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Abstract

Security-critical user applications routinely run within commodity devices, such
as laptops and smartphones. The trusted computing base of these applications
includes the devices’ underlying system software (operating system, hypervisor
and firmware), which is large, complex, and vulnerable to compromise. To
mitigate this risk, Trusted Execution Environments, TEEs, offer a security
primitive which protects the confidentiality and integrity of user applications’
code and data, against a powerful adversary who controls the device’s system
software. While different realizations of TEEs are commonly deployed within
today’s devices, user applications do not make use of their services. Instead,
TEEs are heavily used by few premium Service Providers, SPs, such as original
equipment manufacturers. In fact, TEEs have been primarily designed to meet
the requirements of such premium SPs, and have consequently underpriortized
the needs of end-users and application developers. As a result, TEEs lack
important features, such as open provisioning and trusted input channels.
The aim of this PhD project has been to investigate how available commodity
TEEs can be used as primitives to build systems which meet the requirements
of end-users and application developers. This work focuses on online user au-
thentication, as it is a core component of numerous security-critical applications.
As a starting point, we study the different modalities and protocols of user
authentication. First, we conduct a usability study that explores the behaviour
of IT professionals regarding password-based authentication. Second, we analyse
the trust requirements of FIDO (Fast Identity Online), as an example of strong
multi-factor-authentication protocols, and discuss its new distributed trust model.
We then note that irrespective of the deployed authentication protocol, all au-
thentication client applications are security-critical, and can benefit from TEEs.
Therefore, we design, implement and evaluate TrustUI, a solution which enables
secure end-to-end input and output channels from end-users to online service
providers. TrustUI uses two TEE primitives which are system management
mode, and personal security devices that are based on secure elements. Finally,
we present SMMDecoy, a new architecture for detecting firmware keyloggers
that can compromise the confidentiality of the keyboard’s user interface. We use
system management mode and Intel SGX as TEE primitives.
This thesis makes multiple contributions to the fields of user authentication and
system security. The presented solutions can be generalized to other security-
critical user applications, and can be practically deployed to today’s off-the-shelf
devices.
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Chapter 1

Introduction

1.1 Motivation

Commodity computing devices, such as laptops and smartphones, are an essential
part of today’s society. We routinely rely on them for both our professional and
personal lives. Furthermore, many of the client applications they run are security-
critical. Noteworthy examples are applications that support user authentication,
online banking and e-government services.

This work focuses on online user authentication as a core component of such
security-critical client applications. Authentication is indeed a fundamental part
of today’s digital experience. It allows us to ascertain our digital identities to
various online service providers, and then gain access to their services. NIST
(National Institute of Standards and Technology) formally defines authentication
as ”the verification of the identity of a user, process, or device, often as a
prerequisite to allowing access to resources in an information system” [88].

To achieve this goal, several authentication modalities have been developed
over the years. Notable examples are passwords, verification codes through
SMS, and fingerprint recognition. NIST refers to these modalities as factors,
and classifies them into 3 categories: possession, knowledge and ownership [88].
From a historic perspective, online authentication protocols initially relied on
passwords as a single factor. While passwords are to this day the most widely
deployed modality, their weaknesses are also well recognized. Users routinely
use weak passwords, reuse them across different services, and resort to insecure
storage methods to remember them [17].

Therefore, two-factor authentication, 2FA, emerged as a natural progression.
Before its adoption online, 2FA was successfully utilized by the banking sector
for the authentication of its consumers to ATM machines. It used smart cards
as a possession factor, and passwords/PINs as a knowledge factor. However,
smart cards are not a suitable second factor for online user authentication
applications. On the one hand, it is costly and infeasible for online service
providers to distribute them to their large base of dynamic users. On the other
hand, end-users would quickly become overwhelmed by the large number of
smart cards they would need to manage. Therefore, online authentication found
a more appropriate second factor, which is the phone: most users possess one,
and they often keep it by their side. To authenticate, the online service provider
sends a one-time-password to the user’s mobile phone via SMS or a mobile
application, which the user then enters into the login form along with the rest of
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1. Introduction

their credentials. As alternative authentication modalities, such as biometrics,
became more mature, Multi-Factor Authentication (MFA) was proposed [69].
In 2005, the United States’ Federal Financial Institutions Examination Council
officially recommended its use for services requiring high assurance levels [90].

However, the successful adoption of these strong alternative authentication
protocols was hindered by the lack of their interoperability: Every modality
is implemented differently at the client side, and requires its own server-side
technology [123]. Such a fragmented authentication ecosystem clearly overwhelms
online service providers, and leaves them with the daunting task of navigating
such a complexity, deploying the chosen authentication solution, and maintaining
it at both the client and server sides.

Fast Identity Online, FIDO, is an industry standardization consortium which
was formed in 2012, with the aim to solve the passwords problem and the MFA
silos, through a set of device-centric protocols. FIDO proposes to split online user
authentication into two phases: first, users authenticate themselves locally to a
FIDO authenticator, using the modality of their choice. Then the authenticator
authenticates itself on behalf of the user to the online service provider, using a
standard challenge-response protocol [123] [36].

1.1.1 The Need For Trustworthy Platforms

Irrespective of the chosen authentication modality, all client applications for user
authentication are security-sensitive. Therefore, application developers invest
considerable effort to design and implement secure client applications that are
free from software vulnerabilities, such as buffer overflows.

While such efforts are essential, they are insufficient. The Trusted Computing
Base, TCB, of authentication applications is large and complex: It includes the
platform’s underlying system software, which when compromised, systematically
threatens the security of all user-level applications. Within this context, system
software is defined as to include the operating system, virtual machine manager
and all the platforms’ firmware embedded within, that run in CPU protection ring
0 and below. User-level software refers to third party-developed user applications
running in CPU-ring 3 [56].

To put it differently, it matters little if a user chooses a perfectly strong unique
password, when their operating system is infected with a keylogger leaking it
to malicious third-parties [110]. Similarly, it matters little if a user relies on a
passwordless MFA FIDO protocol, when firmware-resident malware is able to
directly access the system’s memory and steal its FIDO private keys. [92].

So why does the security of user authentication applications depend on
the security of its underlying system software? The reason is the hierarchical
architecture of commodity devices: privileged system software gets unrestricted
access to all the resources of unprivileged user-level applications, because it
controls its execution, memory, and access to the underlying hardware. In fact,
CPUs originally implemented 4 protections rings (0-4), where ring 1 was intended
for the kernel, ring 1 & 2 for the OS drivers, and ring 3 for user applications.
Within this hierarchy, a process running in a specific ring has full access to code
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Motivation

and data of all processes running in the rings above. For performance reasons,
OS vendors decided to run all OS modules, including its extensions and drivers
in ring 0, user applications still run in ring 3, whereas ring 1 and 2 are not
used. With the introduction of virtualization, it was necessary to create an even
more privileged execution mode than the kernel ring, that is often referred to as
ring -1. This design is used within both the Intel X86 and ARM architectures.
Throughout this thesis, we adhere to the Intel terminology in order to maintain
consistency.

Within such a hierarchical architecture, user-level applications have to trust
that the million lines of code of the platforms’ system software, which has been
implemented by hundreds of developers over several decades, are completely
free from vulnerabilities and backdoors. This is a strong trust assumption.
Unfortunately, evidence shows that commodity system software is not secure
and thereby not trustworthy. A non-exhaustive explanation of this assessment
can be articulated as follows:

• Commodity operating systems:

– The Large Code Base: Linux 3.6 was comprised of around 16 million
Lines of Code (LOC) [83], while Windows 10 is estimated to be around
50 million LOC [49] . Such a code bloat can be attributed to the need
to maintain backward compatibility, as well as running device drivers
within the same privilege rings as the OS kernel, even though they
do not need all the capabilities that the kernel level provides. This
large code base makes the proper testing of operating systems and
their formal verification daunting, if not impossible [26].
As a result, it is estimated that for every 1000 lines of code of com-
modity monolithic operating systems, there exists between 16 to 75
bugs [95]. Furthermore, device drivers which make up around 75% of
the OS’s code base, contain 3 to 7 times higher rates of bugs than
mature kernel code [15].

– Unsafe languages: Programming languages such as C are commonly
used for implementing commodity operating systems. However they
are notoriously prone to security-critical errors such as buffer overflows,
uninitialized pointers and integer overflows [64].

• Commodity firmware: As with operating systems, firmware is also prone
to vulnerabilities caused by the use of unsafe languages, and the increased
complexity of devices’ functionalities. However, firmware malware is often
more difficult to detect, because CPU-based defence mechanisms cannot
monitor code residing within the execution environments of other com-
ponents. Furthermore, recent years have witnessed an increasing ease
of deploying firmware malware. This is especially true for devices such
as the GPU (Graphical Professing Unit), which have become open to
general-purpose computations [71]. Once a malware successfully infects a
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1. Introduction

platform’s firmware, it can use its DMA (Direct Memory Access) capabili-
ties to directly read and leak the system’s memory [78].

Over the years, attackers have successfully exploited numerous system level
vulnerabilities [22] [21] [23] [24], and there is no reason to believe that this trend
will change any time soon.

1.1.2 The Need for Isolated Trustworthy Execution Environments

The hierarchical architecture of commodity platforms and the insecurity of their
privileged system software, make it evident that such an execution environment is
unfit for running security-sensitive applications. We name it the general-purpose
or rich execution environment, REE [107].

