
Building a Comprehensive Neuromorphic Platform
for Remote Computation

William Severa*, Aaron J. Hill,
Craig M. Vineyard, Ryan Dellana,

Leah Reeder, Felix Wang, James B. Aimone
Sandia National Laboratories

Albuquerque, NM, 87123
Email: *wmsever@sandia.gov

Angel Yanguas-Gil
Applied Materials Division

Argonne National Laboratory
Lemont, IL 60439

Abstract—Remote sensing and extreme environments present
a unique and critical algorithm and hardware tradeoff due to
extreme size, weight and power constraints. Consequently, in
many applications, systems favor centralized computation over
remote computation. However, in some real-time systems (e.g. a
Mars rover) latency and other communication bottlenecks force
on-board processing. With traditional processor performance
at a plateau, we look to brain-inspired, non-Von Neumann
neuromorphic architectures to enable future capabilities, such as
event detection/tracking and intelligent decision making. These
cutting-edge hardware platforms generally operate at vastly
improved performance-per-Watt ratios, but have suffered from
niche applications, difficult interfaces, and poor integration with
existing algorithms. In this paper, we discuss methods, motivated
by recent results, to produce a cohesive neuromorphic system
that effectively integrates novel and traditional algorithms for
context-driven remote computation.

Keywords—Deep Learning; Neuromorphic Computing; Re-
mote Computation; Neuromodulation

I. INTRODUCTION

In deployed remote systems, such as satellites, ground
sensors, and aerial systems, on-board computation faces a
distinct challenge of incorporating effective algorithms at
low/ultra-low size, weight and power (SWaP) cost. This ever-
present tradeoff has been helped historically by the exponential
improvement in transistors following Moore’s Law. However,
processor development slowdown and the popularity of com-
putationally intensive deep learning algorithms have motivated
the need for new solutions. Neural-inspired computation looks
to the brain as inspiration for how to structure algorithms
as well as hardware architectures. With morphic meaning
to have the form or structure of, neuromoprhic computer
architectures strive to mimic neuron function, circuitry, and
computation of the brain to offer state-of-the-art performance

DISTRIBUTION STATEMENT A. Approved for public release: distribu-
tion is unlimited. Approval ID: SAND2019-0257 C

Sandia National Laboratories is a multi-mission laboratory managed and
operated by National Technology and Engineering Solutions of Sandia, LLC,
a wholly owned subsidiary of Honeywell International, Inc., for the U.S.
Department of Energy’s National Nuclear Security Administration under
contract DE-NA0003525.

This paper describes technical results and analysis. Any subjective views
or opinions that might be expressed in the paper do not necessarily represent
the views of the U.S. Department of Energy or the United States Government.

at milliwatt scale [1], [2], even while using conventional
CMOS technology. We envision these technologies will enable
high levels of computation at the sensor (Fig. 1). In practice
these platforms have faced a number of critical challenges
(algorithm compatibility, programming interfaces, at-scale pro-
duction), but fortunately recent developments we discuss here
have begun to work past these difficulties.

The remainder of the paper is structured as follows. We
explore recent efforts in porting algorithms, both traditional
data processing and deep learning algorithms, to neuromorphic
platforms in Section II. We then discuss the use of context
modulation for flexible, efficient deep learning networks in
Section III. Benchmarks and forecasts for performance of var-
ious neuromorphic platforms are included in Section IV. We
briefly describe the growing field of neural-inspired sensors in
Section V. Finally, we provide some concluding observations
and remarks in Section VI.

II. PORTING ALGORITHMS TO NEUROMORPHIC
PLATFORMS

In many application spaces, tried-and-tested classical non-
learning algorithms are verified and well-understood, provid-
ing a strong level of assurance. For a neuromorphic platform
to compete, it must be able to implement the functionality of
these classical algorithms as well as the emerging state-of-the-
art seen in deep learning.

