 

fractions have to each other. Numbers-only 

(Figure 5) provides a baseline for how well 

students can evaluate the equivalence and addition 

problems without fraction bars. Another pair of 

questions gives a baseline for translating a single 

fraction bar to a fraction symbol (e.g., when 

shown a rectangle divided in 5 parts with 3 of 

them shaded, the student should write 3/5). 

Methods and Participants 

155 fifth grade students from a local public school 

participated in this study during their normal 

school day. They were given 20 minutes for a 30-

item assessment. The school tracked these classes, 

with 57 students in the highest track, 61 in the 

middle track and 37 in the lowest track. 

  Each test included 8 equivalence items and 8 

addition items (one correctly solved and one 

incorrectly solved for each scaffold type). All 

addends in these items had unlike denominators.  

The sums in the incorrect addition items followed 

the popular misconception of adding both 

numerators and both denominators. Tests also 

included two single fraction bar items, one with 

numbers for how many pieces were shaded and 

how many total. Item presentations were 

counterbalanced with the specific numbers in the 

problems to avoid confounding. Item order was 

determined randomly and half of the tests were 

given with the order reversed. Questions were 

scored as 1 if correct and 0 otherwise. 

Results: Scaffold Type Affects Performance 

Scores on the single-fraction-bar items were near 

perfect (94% correct). Figure 6 shows the mean 

scores for the equivalence and addition items by  

 
Figure 6: Mean scores (max. 1) on equivalence 

and addition items 

 

scaffold type. Mean scores on the fraction 

equivalence items were high, with 81-83% correct 

for all scaffold types with pictures, and 50% for 

the numbers-only presentation. Equivalence items 

offered three options (bigger, equivalent, or 

smaller) so even the numbers-only score is well 

above 1/3 chance. Mean scores on the fraction 

addition items were lower (21% to 79%). These 

scores steadily decreased as the saliency of the 

numbers increased. Lower-than-chance results 

indicate that instead of guessing randomly on the 

more difficult scaffolds, students answered based 

on a systematic misconception. Blank answers 

were scored as 0 and they could reduce 

performance below the 50% chance rate.  

However, students were no more likely to skip the 

numbers-only addition items than the other 

addition items that included numbers (numbers-

only addition was skipped 13 times, while half-

pictures-and-numbers and pictures-and-numbers 

were skipped 14 times each).  

There is a strong interaction effect between 

question type and scaffold type. We ran an 

ANOVA on the item scores: 3 (class tracking 

level: high, middle, low) x 4 (scaffold type: 

pictures, pictures and numbers, half pictures and 

numbers, numbers only) x 2 (item: equivalence or 

addition) with repeated measures for the scaffold 

type and item. With the Huynh-Feldt correction 

(since sphericity could not be assumed), results 

showed significant within-subjects effects for 

scaffold type and item, and a significant scaffold 
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by item interaction (all p<.0005). Results also 

showed significant between-subjects effects for 

class tracking level, with parameter estimates 

indicating that higher-tracked students got higher 

scores.   

 The patterns in figure 6 suggest that all scaffold 

types with pictures have a similar effect for 

equivalence, but each scaffold type has a different 

effect for addition. To verify these hypotheses 

statistically, we ran separate ANOVAs on each 

tracking level for equivalence and addition scores, 

with scaffold type as a fixed factor and student as 

a random factor. For each of those analyses on the 

equivalence scores, scaffold was significant 

(p<.0005) and post-hoc Tukey tests showed that 

the numbers-only scaffold was significantly 

different from the other three (p<.0005). For each 

of those analysis on the addition scores, scaffold 

was again significant (p<.0005). Tukey tests for 

the middle track show significant differences 

among all scaffold types (p<.01). The lowest track 

did not have significant differences  between half- 

pictures-and-numbers and numbers-only, likely a 

floor effect. The highest track did not have 

significant differences between pictures and 

pictures-and-numbers, likely a ceiling effect. 