A natural solution to this problem would be to design and deploy more
secure commodity system software. While there are some ongoing projects
working towards this goal, such as Qubes OS [4] and Coreboot [19], the reality is
that currently deployed system software will not be displaced in the foreseeable
future, due to two main reasons. First, there exists a large number of already
deployed devices which have strong backward compatibility requirements, and
have billions invested in their ecosystems [26]. Second, it is simply difficult
to design and implement secure system software, in the face of a constantly
changing threat environment, which has become clearly evident during the recent
meltdown/spectre vulnerability disclosures [77].

An alternative solution is to run the security-sensitive subset of an application
within a separate Trusted Execution Environments, TEE, that is isolated from
the rich execution environment where the untrusted commodity system software
runs. Such TEEs often have a limited set of resources and capabilities.

Generally speaking, isolation between the TEE and the rest of the platform
can be enforced either in software or hardware. However, software solutions such
as the ones based on hypervisors are undesirable, because they include untrusted
system software in their TCB. Therefore, this thesis focuses on hardware-based
trusted execution environments, because they provide stronger security guaran-
tees: they can resist software-based attacks and even be resilient, to a certain
degree, against physical tampering [30].

The idea of relying on hardware isolation to create a TEE with better security
guarantees is not a new one. Over the years, different ways to realize hardware
TEEs have been developed.

• Secure Elements (SE): These are special-purpose implementations of the
traditional smart card. They are designed around a dedicated embedded
micro-controller, a set of registers and system memory. Therefore, they
can securely execute general-purpose applications, commonly referred to
as applets, without interference from the host platform’s untrusted system
software. SEs can be implemented in two ways [86]:
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1. A discrete hardware module outside the platform’s main core. Such
SEs are removable and can take two form factors: a Universal Inte-
grated Circuit Card (UICC), commonly known as a SIM card, or a
microSD card.

2. An embedded hardware module attached to the platform’s moth-
erboard or integrated with its NFC chip, and sharing some of the
main system resources such as the memory buses. We refer to such
implementations as Embedded Secure Elements, eSE [58].

• Processor Secure Environment: The platform’s main processor core can
implement several virtual cores which are logically isolated from each other,
and can securely multiplex their execution within the same host [62]. Re-
cent Intel X86 platforms implement one variant of this architecture, called
Intel Security Guard Extensions (SGX). SGX allows ring- 3 applications
to control their security by instantiating hardware TEEs, referred to as
enclaves, within their own process address space [20]. Enclaves can then
securely run the application’s security-sensitive code and data, because
they isolate it from all other untrusted software running within the palt-
form platform, which inludes the operating system, the virtual machine
manager, all the platform’s firmware, as well as the other unprivileged
applications and enclaves. ARM platforms also implement their own vari-
ant of this configuration, named ARM TrustZone. When the new special
Secure Monitor Call instruction (SMC) is executed, the processor securely
transitions from the untrusted rich execution environment into the trusted
one.

• System Management Mode (SMM): This is a highly privileged X86 CPU
mode. SMM code is part of the BIOS that resides on the SPI flash memory.
During the system boot-up, and before the operating system is loaded, the
BIOS loads SMM into a hardware protected memory area called SMRAM,
that is not addressable from any other CPU mode, including the kernel
and VMX modes (Virtual Machine Extensions) [78].

• Trusted Platform Modules: TPMs are non-programmable security modules,
often implemented as discrete micro-controller chips attached to the moth-
erboard. They expose a number of APIs that can be called by the system
software as well as user applications. These APIs securely implement
services such as, cryptographic operations, integrity measurements, sealing
and attestation [122].

Today’s commodity platforms come already equipped with several of the
above described hardware TEEs. For instance, a commodity laptop typically
includes a TPM, an embedded secure element, a slot for one or more removable
secure elements, a system management mode, and more recently, a CPU based-
TEE such as Intel SGX. Similarly, a smart mobile phone typically includes a
SIM card, an SD card, one or more embedded secure elements, and ARMTrust
Zone [139].
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1.2 Problem Statement

Hardware TEEs are abundantly deployed within today’s commodity computing
devices, and the idea of using them for hardening user-level applications security
is already well-established. Therefore, it is reasonable to assume that security-
sensitive user-level applications should be leveraging TEE functionalities to
protect the integrity and confidentiality of their code and data. Unfortunately,
this is not the case. User applications still rely on the default software-based
protection mechanisms provided by the untrusted commodity system software.
Commodity TEEs are instead extensively used by a handful of stakeholders:
Original Equipment Manufacturers (OEMs), Mobile Network Operators (MNOs),
and operating system vendors. These premium stakeholders use TEEs to protect
their assets from being compromised by the platform’s system software and
end-users. For instance, MNOs use SIM cards to implement carrier locking,
while OEMs use embedded secure elements and TPMs for Boot-loader locking
and DRM (Digital Rights Management) [30].

The explanation behind this seemingly paradoxical situation, is the fact that
commodity hardware TEEs have initially been designed to primarily satisfy
the security requirements for those select few premium stakeholders. They
have thus underprioritized the requirements for end-users and other application
developers. For instance, embedded secure elements do not support user input
trusted channels, because OEMs do not require end-user interaction to run their
boot-loader locking and DRM use cases. Furthermore, most TEE’s operate
within a closed provisioning ecosystem, where no third-party code is allowed to
run, without a prior business partnership with one of the premium stakeholders
[8] [133].

1.3 Thesis Aim and Research Questions

There exist fundamental gaps between the security requirements for online user
authentication developers and end users, and the functionalities offered by com-
modity hardware TEEs. Therefore, we define the main goal of this thesis as
follows:

We aim to use available commodity hardware TEEs as primitives to
build systems which meet the specific security requirements for on-
line user authentication developers and end-users.

To achieve this goal, we define the following four research questions:

• RQ1. What are the failings of current password-based and strong online
authentication solutions?

• RQ2. How can we leverage commodity hardware TEEs to provide iso-
lated execution and secure end-to-end input channels between
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online user authentication client-applications and end-users, even within a
compromised platform?

• RQ3. How can we leverage commodity hardware TEEs to provide secure
end-to-end output channels between online user authentication client-
applications and end-users, even within compromised platforms?

• RQ4. How can we leverage commodity hardware TEEs to detect com-
promise of commodity input channels?

1.4 Approach and Research Method

In order to answer the research questions of the thesis, we use the following
research approach:

1. We investigate the existing online user authentication modalities and
protocols, study their limitations, and provide a set of their security
requirements.

2. We study the currently deployed commodity TEEs, and provide a system-
atic analysis of the security properties they offer to end-user applications.

3. We perform a gap analysis study between the security requirements of
online user authentication applications and the security properties provided
by TEEs.

4. We design, implement and evaluate solutions which address a subset of
the identified gaps:

• Part I of TrustUI provides isolated execution for online user appli-
cations, as well trusted input channels between end-users and their
service providers, even in the presence of a malicious system software.

• Part II of TrustUI provides trusted end-to-end output channels be-
tween end-users and their online service providers, even in the presence
of a malicious system software.

• SMMdecoy addresses the challenge of detecting stealthy firmware-level
malware which can compromise the confidentiality of the keyboard’s
user interface.

1.5 Structure of the Thesis

This work is written in the form of a cumulative thesis, compiling the results of
four research papers.

Part I is comprised of 5 chapters: Chapter 1 introduces the motivation behind
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1. Introduction

this research, and defines its main research questions. Chapter 2 provides an
overview of relevant background concepts. Chapter 3 presents the results of a gap
analysis study between the security requirements for online user authentication
applications, and the functionalities offered by currently deployed commodity
hardware-TEEs. Chapter 4 provides a summary of the four research papers that
are part of this thesis, as well as a brief overview of additional papers and filed
patents that are related to this research area, but are not included in this thesis.
Chapter 5 discusses how the main papers answer the initially outlined research
questions and summarizes their research contributions. This thesis concludes
with an overview of relevant future research directions.

The four main research papers are compiled and included in the second part of
this thesis.
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Chapter 2

Background

2.1 System Integrity and Integrity Targets

The integrity of a computing platform depends on the sum of the code and
data that govern its behaviour. When end-users and other third-parties interact
with a computing system, they rely on its integrity to trust it with their input,
and to accept the output of its computations as valid. Therefore, being able to
verify a system’ integrity, especially a remote one, is an essential requirement for
facilitating multilateral communication. Assessing a system’s integrity involves
a secure verifier which defines a desired integrity target, and a prover which
provides evidence that it meets the said target, and that it is therefore trustworthy
[109].

Over the years, numerous models for defining integrity targets have been
proposed. Biba Strict is one such model which requires all executed code to be
formally verified, and all input data to be of an equal integrity class or higher
[54] [109]. However, such strict models are impractical to deploy, especially
within commodity platforms. Therefore, more practical integrity models have
been proposed, such as the Usable Mandatory Integrity Protection (UMIP) [74].
These alternative models aim to offer the same integrity guarantees as the classic
ones, but make more assumptions in order to allow the system to accept non-
trusted data with lower integrity classes. For instance, UMIP uses discretionary
access control (DAC) permissions on binaries to label the integrity of processes
in which they execute [109]. A more recent practical model is the one defined by
the Trusted Computing Group (TCG), an industry standard group for trusted
infrastructures. TCG requires the prover to exclusively execute code provided
by a trusted distribution party, starting at the platform’s boot-time. Examples
include a boot-loader image that has been signed by a firmware provider that is
trusted by the platform’s OEM or device owner.

2.2 TPM 1.2

The Trusted Platform Module (TPM) is a TCG (Trusted Computing Group)
specification for a security module. The goal of TPM is to establish trust in
the platform’s integrity, by proving that it satisfies the TCG’s integrity target.
To put it differently, TPM establishes that a platform exclusively executes code
provided by a trusted distribution party, starting at the platform’s boot-time.