Neural-inspired computing frameworks have largely focused
on learning based algorithms and it has been difficult to
perceive how neural networks could implement classical non-
learning methods. However, the field is beginning to approach
neurons as highly parallel, simple processors [3], and similar
approaches have led to a systematic methodology to create
neuromorphic-compatible classical algorithms in a variety of
fields [4]–[6]. Using these methods we can build composite
algorithms for neural hardware from baseline kernels such
as cross-correlation [3], matrix multiplication [7], or min,
max, and sorting [8]. Additionally, random walks [9] can
be conducted using neural algorithms with efficient spike
representations of the walkers. The simple schematic for this
algorithm can either model each particle’s location individ-
ually, or model each node in a graph and track the number

155



Fig. 1. Neuromorphic processors can enable ultra-low power computation at the sensor by using event-driven spiking processing. This allows advanced
data, signal, and image processing in remote environments (space, underwater, aerial, etc.) while requiring lower energy and bandwidth costs. By combining
processing and memory (via neurons) into a homogenous platform, neural systems can overcome the von Neumann communications bottleneck seen in
traditional processors.

of particles at that location. This neural algorithm [9] can
then be used in any random walk application space, such as
image analysis and graph processing, with the added benefits
of using neuromorphic architectures. And we remark that
while for some individual kernels neuromorphic computing
may not offer a substantial benefit over conventional systems,
representing the entire computation as a neural algorithm may
yield substantial overall application benefits by avoiding the
transitions between conventional and neuromorphic hardware.

Implementing deep learning on neuromorphic poses a differ-
ent challenge. The vast majority of deep learning frameworks
do not operate on discrete spike-like communication that neu-
romorphic architectures provide. This creates difficulty when
seeking to implement existing deep networks on neuromor-
phic hardware, requiring custom learning frameworks tuned
to the specific underlying hardware [10]. However, recently
developed methods allow for an easy transition from existing
learning frameworks to neuromorphic hardware [11], [12].
Utilizing the Whetstone method in [11] produced classification

accuracy results on MNIST [13] and CIFAR-10 [14] of 99.5%
and 88.0%, respectively.

III. CONTEXT-SENSITIVE DEEP LEARNING

Neuromorphic processors, such as IBM’s TrueNorth and In-
tel’s Loihi, can perform deep learning tasks at extremely low-
power consumption [15]–[17]. In practice, applications are
rarely single-task jobs. More commonly, applications require a
combination of subtasks (e.g. event detection and navigation)
to integrate towards an overall goal, and having a separate
accelerator or special-purpose component for each subtask is
not feasible. Instead, if a neuromorphic architecture is included
in the design of a system, the neuromorphic chip must have
the flexibility to perform many different tasks, preferably
without being reprogrammed. This flexibility is something
biological systems exhibit in nearly all situations [18], and
recent work suggests that artificial neural networks can be
designed to be as flexible. By incorporating neuromodulation
(the idea that diffuse, network-wide inputs can adjust behav-
ior), deep learning networks can exhibit context-dependent

156



behavior [19]. Similar mechanisms have also been shown to
adjust behaviors according to weighted goals [20]. Recently,
we have implemented neuromodulation to perform context-
dependent tasking. For example, we train a single network to
operate under two separate contexts (‘detect cars’ or ‘detect
people’), and then in the testing phase, we can alternate
between these two modes of operation without adjusting the
network.

In addition to flexibility, another key motivation for incorpo-
rating context in a deep learning network is to make more ef-
ficient use of computational resources. In general, lower-level
functionality (e.g. convolution kernels and simple features)
may be readily shared across distinct higher-level functionality
(e.g. recognizing different classes). A prime example of this is
to use pre-trained networks to facilitate transfer learning (e.g.
VGG, GloVe) [21]. For our goal of enabling a singular network
to perform well under different contexts or modes of operation,
we supplement the training process by providing a context
signal to the network through a parallel pathway. This context
information subsequently affects downstream processing.

We demonstrate this capability by training a network to
perform superclass exclusion, where different classes to be
learned may be hierarchically categorized into superclasess.
As a result, lower level features that contribute to a classi-
fication are mapped differently depending on knowledge of
a superclass. Here, we also find that when the superclass
of the input was made available as a context signal, we
were able to improve the performance of the network. In
experiments training on the CIFAR-100 (images, [22]) and
20 Newsgroups (text, [14]) datasets, we achieved an increase
in classification accuracy when the networks were provided
with context-dependent bias. Specifically, we saw an increase
in classification accuracy of 24% from a baseline of 44% to
68% on the CIFAR-100 dataset, and an increase of 18% from
50% to 68% on the 20 Newsgroups dataset.

Related to classification, a more sophisticated approach is to
train a network to detect multiple classes in different modes of
operation. That is, instead of the output of the network taking
on one out of several classes, we have the network output take
a binary decision on whether a class has been detected (e.g. in
an image). Here, we use the CIFAR-10 dataset (images) and
use the provided context signal to switch operation between
the detection of different classes. Experimentally, we achieved
high detection accuracy (target class vs. non-target classes)
for each target class. Across the board, we saw detection
accuracies above 90%, with the highest at 97% (for horses),
all within the same network.