Figure 6 also suggests that addition with the 

pictures-only scaffold is no more difficult than 

equivalence with the pictures-only scaffold. To 

test this, we ran an ANOVA on the item scores for 

the pictures-only scaffold: 3 (class tracking level: 

high, middle, low) x 2 (item: equivalence or 

addition) with repeated measures for item. Results 

showed no significant difference for scores on the 

two question types (p = .2 with the Huynh-Feldt 

correction). Subsequent ANOVAs on each of the 

other scaffold types showed significant 

differences for scores on the two question types 

(all p<.0005 with the Huynh-Feldt correction). 

Finally, we examined the effect of spatial 

reasoning on scores. One may hypothesize that 

when pictures are present, students would be more 

accurate when there is a large disparity in the area 

of the quantities being compared. To test this 

hypothesis, we calculated a disparity measure for 

each question where the two fractions were not 

equivalent or the two addends did not equal the 

sum. For the equivalence items, the disparity is 

the absolute value of the first fraction minus the 

second fraction. For the addition items, the 

disparity is the true sum of the addends minus the 

sum in the question. We ran separate ANOVAs 

for each question type, with scaffold type and 

disparity as fixed factors and student ID as a 

random factor. For both addition and equivalence, 

between-subject main effects were significant for 

scaffold type and student ID (p<.0005) but not for 

disparity (p=.141 for addition, p=.888 for 

equivalence), and there was no scaffold*disparity 

interaction (p=.257 for addition, p=.136 for 

equivalence). This indicates that disparity did not 

affect scores, and the effect of disparity did not 

change with scaffold type. Additionally, the 

equivalence questions all had smaller disparities 

than the addition questions (means: .06 for 

equivalence, .39 for addition), yet the equivalence 

questions were as easy or easier, further evidence 

that disparity did not affect scores. 

Discussion: Fraction Bar Skills are Context-Based 

Students were at ceiling for writing the symbolic 

fraction represented by a single fraction bar. 

Students were quite good at comparing two 

fractions and indicating if the first was greater 

than, equivalent to, or smaller than the second. 

Further, scores on these equivalence items were 

equally high for all scaffold types that included 

pictures.  

On the equivalence items, students demonstrate 

competence with the three skills identified in the 

cognitive task analysis: equal areas represent 

equal quantities (pictures), the bars represent 

fractions (pictures and numbers), the relationship 

between the bars maps to the relationship between 

the fractions they represent (half pictures and 

numbers). Students were likely not solving these 

equivalence problems with the numbers alone, 

since numbers-only performance is much lower. 

Surprisingly, these skills are not consistently 

demonstrated with fraction addition. Pictures-only 

scores are just as high with addition as they are 

with equivalence, indicating that the knowledge 

that equal areas represent equal quantities does 

transfer to addition. However, performance 

decreases steadily across pictures-and-numbers 

and half-pictures-and-numbers, suggesting 



difficulty both with understanding the bars in the 

context of fractions and mapping the relationship 

between the fraction bars to the relationship 

between the fraction symbols. Yet, the bars still 

increase performance above the numbers-only 

control (which has worse-than-chance scores).  

We hypothesize that the temptation of the 

incorrect add-both-numerators-and-denominators 

strategy overrides the area-as-quantity reasoning 

that students demonstrate when the numbers are 

not shown. A cognitive-load hypothesis may 

predict that fraction symbols are distracting 

because they visually clutter the problem. In that 

case, scores with half pictures and numbers 

should be higher than pictures and numbers, since 

there is less information and less visual clutter. 

Yet, scores decrease, indicating that performance 

is not correlated with cognitive load.  

Byrnes and Wasik (1991) discuss a theory that 

conceptual knowledge will prevent students from 

making certain procedural errors. In this theory, a 

“self-critic” (our name), evaluates procedural 

outcomes for conceptual errors. For example, if a 

student adds 3/4 and 1/7 and gets 4/11, their  

“self-critic” may reason that 4/11 cannot be right 

because it is less than half while 3/4 is greater. 