TPM is often implemented as a discrete micro-controller chip attached to the
motherboard. It can also be implemented as part of the platform’s firmware. At
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its core, TPM is a cryptographic co-processor which implements standardized
cryptosystems, such as AES, RSA and SHA1, and uses a hardware random
number generator for secure key generation. In TPM 1.2, each chip has a unique
RSA identity key pair referred to as the endorsement key pair, EK, which is
signed by a trusted certificate authority, which could be the manufacturer. The
EK as well as its signed certificate are permanently embedded within the TPM
at manufacturing time [6]. However, TPM is non-programmable and does not
execute application-specific logic. It defines and exposes a set of APIs to the
platform’s operating system and applications. In the following sections, we
explore TPM’s architecture and the core functionalities it enables.

2.2.1 Protected Storage and The Root of Trust of Storage

TPM is equipped with a general purpose non-volatile RAM (NVRAM). It is
used to securely store persistent security-sensitive data such as passwords and
cryptographic keys. Because the amount of NVRAM is limited, sensitive data
might need to be moved outside the trusted perimeter of the TPM. Once outside,
this data is encrypted by the Storage Hierarchy key, SRK, which is always
securely stored within the TPM’s NVRAM. Unlike the endorsement key, the
SRK is not embedded within the TPM at manufacturing time. It is generated
after a TPM user takes ownership of the platform. SRK is used to protect all
the keys which are subsequently created by the operating system and user-level
applications. It is therefore referred to as the Root of Trust of Storage, RTS
[122]

2.2.2 Platform Configuration Registers and Integrity
Measurements

One of the most important components of the TPM is its bank of Platform
Configuration Registers (PCR). A PCR is a 160 bit wide register that can hold
a SHA-1 hash, which corresponds to a measurement of a piece of software or
firmware present on the platform. It is not possible to write directly to a PCR.
Furthermore, PCRs have only one single allowed operation, called extend. This
operation computes the new value of a PCR as a SHA-1 hash of the concatenation
of its old value and the most recently measured software. By definition, the
extend operation is non-commutative, which means that PCR values reflect the
order of the recorded events. PCRs are reset to an initial value (usually 0) at
power-on [122].

Thanks to these properties, a PCR register can be used to record an ordered
chain of events. For instance, when a platform is booting, the BIOS can compute
the hash of the next piece of software to run, which is the boot-loader, extend
the PCR register value, and finally hand over execution to the boot-loader. This
“measure before execute” principle continues until the platform is booted. At
the end, we get a trusted log of the software that the platform has booted. This
is a requirement for assessing the system’s integrity and thus its trustworthiness,
according to the integrity target model defined by the TCG[52].
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In order to establish trust in the final PCR measurement, it is essential to
have trust in the first piece of code that the platform executes, because it cannot
be measured by any prior software. This self-measured code is called the Core
Root of Trust of Measurement, CRTM, and is often implemented as part of the
host platform’s motherboard, and not the TPM. While TCG recommends CRTM
to be immutable, different platforms implement it differently(BIOS, UEFI) [6].

2.2.3 Remote Attestation and the the Root of Trust of Reporting

Integrity measurements are a first step towards assessing a platform’s integrity. A
subsequent step is to communicate the final PCR measurements to a third-party,
capable of evaluating whether it matches one of the expected trustworthy values.
This process is referred to as remote attestation. TPM measurements are signed
with the Attestation Key, AIK, a short-lived RSA key, which itself is signed by
the TPM’s endorsement key. Therefore, the attestation key is the TPM’s Root
of Trust of Reporting, RTR.

Since the attestation signature is bound to the EK which can uniquely identify
the platform, the remote attestation verification process can compromise the
privacy of end-users. To mitigate this risk, a trusted third-party called the
Privacy Certificate Authority (PrivacyCA) can be used instead. It vouches
for the authenticity of TPM quotes, without revealing their identity to the
verifiers. Alternatively, a zero-knowledge proof protocol called Direct Anonymous
Attestation can also be used, without requiring any trusted third parties [9]
[122].

2.2.4 TPM 1.2 Authorization

A hierarchy is a collection of entities that are related and managed as a group.
Those entities include permanent objects (the hierarchy handles), primary objects
at the root of a tree, and other objects, such as keys, within the tree branches.

TPM 1.2 has only one key hierarchy, represented by the owner authorization
and the storage root key (SRK). There can only be one SRK, and therefore only
one single hierarchy. The SRK is generated randomly, can not be reproduced
once it has been erased, and it can not be swapped out of the TPM. Children-keys
can be recursively created and wrapped by the SRK. This creates one deep key
hierarchy that is under the control of one owner which is represented by an
authorization value [115] [52].

2.2.5 TPM 2.0

The latest TPM 2.0 specifications introduce several manageability and security
enhancements over TPM 1.2.

In fact, the single TPM 1.2 hierarchy architecture leads to considerable
challenges with regards to how TPM platforms are managed after deployment.
This is mainly because of the overlapping authorization domains between the
TPM firmware, the TPM owner (e.g.: IT administrator who owns the platform
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in which the TPM is embedded), and the TPM end-user. In order to overcome
these management challenges, TPM 2.0 introduces a new architecture of multiple
hierarchies [52]:

1. Standard storage hierarchy: It is under the control of the device owner,
and essentially replicates the TPM 1.2 SRK hierarchy.

2. Platform hierarchy: It is exclusive used by the OEM’s BIOS and system
management mode.

3. Endorsement hierarchy or privacy hierarchy: It prevents using the TPM
for attestation without the approval of the device’s owner.

4. Null hierarchy: It uses the TPM only as a cryptographic co-processor, and
is therefore open for all types of users.

Furthermore, TPM 2.0 offers greater agility regarding the cryptographic
algorithms it supports, as opposed to TPM 1.2 which only supports the RSA
and SHA-1 algorithms. Indeed, TPM 2.0 allows manufacturers to choose from a
wide list of cryptographic algorithms which include elliptic-curve cryptography,
RSA and SHA-2 [7].

2.3 Smart Cards and Secure Elements

A smart card is a tamper-resistant computer in the housing of a credit card. It
provides the following core functionalities to its hosted applications [102]:

• A secure execution environment enabled by its isolated embedded micro-
controller.

• Secure storage for protecting persistent data such as cryptographic keys,
and authentication credentials.

• Hardware-based implementation of cryptographic algorithms.

• A stable security evaluation and certification process according to the
Common Criteria (CC) [53].

When smart cards were first invented in the 1970s, they could only run one
single application at a time. This changed in the mid-90s, when smart card
operating systems, such as MULTOS [89] and JavaCard [14], were developed.
They securely partition the card’s physical resources and create multiple trust
domains which can securely multiplex the execution of several applications within
the same smart card. Smart Card operating systems also provide a unified high
level API and development tools for application developers. These properties
have enabled the rapid design and deployment of applications which leverage
smart cards within different industries. One prominent success story took place in
the 90s within the telecommunication industry, when GSM mobile networks (2G)
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chose smart cards to implement their subscriber identity modules (SIM). Today,
smart cards are ubiquitously used to host credentials, such as passwords and
cryptographic keys, and have become a standard within the payment industry,
as is the case with the EMV payment card standards by Visa, MasterCard and
Europay [35]. These smart cards communicate with the host platform through
standardized wired and wireless interfaces [51] [12] [62].

Secure elements are a special implementation of the traditional smart card,
which focus on providing more tamper resistance and security guarantees to
their host applications. It also adapts its design to meet the requirements for
newer platforms, namely smartphones and IoT devices. SEs are often based on
the JavaCard OS, and adhere to the global platform specification for loading
and managing applications. Within commodity devices, SEs take one of the
three following form factors [58]:

1. An embedded chip within the platform’s main chipset (embedded SE),

2. A removable Universal Integrated Circuit Card (UICC), commonly known
as a SIM card,

3. A removable micro Secure Digital Card, commonly abbreviated as SD
card.

2.4 Intel Software Guard Extensions

Intel Software Guard Extensions (SGX) are recent security extensions for the X86
Intel processor family. They allow ring-3 applications to control their security by
instantiating hardware TEEs, referred to as enclaves, within their process address
space [20]. Enclaves can then securely run the application’s security-sensitive
code and data, because they isolate it from all other untrusted software running
within the same platform. This includes the operating system, the virtual
machine manager, the firmware, as well the other unprivileged applications
and enclaves. These strong security guarantees are facilitated by two main
architectural changes:

• Memory Encryption Engine, MEE: When the enclave’s code or data leaves
the trusted CPU perimeter and moves into the system memory, its security
can be compromised by a malicious privileged system software, or a physical
attacker with access to the memory bus. Therefore, the MEE encrypts all
the enclaves’ code and data leaving the CPU. It uses a hardware protected
key which is regenerated upon every platform reboot [20].

• Hardware-Enforced Access Control Mechanisms: During address trans-
lation, the CPU performs extra access control checks for all memory
read/write requests into the enclave. All illegal requests coming from
outside the enclave result in a page fault. However, when the enclave’s
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code and data are within the CPU perimeters, they are kept in plain text.
This makes them vulnerable to cache memory attacks. Therefore, the
CPU flushes the enclave’s logical core cached Transaction Lookaside buffer
entries (TLB), before switching into the enclave mode [59].

2.4.1 Intel Remote Attestation

Remote attestation is an interactive protocol between 1) the attested platform,
2) the attesting remote service provider and 3) the Intel Attestation Service
(IAS), an online service operated by Intel [20].