IV. PROGRAMMING AND PERFORMANCE OF
NEUROMORPHIC HARDWARE

When designing neural algorithms it is easiest to assume an
unconstrained neural fabric with no limitations to neuron count
or connectivity. In practice this is not true and the constraints
are unique to the underlying hardware. With the vast variety
of different neuromorphic hardware available, a vast variety of
programming interfaces and constraints follow. For instance,

IBM’s TrueNorth architecture builds its programming inter-
face on MATLAB [25], while SpiNNaker builds its interface
on Python utilizing the PyNN module [26]. Further, each
architecture has its own unique constraints on neuron count
and connectivity, while a true neural algorithm is agnostic
to these constraints. Thus, it is the algorithm implementors
task to dissect the neural algorithm in a way that will fit
into the underlying hardware constraints and conform to the
programming language provided. For example, TrueNorth only
allows a single neuron to connect to 256 other neurons which
must all exist on the same core. What if the algorithm requires
a neuron to connect to 1000 other neurons across multiple
cores? There are certainly ways to achieve the result necessary,
but it requires careful understanding of the hardware and
timing dynamics of the algorithm. SpiNNaker is unique in
that it does not constrain connectivity, however there are
underlying memory constraints that do limit the number of
connections possible in an unpredictable way.

Figure 2 depicts how several prominent neuromorphic ar-
chitectures have balanced architectural tradeoffs (right) as
well as captures trends in performance for various computa-
tional architectures (left). For the performance measure, we
benchmarked using similar networks and data adapated to
benefit each platform. Since performance can vary drastically
according to, among other things, network design and input
dimensionality, reported numbers are linearly normalized to a
1024 = 32×32 pixel image. Included are the STPU [27], Intel
Neural Compute Stick, IBM TrueNorth [15], and SpiNNaker
(48-node board) [28]. We have forecasted performance for
the SpiNNaker 2 platform [29] and adapted results from
literature for Intel Loihi (single chip) [30]. The networks
run on SpiNNaker were trained using Whetstone [11]; the
networks for TrueNorth used EEDN [10].

V. NEUROMORPHIC SENSING

Not only can composing and computing an entire problem
via a neural approach provide benefit, but the means by
which input data is collected and presented to a neuromor-
phic processor can significantly impact the performance of a
comprehensive system. Using neurons as the computational
medium, inputs need to be formatted in a representation that
neural networks can work with. This might entail adequate
precision or how the data is represented. Spiking neuromorphic
approaches communicate with a single bit, corresponding to
when a neuron exceeds threshold and fires, and may include
a temporal component to the representation. Transduction is a
step employed by some approaches to convert an input signal
into a spiking equivalent. This conversion process is non-
trivial, impacting the net computation. Alternatively, directly
collecting or generating data in a neural-inspired manner can
alleviate the conversion step and provide other computational
advantages. For example, the Dynamic Vision Sensor takes
inspiration from the retina and performs change detection at
the photo detector only transmitting changes in an observed
scene [31], [32]. Effectively, this approach provides high-
speed data transmission while natively providing spiking in-

157



Fig. 2. The landscape of neuromorphic processors exhibits a wide variety of design tradeoffs. However, a key differentiator from traditional processing
methods is an improvement in effective performance-per-Watt. Left: A chart showing benchmark deep learning performance of various neuromorphic and
reference platforms. Right: The design considerations of each neural platform provides interesting tradeoffs that affect scale, energy per operation, total energy
and flexibility (fan-in) [23], [24]. These design choices impact the suitability of applications appropriate for each platform.

puts a subsequent neuromorphic processor can operate upon
and has been used for a number of applications including
embedded gesture recognition and tracking [17], [33].

VI. CONCLUSION AND DISCUSSION

Consequently, while deep neural networks have risen to
prominence in many computational domains, classic archi-
tectures such as CPUs and GPUs are either not ideally
suited for their execution or require large computational costs
making their usage prohibitive in resource constrained envi-
ronments. Alternatively by developing both algorithms and
architectures taking inspiration from the brain these advances
together can enable comprehensive neuromorphic platforms
which can build upon neuroscience inspired principles such as
parallelism, sparse event-driven computation, and simplicity
of computational units with complex connectivity. In effect,
comprehensive neuromorphic platforms provide a path for-
wards for enabling sophisticated remote sensing in extreme
environments while operating within size, weight, and power
constraints.