With the picture scaffolds, these steps are easier – 

instead of numeric mental operations, students can 

compare the fraction bars. Scores on the 

equivalence and the pictures-only addition items 

demonstrate students‟ skill in comparing fraction 

bars, yet they still seem to not use their “critic” on 

the fraction addition items with numbers.  

Interestingly, Byrnes and Wasik argue against 

the self-critic theory, claiming that conceptual and 

procedural knowledge are not activated 

simultaneously in problem solving. Further, 

conceptual knowledge may precede procedural 

skill, so in some stages of learning conceptual 

knowledge would not be correlated with 

procedural performance. Instead, procedural skills 

improve through proper discrimination and 

generalization. To test these theories, they 

compared three instructional techniques for LCD 

fraction addition. One was procedural, and 

stressed that “you can‟t add fractions the way you 

add ordinary numbers.” The other techniques 

added conceptually-based instruction (one with 

paper fraction bars) to that procedural instruction. 

Results showed that the conceptual methods did 

not improve learning above the purely procedural 

one. These findings suggest that aiding 

discrimination will improve procedural skill, and 

that skill is not enhanced further with brief 

conceptual instruction. These findings and the 

results from the fraction equivalence items 

suggest that students will not benefit from more 

conceptual instruction on fraction bars, even 

though they performed poorly on fraction addition 

items with fraction bars. Instead, they may benefit 

from support for separating whole-number and 

fraction addition. Alternatively, students may 

benefit from practice and support in invoking their 

“self-critic.”  However, these critics may be 

stifled by a misconception unrelated to fractions: 

the meaning of the equals sign.  

McNeil et al. (2006) found that 6
th
-8

th
 grade 

students looking at a problem such as 3 + 4 = 7 

were more likely to interpret the equals sign to 

mean „write answer here‟ than „both sides are 

equivalent.‟ Perhaps this misinterpretation of the 

equals sign in equations with operations interfered 

with students‟ internal “critic” in the addition 

items. Even when the pictures show the sum to be 

smaller than one of the addends, the student may 

not realize that the two sides of the equal sign are 

supposed to be equivalent. A “critic” that 

interprets “=” as „write output of procedure here‟ 

may simply verify that the add-both-numerators-

and-denominators strategy was executed well. In 

other words, the presence of numbers may not 

only prompt over-generalization of whole-number 

addition, but also interfere with students‟ 

interpretation of the equals sign and thus throw 

off the “critic.”  

Conclusion 

These data imply that the usefulness of the 

fraction bar scaffold is dependent on the topic for 

which it is employed, and the specific 

combination of images and numbers. When 

naming fractions represented by individual 

fraction bars and solving equivalence problems 

with fraction bars, students were equally 

proficient whether the numeric symbols were 

present or not. However, for fraction addition, the 



fraction symbols were detrimental. The pictures-

only addition problems may invite reasoning 

based on conceptual understanding (the sum of 

two areas cannot be smaller than either addend), 

while the presence of fraction symbols may invite 

procedural problem solving that is initially 

divorced from the underlying concepts. 

This DFA study suggests that students‟ 

difficulty with dynamic fraction bars in a tutoring 

system was due to the specific addition context.  

More broadly, it suggests caution in the design 

and use of conceptual scaffolds for math 

problems. Students may demonstrate proficiency 

with a scaffold in one domain without being able 

to transfer those skills, even to a closely related 

domain. Procedural misconceptions may override 

the conceptual reasoning these scaffolds attempt 

to induce. Perhaps students need instruction to 

support their “self-critics” in checking procedural 

outcomes against conceptual knowledge. Or, 

perhaps students require certain domain-specific 

knowledge before their “self-critics” are triggered. 

Our future work with fraction bars will explore 

the effect of metacognitive “self-critic” training 

and domain-specific instruction on the meaning of 

the equals sign. 
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