Each SGX hardware has a unique attestation key, which is only accessible by
special Intel SGX architectural enclaves, such as the quoting enclave. During
an attestation protocol, the quoting enclave first forms a structure referred to
as a quote, composed of a hash of measurements reflecting the order and the
content of code which has been initially loaded into the enclave by the operating
system. Subsequently, the quoting enclave signs the quote structure using the
attestation key, and forwards it to the remote service provider and the Intel
Attestation Service. The IAS verifies that the signature has been generated by a
genuine non-revoked Intel SGX hardware, while the service provider compares
the measurement value to a reference one, so as to ensure that the enclave code
has not been tampered with during the loading process [55][20] .

2.5 System Management Mode

System Management Mode, SMM, is a highly privileged X86 CPU mode. SMM
code is part of the BIOS that resides on the SPI flash memory. During the
system boot-up, and before the operating system is loaded, the BIOS loads
SMM into a hardware protected memory area referred to as SMRAM, which is
not addressable from any other CPU mode, including the kernel and hypervisor
modes. All illegal requests are forwarded instead to the video memory by default.
Therefore, SMRAM can be used for both secure storage and isolated execution
[61] [78].

SMM implements several System Management Interrupt handlers (SMI),
which primarily manage system functions, such as power and heat control. In
order to execute SMI handlers, an SMM pin should be asserted. Before the
system switches to SMM mode, the CPU state is securely saved into SMRAM, so
that it can return to it upon exiting SMM. This makes SMM highly transparent
to all privileged system software [55].

Recent academic research groups have been revisiting the purpose of SMM,
and proposed to open it for several non-traditional use cases, such as debugging
and system introspection. For instance, IOCheck and SMMDumper use SMM
to reliably scan system memory and dump it for forensic analysis [105] [143].
HyperCheck uses SMM for hypervisor integrity verification. Aurora leverages
SMM to augment Intel SGX enclaves with trusted network and time services[76].
While TrustLogin uses it to provide an end-to-end encrypted input channel from
the keyboard to the Network Interface card [144].
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2.6 Personal Security devices

Smart cards and secure elements provide important security primitives to the
applications they host, such as secure storage for their sensitive data at rest,
and isolated execution of their code. However, they provide no trustworthy
input/output channels to the end user and cannot ”protect the owner from abuse
of the smart card” [126]. Let us take the example of a smart card attached to a
host PC platform, and which is used to securely sign messages/emails that the
user sends from their PC. We consider the host platform to be untrustworthy and
potentially compromised. While such a malicious platform is unable to access
the private signing keys which are securely stored within the smart card, it can
alter the messages being sent to the said smart card. For example, when the
user types an email message saying ”N is a spy”, the malicious email application
can alter the message to ”N in not a spy”. The smart card and the end user
would then approve its signature unsuspectingly, as no trusted output channels
are available for them to verify the content of the message being signed [126].

Personal Security Devices (PSD) were developed to mitigate such a class
of vulnerabilities, which arise due to the lack of trusted input/output channels
from end users to smart cards. We define PSDs as minimal embedded devices,
which often adopt a portable form factor. They use an embedded secure element
to execute security-sensitive operations outside the perimeter of the potentially
compromised general-purpose platform, just as a traditional secure elements
would. The SE is then augmented with a dedicated trusted output channel, such
as a display screen. It is also desirable that the PSD has at least one dedicated
trusted input channel, such as a keypad or a fingerprint reader. While PSDs
have been around for many decades, such as the 3COM PalmPilot, they have
been re-popularized recently thanks to the rise of user-centric and distributed
architectures. They have also found a popular use case within the cryptocurrency
community, where they are commonly referred to as wallets [73].

2.6.1 OffPAD

OffPAD is a personal security device which was developed within the University
of Oslo as part of 2 research projects of 8 years. Its design is based on a secure
element that is augmented with a dedicated keypad and screen. A fundamental
problem is that most commercially available SEs cannot communicate with
input/output devices. To solve this problem, OffPAD designed a customized
dual-architecture which incorporates an ARM-Cortex M4 processor which acts
as a proxy between the SE and the OffPAD’s I/O devices [132]. A summary of
the OffPAD components is provided below:

• A Gemalto IDCore 10 Javacard-based secure element.

• An ARM-Cortex M4 processor-STM32f405.
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• A secure Fingerprint reader, FPC1020Touch, which can store minutias
securely using a secret key shared with the SE.

• A secure Display, e-ink 2.5 inch display.

• A 32 MB flash memory.

• A keypad.

• An NFC Transceiver, NPC 102A2EV.

• A microUsb USB ORG 2.0(High Speed).

OffPAD implements a proprietary low level software to manage the SE’
communication with the peripherals. It also implements an open-source-friendly
higher level software responsible for managing and loading the hosted application.

2.7 FIDO

Fast Identity Online, FIDO, is an industry standardization consortium which
was formed in 2012, with the aim to solve the passwords problem, as well as the
siloed MFA ecosystem, through a set of device-centric protocols. FIDO proposes
to split online user authentication into two phases by using a client-side device as
a proxy between end-users and their online service providers. First the end-user
authenticates to the FIDO authenticator, which then authenticates on behalf of
the user to the service prvider.

FIDO Authenticators: These are security modules that can be implemented
as a discrete external hardware device, as an embedded hardware token or
CPU-based TEE, or as a software process running within the host’s kernel or
user space. Every authenticator can implement one or more authentication
modalities, such as fingerprint recognition, face recognition, passwords, or proofs
of presence. Different manufacturers will provide different implementations and
modalities, and it is up to service providers to accept and register authenticators
that match their required assurance levels [36]. This can be achieved through a
remote attestation protocol, where the authenticator sends a signed quote to the
online service provider claiming to meet a specific security level for implementing
a specific authentication modality. For instance, an authenticator would want to
claim that it runs a fingerprint recognition function within Intel SGX.

Attestation Key Pair: This is an identity key pair which is generated and
embedded into the FIDO authenticator at manufacturing time. It is shared
between a class of authenticators, which often have the same manufacturer and
security level. The Attestation key should be signed by a certificate authority
which is trusted by online service providers[36].

FIDO Registration: Every time a user wants to register with a new service
provider, the authenticator generates a new private/public key pair, referred
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Figure 2.1: FIDO authenticator [36]

to as the authentication key pair. This key pair is unique for every unique
combination of {end-user, service provider, authenticator}. The authenticator
stores the authentication private key, signs it with the attestation key, and sends
its corresponding signed public key along with a certificate to the service provider.

FIDO Authentication is a two-step protocol:

1. First mile authentication : Users authenticate themselves to the FIDO
authenticator which they have already registered with the service provider.

2. Second mile authentication : The authenticator authenticates itself, on
behalf of the user, to the online service provider, using a standard challenge-
response protocol, where he uses the proper authentication key already
registered with the service provider to sign the challenge [123] [36].
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Figure 2.2: FIDO authentication [82]
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Chapter 3

Commodity Hardware TEE Gaps

The ecosystem of commodity devices is made up of several stakeholders: device
owners (end-users), Original Equipment Manufacturers (OEMs), Mobile Net-
work Operators (MNOs), operating system vendors, and third party-application
developers.

An initial literature review of available hardware TEEs reveals that third
party-application developers do not currently use the strong security guarantees
offered by these TEEs. This is due to the fact that commodity TEEs have
been primarily designed to meet the requirements for OEMs, MNOs and OS
developers, and have thus underprioritized the requirements for end-users and
application developers [133].

In order to remedy this situation, we present in this chapter a gap analysis
between the security functionalities that end-users and application developers
require from commodity TEEs, and the functionalities offered by currently
deployed TEEs. This chapter focuses on the TEEs surveyed in the background
study of Chapter 2, and which are relevant to the remainder of this thesis.

The results of this analysis were fundamental in steering the direction of the
rest of this research. We used the identified gaps as a guide to formulate the last
3 research questions of this research and choose relevant problems statement for
the last 2 papers.

3.1 Security Requirements

In this first section, we answer the question of ”what security services do online
user authentication developers and end-users need from commodity hardware
TEEs?”

3.1.1 Secure Storage

Online authentication applications need to ensure the confidentiality, integrity
and freshness of their users’ stored credentials at rest. The default mechanisms
provided by commodity platforms rely on the operating system’s file system
permissions. Such solutions are vulnerable to a compromised operating system,
as well as physical cold boot attacks[133] [119].

Therefore, online authentication requires the TEE to provide a secure storage
mechanism which does not rely on the platform’s system software. This requires
the following three components [8]:
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• Encrypting the credentials using cryptographic keys winch cannot be
accessed by the platform’s system software.

• A secure implementation of the relevant cryptographic algorithms.

• A secure non-volatile memory to persistently store monotonic counters
across the platform’s reboots.

3.1.2 Isolated Execution

Online user authentication applications need to preserve the confidentiality and
integrity of their code and data at run time. A default mechanism to achieve
this within commodity devices is to rely on the operating system’s process-based
isolation. However, this solution is vulnerable to a compromised operating
system [119][133].

Therefore, online authentication applications need to run within a trusted
isolated execution environment. The run-time isolation property can be imple-
mented in various ways:

• Full hardware isolation: The code runs within a physically isolated pro-
cessor, which does not share any context with the untrusted execution
environment. Notable examples are co-processors, smart cards, and secure
elements. Such solutions provide high protection guarantees against the
host platform side channel attacks, by virtue of their complete isolation.
However, they lack direct access to the system’s memory.

• Multiplexed Logical Isolation: The security sensitive functions run within
the same host commodity processor, and share its physical execution con-
text. However, additional CPU-based hardware access control mechanisms
are introduced in order to enforce strict logical isolation of resources be-
tween the secure execution environment and the untrusted one. A notable
examples is Intel SGX, which allows applications to protect their sensitive
code within a ring-3 enclave [86].