REFERENCES

[1] C. D. Schuman, T. E. Potok, R. M. Patton, J. D. Birdwell, M. E. Dean,
G. S. Rose, and J. S. Plank, “A survey of neuromorphic computing and
neural networks in hardware,” arXiv preprint arXiv:1705.06963, 2017.

[2] E. Neftci, “Data and power efficient intelligence with neuromorphic
learning machines,” iScience, 2018.

[3] W. Severa, O. Parekh, K. D. Carlson, C. D. James, and J. B. Aimone,
“Spiking network algorithms for scientific computing,” in Rebooting
Computing (ICRC), IEEE International Conference on. IEEE, 2016,
pp. 1–8.

[4] J. B. Aimone, O. Parekh, and W. Severa, “Neural computing for
scientific computing applications: more than just machine learning,” in
NCS, 2017.

[5] X. Lagorce and R. Benosman, “Stick: spike time interval computational
kernel, a framework for general purpose computation using neurons,
precise timing, delays, and synchrony,” Neural computation, vol. 27,
no. 11, pp. 2261–2317, 2015.

[6] J. V. Monaco and M. M. Vindiola, “Integer factorization with a
neuromorphic sieve,” in Circuits and Systems (ISCAS), 2017 IEEE
International Symposium on. IEEE, 2017, pp. 1–4.

[7] O. Parekh, C. A. Phillips, C. D. James, and J. B. Aimone, “Constant-
depth and subcubic-size threshold circuits for matrix multiplication,” in
Proceedings of the 30th on Symposium on Parallelism in Algorithms
and Architectures. ACM, 2018, pp. 67–76.

[8] S. J. Verzi, F. Rothganger, O. D. Parekh, T.-T. Quach, N. E. Miner, C. M.
Vineyard, C. D. James, and J. B. Aimone, “Computing with spikes: The
advantage of fine-grained timing,” Neural computation, pp. 1–31, 2018.

[9] W. Severa, R. Lehoucq, O. Parekh, and J. B. Aimone, “Spiking neural
algorithms for markov process random walk,” in International Joint
Conference on Neural Networks 2018. IEEE, 2018.

[10] S. Esser, P. Merolla, J. Arthur, A. Cassidy, R. Appuswamy, A. An-
dreopoulos, D. Berg, J. McKinstry, T. Melano, D. Barch et al., “Con-
volutional networks for fast, energy-efficient neuromorphic computing.
2016,” Preprint on ArXiv. http://arxiv. org/abs/1603.08270. Accessed,
vol. 27, 2016.

[11] W. Severa, C. M. Vineyard, R. Dellana, S. J. Verzi, and J. B. Aimone,
“Training deep neural networks for binary communication with the
whetstone method,” Nature: Machine Intelligence, In Press.

[12] E. Hunsberger and C. Eliasmith, “Training spiking deep networks for
neuromorphic hardware,” arXiv preprint arXiv:1611.05141, 2016.

[13] Y. LeCun, C. Cortes, and C. Burges, “Mnist handwritten digit database,”
AT&T Labs [Online]. Available: http://yann. lecun. com/exdb/mnist,
vol. 2, 2010.

[14] K. Lang, “Newsweeder: Learning to filter netnews,” in Machine Learn-
ing Proceedings 1995. Elsevier, 1995, pp. 331–339.

[15] P. A. Merolla, J. V. Arthur, R. Alvarez-Icaza, A. S. Cassidy, J. Sawada,
F. Akopyan, B. L. Jackson, N. Imam, C. Guo, Y. Nakamura et al., “A
million spiking-neuron integrated circuit with a scalable communication
network and interface,” Science, vol. 345, no. 6197, pp. 668–673, 2014.

[16] M. Davies, N. Srinivasa, T.-H. Lin, G. Chinya, Y. Cao, S. H. Choday,
G. Dimou, P. Joshi, N. Imam, S. Jain et al., “Loihi: A neuromorphic
manycore processor with on-chip learning,” IEEE Micro, vol. 38, no. 1,
pp. 82–99, 2018.

[17] A. Amir, B. Taba, D. J. Berg, T. Melano, J. L. McKinstry, C. Di Nolfo,
T. K. Nayak, A. Andreopoulos, G. Garreau, M. Mendoza et al., “A low
power, fully event-based gesture recognition system.” in CVPR, 2017,
pp. 7388–7397.