3.1.2.1 Non-Monolithic Trust Domain

Isolating the execution of the authentication application from the rest of the TEE
is essential. However, when one TEE instance is used by multiple applications
which belong to different non-trusting service providers, the TEE should provide
adequate isolation between these applications.

3.1.3 Remote Attestation

Before granting users access to their services, online service providers need to
ensure that the authentication credentials they receive are indeed coming from
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trusted applications running within a particular trusted TEE. Remote attesta-
tion is the process which enables remote third-parties to verify the platform’s
state. When an online authentication application runs within the rich execution
environment, its TCB includes the operating system, the platform’s firmware
and the application itself. Therefore, the remote service provider would need to
evaluate the state of such a complex TCB, and decide whether to trust it [133].
This is a daunting task, and is referred to as the semantic gap [61].

Therefore, online authentication applications need a TEE with a small and
stable TCB, in order to enable a meaningful remote attestation verification.

3.1.4 Open Secure Provisioning

Online authentication developers require an open provisioning policy which
allows them to provision their code and data remotely into the TEE without
having to enter into a business relationship with a centralized authority, such
as MNOs, OEMs, or OS providers [8]. The authorization of authentication
developers by device owners should be sufficient. Remote attestation can then be
used to enable secure remote communication between the application developers
and the TEE.

3.1.5 Trusted Path

Users routinely rely on their device’s standard input interfaces, such as the
keyboard, to enter their authentication credentials. This input is then processed
by the platform’s firmware and operating system, before reaching the target
application or TEE, which then forwards it over the network to a remote service
provider. The latter relies on this input to make various security decisions, such
as granting access to end-users and approving their transactions. However, a
malicious system software, keyboard firmware or browser can modify the creden-
tial or leak it to malicious third-parties. This compromises the confidentiality
and integrity of the input.

Users also rely of the content rendered by the browser which is then displayed
by the monitor to evaluate if they are interacting with the correct application,
and select the input fields where they should type in their credentials. However,
nothing stops a compromised malicious browser from injecting fake authentic-
looking fields prompting the user to enter their credentials, in order to capture
and leak them to malicious third-parties. As the rest of the web-page, such as
the URL and the ‘https’ lock, remain unchanged, it is very difficult for users
to know that the web-page has been tampered with [140] [11]. This type of
malware is referred to as Man-in-The-Browser malware (MITB).

Indeed, the lack of trusted input and output channels compromises the trust
between end-users and their service providers. Therefore, online authentication
applications require trusted input and output paths to the TEE, which do
not rely on the system software. These paths should ensure the integrity and
confidentiality of the user’s credentials. They should also authenticate the TEE
to end-users.

21



3. TEE Gaps

3.2 TEE Gaps

In this section, we identify and discuss the security requirements which are not
met by the currently deployed TEEs.

3.2.1 Lack of an Open Provisioning Ecosystem

Many of the TEEs deployed within commodity devices are not under the control
of their device owners. For instance, OEMs control embedded secure elements
and SMM, MNOs control SIM cards, and OS vendors control some embedded
secure elements [133]. These premium service stakeholders exclusively use TEEs
to run their own workloads, and prohibit application developers from provisioning
and running theirs.

However, few exceptions have been documented, where large incumbent
application developers entered into a business agreement with a premium stake-
holder to allow them to provision their application into the commodity TEE.
For instance, MNOs opened SIM cards for both the Vodafone payment app and
the Norwegian ”BankID på mobil”. While OS vendors opened their embedded
secure elements to GoogleWallet. Clearly, such business partnerships are out of
reach for the other ”normal ” application developers [30].

3.2.2 Isolated Execution

TPMs are fixed-function modules, which are not suitable for general-purpose
computations. They only offer a predefined set of APIs that the authentication
application can call. While Intel SGX is a programmable TEE, its enclaves lack
built-in support for system-level functions, such as networking and file system
services [76]. Such a trust model might be sufficient for securing some server-side
workloads, but not client-side authentication applications.

3.2.2.1 Non-Monolithic Trust Model

While SMM and removable SEs do provide a programmable isolated execution
environment, they do not implement any isolation between applications running
within the same TEE instance.

3.3 Lack of Trusted Input /Output Channels

When an OEM needs to securely communicate with a remote embedded controller,
an end-to-end network encrypted channel is sufficient. Such a communication
use case does not involve any interactions with end-users. Therefore, trusted
input/output channels from end-users to their keyboard/display are not required.
Clearly, this is not the case for online authentication applications.

Unfortunately, SMM is the only hardware TEE we surveyed which offers
trusted input/output channels.
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3.4 Summary of Gaps

We aggregate the results of this gap analysis into the following table, in order to
provide a convenient visual summary of the identified TEE gaps.

TPM SIM SD Card Embedded SE Intel SGX SMM
Open Provisioning Y N Y N Y N

Isolated Execution N Y Y Y Y*
*No System Calls Y

Secure Storage Y Y Y Y Y Y
Remote Attestation Y Y Y Y Y Y
Trusted Input N N N N N Y
Trusted Output N N N N N Y

Table 3.1: TEE gaps
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Chapter 4

List of Research Papers

The research contributions of this thesis are presented as 4 research papers,
which are briefly summarized in this chapter. The full text of the papers is
presented in Part II of this thesis. Additionally, Section 4.5 presents a short
overview of additional research contributions which are not part of this thesis.
These are 2 patent applications and 2 research papers, to which the author of this
thesis has contributed during her Ph.D. studies. The patents are not part of this
thesis because they are still under review and contain commercially confidential
material. While the papers represent preliminary work that is related to this
thesis.

4.1 Paper I: Passwords Are Not Always Stronger on the
Other Side of the Fence

Authors: Ijlal Loutfi, Audun Jøsang.
Publication: Proceedings for the 2015 NDSS Workshop on Usable Security,
USEC’15. DOI: 10.14722/usec.2015.23005.

This paper presents the results of a usability study that explores the behaviour
of IT professionals regarding passwords-based authentication [79].

Studying passwords is important because it is the most widely deployed
authentication modality and is often used as a single factor to construct authen-
tication protocols. Unfortunately, multiple studies and vulnerability disclosure
reports show that end-users routinely use weak passwords, reuse them across
different services, and resort to insecure storage methods to remember them.

Instead of acknowledging this situation as a natural consequence of the
current situation where end-users need to manage a large number of passwords,
IT professionals often attribute the fault to the ”laziness and ignorance of end-
users”. Therefore, instead of researching and deploying more usable and stronger
authentication protocols, the IT community’s response often focuses on educating
the supposedly ignorant end-users on how to better manage their passwords.

This paper challenges this assumption, and explores the hypothesis that
”knowledge of good password habits is a necessary but not by itself a satisfactory
requirement for a safe password behaviour”. To achieve this goal, we conduct a
usability survey exclusively targeting an audience of IT professionals, with good
knowledge about security.
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The survey focuses on 8 online service providers (Facebook, Gmail, LinkedIn,
Twitter, Work/studies email, Bank account, online storage, online video games).
For each service, 66 respondents reported their behaviour across the following
password parameters: length, characters mix, memorability, reuse/uniqueness,
usage of federated logins and usage of password managers. Overall, 2970 unique
data points were collected.

The analysis of the data was completed in two iterations. In the first iteration,
we performed a high-level statistical analysis in order to deduce patterns within
the data set. In the second iteration, we measured the statistical association
between the users’ independent variables and their reported password behaviour.
Therefore, we computed the Chi square test value of different combinations of
pairs and evaluated its value against the null hypothesis. The significance value
was set at 0.05. Finally, we computed the residual deviation for each combination
of pairs, where we set the significance range at (-2,2) . This allowed us to identify
the combination with the highest statistical significance.

The main result of this analysis was that we found no evidence of any
statistically significant correlation between the perceived sensitivity of a service
and the respondent’s password behaviour. Other interesting findings were also
reported. For instance most respondents do not use a mix of characters if it is
not mandatory. This behaviour was more prevalent for social media services
like Facebook and LinkedIn. While such services might not be highly sensitive
to our respondents, many of them reported using them their federated login to
authenticate to other service providers. Such behaviour creates long transitive
chains of trust that are difficult to cognitively evaluate. We also found that
only 69 of the reported passwords meet the requirements for what constitutes a
strong password. This is a mere 12% of the data set.

This paper provides significant insights into the password habits of IT pro-
fessionals. Although they possess enough cognitive knowledge to be fully aware
of what constitutes an adequate password behaviour, they fail to materialize it
into practical habits in many instances. It is hoped that the paper’s results will
confront IT professionals with their own password practices which fail to adhere
to what they preach to end-users, and further motivate them to adopt stronger
more usable forms of authentication [79].

4.2 Paper II: FIDO Trust Requirements

Authors: Ijlal Loutfi, Audun Jøsang.
Publication: Proceeding for the 20th Nordic Conference on Secure IT Systems
139–155, NordSec’15. DOI: 10.1000/182.

At the time of writing this paper, the first version of the FIDO protocols
were just released. This paper was one of the first academic contributions to
provide a systematic analysis of the protocols.

This paper analyses the trust requirements for FIDO and cross compares
them to currently deployed authentication solutions. The two most important
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results of this analysis are as follows:

• Eliminated Trust Requirements: Online service providers were traditionally
liable to protecting users’ credentials at the server side, e.g. passwords
databases. However, the FIDO architecture frees service providers from
such a liability. As a matter of fact, FIDO is defined as a device-centric pro-
tocol, where the secret credentials are stored at the client side, whereas the
server only stores the public keys/certificates of the FIDO authenticators.

• Inherited Trust Requirements: The security of the FIDO protocols funda-
mentally depends on the authenticator’s ability to preserve the confiden-
tiality and integrity of its identity key, and to properly authenticate users
locally to their authenticators. FIDO leaves the specific implementation of
the authenticator to the discretion of third-party hardware manufacturers
and software developers: A FIDO authenticator can be implemented as
a software application running within the host platform’s user or kernel
space. It can also be implemented as a trusted application running within a
hardware based TEE, or as a discrete external hardware module. Therefore,
we conclude that the security of FIDO protocols depends on the security
of the authenticator’s host platform.

• New trust requirements: The FIDO consortium also acts as a certification
authority which evaluates the security claims of FIDO authenticators, and
evaluates the types of authentication modalities they implement before
granting them a FIDO certificate which can be used during the attestation
step that takes place during the registration phase. This certification
process can breach the users’ privacy, by enabling easier linkability of users’
activities between colluding service providers. Therefore, FIDO introduces
the FIDO consortium as a new trusted-third party.

Trust in FIDO authentication protocols is therefore distributed between end-
users, authenticators and the the FIDO consortium. This is a new trust model for
online user authentication, and should be reasoned about and modelled as such.
We argue that describing FIDO as a device-centric protocol is a misrepresentation
of such a complex and distributed trust model [82].

4.3 Paper III: TrustUI-EnablingTrusted User Input and
Output Channels to Web-Applications in Untrusted
Client Platforms

Authors: Ijlal Loutfi, Audun Jøsang.
Publication: Under Review at the 22nd Euromicro Conference on Digital
System Design, DSD’19.

This paper presents the design, implementation and evaluation of TrustUI,
a new solution architecture we propose for providing isolated execution, trusted
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input channels and trusted output channels for online authentication client
applications, even in the presence of a compromised platform. This paper focuses
on the two following vulnerabilities against IO channels:

1. Trusted Input Channel Attack: When users need to communicate
with their remote web service providers, they enter input data into their
platforms through standard input interfaces, such as the keyboard. This
input is then processed by the system software and the browser before
being sent through the network to the web server. The latter relies on
this input to make various security decisions, such as granting access to
end-users and approving their transactions. However, a malicious browser,
or keylogger which has hooked into the kernel, is able to leak the users’
credentials to malicious third-parties [92].

2. Trusted Output Attack: Web users routinely rely on what the browser
displays to them in order to make various decisions. For instance, they
check the banking transaction amounts displayed on the screen before
approving them for payment. However, nothing stops a compromised
browser from redirecting the payment transaction to the attacker’s account,
then modifying the HTML rendering of the user’s banking web page to still
display the legitimate transaction. The end user would then unsuspectingly
confirm the transaction, and the bank would process it as if it originated
from a legitimate user. The compromised browser can also inject new
authentic-looking fields prompting the user to enter sensitive information
such as credit card details or authentication credentials. As the rest of the
web-page, such as the URL and the ‘https’ lock, remain unchanged, it is
very difficult for users to detect that the web page is tampered with [140]
[11]. This type of malware is referred to as Man-in-The-Browser malware
(MiTB).

Therefore, TrustUI presents trusted input and output channels, even in the
presence of a malicious platform:

• TrustUI-Trusted Output Solution: Users cannot reliably detect whether
the rendering of a web-page is altered, because the layout of a rogue page
can look completely identical to a legitimate one. Furthermore, solutions
which rely on out-of-band authentication modalities, such as SMS verifica-
tion codes can also be defeated. This is due to two fundamental weaknesses:
on the one hand, out-of-band modalities are subject to habituation: Users
simply start confirming transactions out of habit without double-checking
their details, or become inattentive to small transaction modifications such
as similar bank accounts, or slightly rounded transaction amounts [3]. On
the other hand, even when out-of-band verification is successfully carried
out by the user, its effectiveness is limited to stopping attacks where only
dynamic page values, such as transaction amounts, are modified. They are,
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however, ineffective against attacks which inject new rogue web elements
into the page, such as input fields prompting users to enter their passwords.
TrustUI argues that a web server, such as a bank, can increase its trust in
the transaction it is processing if it gets a strong guarantee that it matches
the screen displayed to the end-user. In a parallel world, web servers
would have a way to access the users’ screen before every transaction. In
the absence of that, TrustUI proposes a two-step solution which gives
similar guarantees. The first component is a screen capture engine which
programmatically captures a bitmap representation of the rendered display
directly from the GPU frame buffer, which can not be accessed by MiTB
malware. The second component is an image analysis engine, which cross-
compares the captured image to a reference one. This allows it to detect
any rogue injected elements.

• TrustUI-Trusted Input Solution: In order to protect the confidentiality
of user input from a compromised browser and operating system, TrustUI
aims to build an end-to-end encrypted input channel between the end-users’
input interface and their web server. A straightforward solution to this
problem would be to encrypt all sensitive input at the level of the keyboard’s
subsystem, before it becomes accessible to the rest of the platform’s system
software and browser. However, this solution is impractical within out-of-
the box commodity platforms, since the standard keyboards are not able
to perform secure cryptographic operations and negotiate keys. Instead,
TrustUI proposes to equip users with PSDs (Personal Security Devices)
with dedicated input keypads. These PSDs can establish an end-to-end
encrypted channel to a web enclave which TrustUI establishes within the
application’s address space. PSDs and the SGX enclave can then negotiate
and establish an end-to-end encrypted channel. The end-user can use the
PSD’s dedicated keypad to enter their sensitive input, send it encrypted
to the web enclave and then to its corresponding web server.

Finally, the paper experimentally evaluates the core functionalities of TrustUI,
and reports its results:

1. Trusted input evaluation: We evaluate the trusted input solution, by using
an Arduino Uno platform to implement and simulate the functionalities
of a personal security device with a dedicated keyboard. The Arduino is
used to send encrypted messages over a serial communication port to the
application, which creates an enclave within its address space.

2. Trusted output evaluation: This experiment uses a mock-up login page
where we mimic an MiTB attack which injects rogue input fields into a
webpage. First, we programmatically capture the displayed image of the
rogue login page using an open-source implementation of the Windows
GDI screen capture API (Graphics Device interface). Second, we perform
a pixel-by-pixel comparison of the bitmap representation of the reference
logging page and the captured one. As these are different images, the user
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gets a trigger that the webpage is malicious. While the delay introduced
by the screen capture image is insignificant, the image analysis takes 4
seconds to complete.

4.4 Paper IV: SMMDecoy-Detecting GPU Keyloggers Using
Security By Deception Techniques

Authors: Ijlal Loutfi.
Publication: Proceedings of the 5th International Conference on Information
Systems Security and Privacy 580-587, ICISSP’19.
DOI: 10.5220/0007578505800587
Published as a short paper

This paper presents SMMDecoy, a solution for detecting firmware-based keylog-
gers which compromise the integrity and confidentiality of the users’ keyboard
input.

Studying the security of the keyboard interface is an important question,
because millions of users routinely use it as their primary input interface, and
rely on its security when they type in their security-critical input, such as
authentication credentials and credit card details. Unfortunately, both the
PS/2 and USB keyboards have open buffers that can be read by the platform’s
operating system and firmware. Keyloggers, are one class of malware which abuse
this vulnerability. Once they infect a platform, keyloggers log the keyboard’s
activity, and leak it to malicious third-parties. Keyloggers can hook into the
platform’s user space API, kernel space API, or firmware.

This paper focuses on detecting the stealthiest variance of keyloggers, which
is the one deployed within the firmware of the platform’s IO devices, such as the
GPU (Graphical Processing Unit).

In this paper, we propose SMMDecoy as a novel solution architecture which
uses principles from the paradigm of security-by-deception to detect GPU key-
loggers. It proposes to use a transparent mechanism which injects intentionally
crafted noise that mimics authentication credentials, to the keyboard’s buffer,
and wait for any potential GPU keyloggers to sniff it. SMMDecoy would sub-
sequently send a list of the injected decoy credentials to a remote third-party.
Finally, the service provider triggers a detection alarm when it receives an
authentication request using any of the decoy credentials. The paper assumes
a strong adversary that can infect both the GPU and the kernel. Therefore,
SMMDecoy should be deployed within the System Management Mode, SMM,
in order to take advantage of its integrity and transparency guarantees. the
paper also proposes to use Intel Software Guard Extension remote attestation
capabilities to send decoy credentials securely over the internet [78].
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4.5 Other Contributions

4.5.1 Patent Applications I & II

The author of this thesis spent a 6 months internship at the security labs of HP
Inc. in Bristol, UK. She worked on trusted execution environments and how
they can be used to extend the trust from the platform’s firmware controlled by
the OEM, to the operating system execution environment.
The results of this internship were 2 patent applications where the author is a
co-inventor, alongside her internship advisor. Both patents are currently under
a confidentiality agreement, and are under review at the US patents office.

Inventors: Ijlal, Loutfi and David, Plaquin.
Invention Owner: HP Inc.
Status: Under Review.

4.5.2 Paper V: Privacy Concerns of TPM 2.0

Authors: Ijlal Loutfi, Audun Jøsang.
Publication: Proceeding for the 15th European Conference on Information
Warfare and Security p. 205-211, ECCWS’16

The integrity of a computing platform is defined by the sum of the code and
data that govern its behaviour. The goal of the TPM (Trusted Platform Module)
is to establish trust in the integrity of its host platform, by providing crypto-
graphic evidence to verifying remote parties that the said platform only executes
code provided by trusted distribution parties. Remote attestation is the TPM
functionality which enables this integrity verification. At the time of writing this
paper, TPM 2.0 specifications have just been released.

This paper focuses on studying the new TPM 2.0 remote attestation func-
tionality and its privacy. This study uncovers two TPM architectural design
decisions which could compromise the privacy of end-users and make them more
vulnerable to tracking by the TPM manufacturers as well as law enforcement
entities.