[18] V. Mante, D. Sussillo, K. V. Shenoy, and W. T. Newsome, “Context-
dependent computation by recurrent dynamics in prefrontal cortex,”
nature, vol. 503, no. 7474, p. 78, 2013.

[19] J. B. Aimone and W. M. Severa, “Context-modulation of hip-
pocampal dynamics and deep convolutional networks,” arXiv preprint
arXiv:1711.09876, 2017.

[20] A. Dosovitskiy and V. Koltun, “Learning to act by predicting the future,”
arXiv preprint arXiv:1611.01779, 2016.

[21] J. Yosinski, J. Clune, Y. Bengio, and H. Lipson, “How transferable are
features in deep neural networks?” in Advances in neural information
processing systems, 2014, pp. 3320–3328.

158



[22] A. Krizhevsky and G. Hinton, “Learning multiple layers of features from
tiny images,” Citeseer, Tech. Rep., 2009.

[23] C. S. Thakur, J. Molin, G. Cauwenberghs, G. Indiveri, K. Kumar,
N. Qiao, J. Schemmel, R. Wang, E. Chicca, J. O. Hasler et al., “Large-
scale neuromorphic spiking array processors: A quest to mimic the
brain,” arXiv preprint arXiv:1805.08932, 2018.

[24] S. Furber, “Large-scale neuromorphic computing systems,” Journal of
neural engineering, vol. 13, no. 5, p. 051001, 2016.

[25] A. Amir, P. Datta, W. P. Risk, A. S. Cassidy, J. A. Kusnitz, S. K.
Esser, A. Andreopoulos, T. M. Wong, M. Flickner, R. Alvarez-Icaza
et al., “Cognitive computing programming paradigm: a corelet language
for composing networks of neurosynaptic cores,” in Neural Networks
(IJCNN), The 2013 International Joint Conference on. IEEE, 2013,
pp. 1–10.

[26] A. P. Davison, D. Brüderle, J. M. Eppler, J. Kremkow, E. Muller,
D. Pecevski, L. Perrinet, and P. Yger, “Pynn: a common interface for
neuronal network simulators,” Frontiers in neuroinformatics, vol. 2,
p. 11, 2009.

[27] A. J. Hill, J. W. Donaldson, F. H. Rothganger, C. M. Vineyard, D. R.
Follet, P. L. Follett, M. R. Smith, S. J. Verzi, W. Severa, F. Wang, J. B.
Aimone, J. H. Naegle, and C. D. James, “A spike-timing neuromor-
phic processor,” in Proceedings of the IEEE Conference on Rebooting
Computing, 2017.

[28] S. B. Furber, D. R. Lester, L. A. Plana, J. D. Garside, E. Painkras,
S. Temple, and A. D. Brown, “Overview of the spinnaker system
architecture,” IEEE Transactions on Computers, vol. 62, no. 12, pp.
2454–2467, 2013.

[29] C. Liu, G. Bellec, B. Vogginger, D. Kappel, J. Partzsch, F. Neumärker,
S. Höppner, W. Maass, S. B. Furber, R. Legenstein et al., “Memory-
efficient deep learning on a spinnaker 2 prototype,” Frontiers in neuro-
science, vol. 12, 2018.

[30] P. Blouw, X. Choo, E. Hunsberger, and C. Eliasmith, “Benchmarking
keyword spotting efficiency on neuromorphic hardware,” arXiv preprint
arXiv:1812.01739, 2018.

[31] T. Delbrück, B. Linares-Barranco, E. Culurciello, and C. Posch,
“Activity-driven, event-based vision sensors,” in Circuits and Systems
(ISCAS), Proceedings of 2010 IEEE International Symposium on. IEEE,
2010, pp. 2426–2429.

[32] T. Serrano-Gotarredona and B. Linares-Barranco, “A 128× 128 1.5%
contrast sensitivity 0.9% fpn 3 µs latency 4 mw asynchronous frame-free
dynamic vision sensor using transimpedance preamplifiers.” J. Solid-
State Circuits, vol. 48, no. 3, pp. 827–838, 2013.

[33] D. Drazen, P. Lichtsteiner, P. Häfliger, T. Delbrück, and A. Jensen,
“Toward real-time particle tracking using an event-based dynamic vision
sensor,” Experiments in Fluids, vol. 51, no. 5, p. 1465, 2011.

159