First, we discuss how TPM 2.0 specifications allow the platform’s firmware
to enable/disable the platform hierarchy without the user’s consent. We call this
vulnerability TOOPH (The Always-On Platform Hierarchy).

Second, we discuss the ”re-certification” process, which is a new mechanism
that maintains a cryptographically traceable link from the platform hierarchy
controlled by the TPM manufacturer, to all the other hierarchies, even when
their root keys been deleted and re-generated by the user. This defeats the
isolation guarantees that TPM 2.0 provides between its 4 hierarchies. In order
to mitigate the recertification vulnerability, the paper proposes to implement
a user-level monitoring application, which notifies end-users about silent TPM
actions that were not implemented to ask for the users’ consent [52].
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4.5.3 Paper VI: 1,2, Pause: Lets Start by Meaningfully Navigating
the Current Online Authentication Solutions Space

Authors: Ijlal Loutfi, Audun Jøsang.
Publication: Proceedings for the 9th IFIP WG 11.11 International Conference
on Trust Management, Volume 454 p. 165-176, IFIPTM’15.

This paper provides a framework of a well-motivated set of attributes, for
categorizing and assessing online authentication solutions. This paper also uses
this framework to analyse and compare two important online authentication
protocols: LUCIDMAN as an example of a user-centric solution, and FIDO as
an example of a device-centric one. Some of the framework attributes discussed
in this paper are: the solution’s security guarantees, its usability, and its deploy-
ability. The results of this research are anticipated to make the navigation of the
online authentication solutions’ space more systematic, and facilitate knowledge
transfer between different stakeholders [80]
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Conclusion

This chapter returns to the research questions formulated in Section 1.2 and
discusses them in connection with the contributions of this thesis. This chapter
also suggests directions for future work.

5.1 Summary of Contributions

This research project started with one simple question: To what degree are
currently deployed online authentication solutions secure? And if their security
is insufficient, what measures can we take to increase their assurance levels?
Answering these questions set us on a long and exciting journey: What started
as research within the fields of security and the application layer, quickly turned
into a study of the platform’s underlying trusted execution environments.

In the first part of this research project, we focused on studying password-
based authentication, as well as FIDO strong multi-factor authentication proto-
cols. The results of the 2 first papers made it evident that irrespective of the
chosen authentication modality, all client applications for user authentication are
security-critical, and that their TCB includes the platform’s underlying system
software. Therefore, for the remainder of this research project, we focused on
studying the security of commodity platforms, specifically Intel X86.

Several studies and vulnerability reports show that commodity system soft-
ware is not secure and therefore non-trustworthy. To mitigate this risk, hardware-
based trusted execution environments offer strong security guarantees to protect
the confidentiality and integrity of user-level applications, even against a compro-
mised system software. While commodity platforms are equipped with numerous
commodity TEEs, authentication applications do not use their functionalities.
In Chapter 3, we presented the results of a gap analysis study, where we map
the security requirements for online authentication applications to the security
features currently deployed by commodity TEEs. This analysis identified a
number of gaps which clearly prevent user-level applications from using TEEs:
1) lack of open provisioning, 2) lack of trusted input channels, 3) lack of trusted
output channels, and 4) lack of isolation within the same TEE instance.

The results of this gap analysis were fundamental in steering the research
direction of the rest of this research. We used the identified gaps to formulate
the 3 last research questions of this thesis.

In the rest of this conclusion chapter, we discuss the 4 research questions of
this thesis individually:
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RQ1. What are the failings of current password-based and strong
online authentication solutions?

Formulating this question started with the realization that passwords are the
most widely deployed user authentication method. While people have been
predicting their demise with the rise of alternative more usable modalities such
as biometrics, passwords are still well and alive, and are currently used by 99,9%
of online service providers.

This first research queston is addressed in both paper I and paper II. In
the first paper, we present the results of a usability study that explores the
behaviour of IT professionals regarding password-based authentication. The
aim of this study is to challenge the assumption that only ignorant users have
poor password usage habits, and explore the hypothesis that ”knowledge of
good password habits is a necessary but not by itself a satisfactory requirement
for a safe password behaviour”. The analysis of the data set collected from
IT professionals reveals no evidence of any statistically significant correlation
between the perceived sensitivity of an online service and the respondent’s
password strength.

The results of paper 1 reflect the fact that password-based-authentication
have inherent weaknesses , especially when used as a single factor to construct
authentication protocols. Therefore, we decided to study the so-called strong
multi-authentication-protocols, as reported in paper 2. This work focuses specif-
ically on providing a systematic analysis of the trust requirement for the FIDO
protocols. An interesting result of this study reveals that FIDO protocols intro-
duce a new distributed trust model, where the security of the authenticator’s
underlying platform is a strong trust requirement which can be difficult to satisfy
[79].

RQ2. How can we leverage commodity hardware TEEs to provide iso-
lated execution and secure end-to-end input channels between online
user authentication client-applications and end-users, even within a
compromised platform?

In paper 3, we introduce the design, implementation and evaluation of TrustUI.
This new solution architecture uses 2 TEEs, Intel SGX and a PSD (Personal
Security Device) which is based on an embedded secure element. Intel SGX
creates an enclave which enables the isolated execution of the user authentication
application. Intel SGX and the PSD also establish an end-to-end encrypted
channel between the end user and the web enclave. The user can then use the
PSD’s dedicated keypad to enter sensitive input, which will be sent securely to
the web enclave and then to the web server. TrustUI provides strong security
guarantees even against a strong adversary who controls the platform’s underly-
ing system software.
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RQ3. How can we leverage commodity hardware TEEs to provide se-
cure end-to-end output channels between online user authentication
client-applications and end-users, even within compromised platforms

The second part of TrustUI which is presented in paper 3, introduces the design,
implementation and evaluation of a new architecture solution which provides
trusted output channels from end-users to their online service providers, even in
the presence of a malicious browser which changes the rendering of the pages
displayed to the user. TrustUI is a two-step solution: the first component is a
screen capture engine which programmatically captures a bitmap representation
of the rendered display directly from the GPU frame buffer, which is out of
reach from Man-in-the-Browser malware. The second component is the image
analysis engine, which cross-compares the captured image to a reference one.
This allows it to detect any rogue injected elements. The two components can
be implemented within a user-level TEE such as Intel SGX.

RQ4. How can we leverage commodity hardware TEEs to detect com-
promise of commodity input channels?

In paper 4, we introduce SMMDecoy as a novel solution for detecting firmware-
based keylogger malware which can compromise the integrity and confidentiality
of the keyboard’s user interface.

SMMDecoy uses principles from the security-by-deception paradigm. The
solution proposes to inject intentionally crafted noise, which mimics authenti-
cation credentials, into the keyboard buffer, and wait for any potential GPU
keyloggers to sniff it. A remote server triggers a detection alarm when it receives
an authentication request using any of the rogue credentials. SMMDecoy uses 2
TEEs: SMM and Intel SGX [78].

The Main Aim and Contribution of the Thesis

The research contributions of the 4 research papers are a direct answer to the
main aim of this thesis, because they clearly show that we can indeed ”use
available commodity hardware TEEs as primitives to build systems which meet
the specific security requirements for online user authentication developers and
end-users”.

However, we do acknowledge that these TEE-based solutions have their own
set of limitations. In fact, the security of applications which use TEEs still
completely depends on the hardware implementation of these TEEs, and on the
trustworthiness of their manufacturers. This is problematic, because hardware
can include backdoors that are difficult to detect, since it is much harder to
test and reverse engineer than software, especially by independant third-parties.
Furthermore, CPU-based TEEs have so far been vulnerable to certain side-
channel attacks, and no proper mitigations have been so far proposed by their
manufactureres. Finally, it is interesting to note that TEEs introduce new
distributed trust models. The answer to whether end-users want to consolidate
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trust among one or few entities, or rather distribute it among many, will depend
less on technical considerations, and more on geo-political ones.

5.2 Applicability of TrustUI and SMMDecoy Solutions

This research envisions a world where the average user can have access to
reasonable security-guarantees when they use the devices and services which
have come to be a fundamental part of today’s modern life, such as e-banking, and
e-government services. Therefore, this thesis focuses on commodity devices which
are available to the majority of end-users, instead of customized high-end military
or enterprise-grade devices. In fact, both TrustUI and SMMDecoy are solutions
which can be practically deployed within today’s off-the shelf X86 devices. This is
possible because they do not require any custom modifications to the underlying
commodity hardware. Furthermore, these solutions are not exclusively relevant
to online user authentication. They are rather applicable to all security critical
user-level applications running on X86 commodity devices, such as online banking
solutions, crypto-currency wallets and applications processing health-related
data.

Finally, solutions such as SMMDecoy and TrustUI which can offer stronger
integrity and confidentiality guarantees to applications running on end-point de-
vices, are an important pre-requisite for enabling the adoption of truly distributed
user applications [85], as well as a secure realization of the edge computing
paradigm [116].

5.3 Limitations

While this thesis provides several contributions to the fields of online user
authentication and commodity hardware TEEs, its output and results are
limited by various constraints. These are mainly due to the limited time-
frame allocated for this research and the constantly evolving threat scene and
technology solutions.

Therefore, the thesis and its solutions are limited to the Intel X86 platforms
with a focus on the PC market. The thesis studies neither the mobile nor
embedded platforms. This choice consequently excludes a number of ARM and
AMD specific commodity TEEs such as ARM TrustZone.

Furthermore, the thesis only focuses on addressing a subset of the gaps
identified in the gap analysis performed in Chapter 3, namely the lack of trusted
input and output channels. However, the lack of open provisioning and a
multiplexed execution environment are not covered.

Additionally, the solutions presented in papers III and IV include the design
of several cryptographic protocols. The correctness and security of the latter has
only been informally argued [121]. However, it would be beneficial to formally
verify these protocols using automated tools such as Maude-NPA [33].
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5.4 Outlook on Future Work

A natural continuation of this thesis is to extend its research into other computing
platforms, namely ARM IoT devices. This is an important research direction
because the embedded systems’ market is going through a profound transforma-
tion. As a matter of fact, most embedded systems were initially built under the
assumption that they will be used as standalone devices, and there were few ways
for the outside world to access their execution environments. However, as the cost
of computing technologies decreases, embedded systems are quickly becoming
more resource-rich. For instance, numerous manufacturers augment their IoT
devices with telecommunications hardware and TCP/IP software networking
stacks, which allow them to connect to the Internet. Furthermore, many of these
IoT devices are expected to run security-sensitive workloads, namely within the
financial and health sectors. However, not every IoT device is secure enough
to handle such security-critical applications. Hardware TEEs are a promising
approach to mitigate this risk.

Another interesting extension of this work is to focus on the problem of remote
trusted computation as a fundamental enabler for the cloud computing paradigm.
As a matter of fact, cloud databases for instance, offer greater performance,
elasticity and storage advantages over traditional on-premise solutions. However,
customers worry that the confidentiality and integrity of their data will be
compromised by a malicious cloud provider, especially within a multi-tenant
configuration. Trusted execution environments are an important security primi-
tive which can mitigate such a risk, by isolating the user’s workload from the
cloud provider’s software stack. Homomorphic Encryption (HE) schemes are
another promising security primitive which enables computation over encrypted
data. However they are not currently suitable for general-purpose computations
because they suffer from very heavy execution overhead. Newer approaches
aim to combine TEEs and HE to provide stronger security guarantees. This
”combined model” uses HE to encrypt data, and TEEs to ensure the integrity of
the database code at run time [31].
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Paper I

Passwords Are Not Always
Stronger on the Other Side of the
Fence

Ijlal, Loutfi, Audun, Jøsang
Published in the proceedings for the 2015 NDSS Workshop
on Usable Security (USEC’15)- San Diego, California.
DOI:10.14722/usec.2015.23005

I

Abstract

The username-password pair is still a prevalent form of online authentica-
tion. However, attacks that are leveraging weak password habits are on
the rise. The main response of the security community on the ground is
to invest more in educating users. Such an approach leads to believe that
the long-held assumption stating that an ignorant user is the cause of an
inadequate password behavior, still has many opponents. Although differ-
ent research studies have presented other more likely reasons, practices
are still perpetuating the same solution mindset of increasing end users’
education. The behavior of users has not improved dramatically over the
last decade despite all these efforts. Therefore, this research work explores
the hypothesis that knowledge of good password habits is a necessary
but not by itself a satisfactory requirement for a safe password behavior.
This will be achieved by studying the password habits of the same people
advocating for more end user education. To investigate this hypothesis,
we conducted a survey targeting an audience of IT professionals with
good knowledge about security. The survey results show that cognitive
knowledge of password security does not always materialize into practical
and secure password practices. The anticipated results would be that
confronting IT professionals with their own password practices which fail
to adhere to what they preach to end users, will motivate them to let go of
their long-held assumptions that more education is the solution. This will
further support the points made by other studies explaining the rationale
behind the inadequate password habits of end users.

I.1 Introduction

Despite recent advances in user authentication methods, the most common
mechanism used on the Internet today is still the username and password pair.
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As a result, users are maintaining a large number of credentials for the many
online services they use [38]. This is problematic because password-based user
authentication brings serious usability challenges.

The inherent problem with data security is human fallibility. Even with the
most advanced security systems in place, if there is a human component to that
system, there will be vulnerabilities [45], [100]. Enforced policies are not stopping
users from adopting inadequate password habits such as weak passwords, reused
passwords and ignoring certificate warnings, just to cite a few. Indeed, security
reports over the past decade show that attackers have been leveraging weak
passwords in order to gain unauthorized access.

Hence, given the importance of password habits, a number of studies have
been conducted by IT professionals with the aim of finding satisfactory solutions.
As anticipated, the surveys converge in their results, demonstrating alarming
percentages of weak passwords and inadequate password practices [17]. The
main response by the security community to these threats against the human link
has been users’ education. Users are given instructions, advice and mandates as
to how to protect themselves and their machines [46]. In this spirit, many IT
professionals invest heavily in this regard. From companies including modules
while onboarding their new employees, to large online companies posting so-
phisticated tips to its customers, to researchers investing in designing education
modules that ought to be included in schools, the examples are numerous. This
behavior presupposes that the idea attributing inadequate password habits to
an ignorant and lazy end user, is still being held by IT professionals.

However, more recent research studies have been giving strong evidence for
other more likely causes that explain the inadequate password habits of end
users. For instance, solid arguments and studies indicate that the security advice
received by users does not justify the cost they have to trade for it, making their
decision to ignore it a rational one [38]. However, the reality on the ground
indicates that IT professionals are still advocating for and implementing more
education for end users. This leads to believe that while designing solutions, IT
professionals fall back on the traditional explanation of inadequate password
habits, which has long been attributed to the ignorance of end users. Several
arguments can explain why IT professionals still hold on to their old assumptions
despite strong recent evidence for their irrelevance: lack of awareness about
such studies, a disagreement with their arguments, or a failure to internalize
the implications of their findings while designing solutions. Independently of
the reasons, the numbers indicate that password habits have not improved
significantly since a decade [2], [117], while more educational efforts have been
deployed. This has to change. In this study, we want to explore the hypothesis
that knowledge of good password habits are a necessary but not by itself a
satisfactory requirement for a safe password behavior. This will be achieved by
studying the password habits of the same people who implement such solutions.
It is anticipated that confronting IT professionals with their own password
practices which fail to adhere to what they preach to end users through several
educational channels, will motivate them let go of their long-held assumptions
that more education is the solution. This will help further support the points
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made by other studies explaining the rationale behind the inadequate password
habits of end users.

To answer this question, we conducted our study with an audience that
is exactly what the solution of more education strives for: IT Professionals.
Hence, the metaphor of the other side of the fence in the title referring to the
community of security and IT professionals who are assumed to be knowledgeable
about good password practices and the risks associated with failure to comply
with them. This stands in opposition to normal users who are assumed to
be relatively ignorant about good password practices. Further, we want to
investigate what would explain any highlighted differences in the password
behavior of our audience. For this purpose, we also chose to remove a bias
that, as per our literature review, is always embedded into the studies: the
sensitivity level of different online services are regarded as a universally fixed
value for all users. However, this study considers the sensitivity level of a service
to be subjective. Indeed, it is a measure that should be evaluated from each
user’s perspective and usage profile for that specific service. For this reason, we
included in our survey, questions that capture the user’s perception about the
sensitivity level of each service, as well as how that correlates or not with their
behavior.

I.2 Related Work

I.2.1 Attacks

Users are typically seen as the weak link in any security chain. In the case of
individually targeted attacks, it is usually easier to get sensitive information and
passwords by social engineering than by direct assault or brute-force attacks
against the system. The best way to get software onto any machine is to get
the user to install it and human error is behind many of the most serious
exploits [5], [38]. Further, over the past decade, many companies have reported
breaches to their user accounts that were caused by brute force attacks against
passwords. The latter exploit the weaknesses of the passwords chosen by human
users. Early in 2013, the annual Data Breach Investigations Report published by
Verizon stated that approximately 90% of successful breaches in 2012 analysed
by Verizon started with a weak or default password, or a stolen and reused
credential [42], [134]. The examples of successful attacks that have compromised
the users’ credentials are numerous:

• As per the analysis provided by Acunetix for the over 10,000 Hotmail
passwords that were leaked online, 42% of them only contain lowercase
alpha characters (a-z) and the majority of passwords were between 6-9
characters long [134].

• Usernames, e-mail addresses, password hashes, and password hints for
adobe were leaked online. Inspired by this leak, a list of the worst passwords
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of 2013 was published which shows passwords like password1lqq letmein,
and 123456 are more common than one would think [13], [134].

Attacks against weak passwords are so flourishing that some emerging busi-
nesses were built upon this trend: pznedlist is a company specializing in mon-
itoring the market of leaked credentials and reporting back to its subscribers
when a positive hit is found on one of their accounts [117].

I.2.2 Surveys

In order to capture the behavior of online password usage directly from end
users, a number of research groups relied on surveys as a means to collect
feedback: during 2013, a survey was conducted in Norway by Norstat on behalf
of EVRY. The sample size was 1012 respondents from Norway [99]. The findings
of the survey were publicly shared in order to raise awareness about the current
passwords behavior, as well as evangelize for better password habits. In 2012,
the organization SCID conducted a consumer survey of password habits among
consumers in the USA [17]. Further, SafeNet which conducted a global survey
study on passwords, announced an equally alarming password behavior in all
the surveyed geographical areas [108].

I.2.3 The Assumed Solution is Education

The above-mentioned surveys and their analysis have reached many similar
conclusions: users are not practicing secure password techniques. After presenting
their data, most studies suggest that more education is the solution [5]. As many
notable institutions are putting forward the idea that investing in increasing
educational efforts about security would eventually resolve the bad password
behavior, other researchers are now taking this as a mantra and designing their
research with an end goal to prepare education modules.

This research work acknowledges that Cormac Herley has presented a com-
pelling case of why more education is not the answer. One possible plausible
explanation given by the latter is the high competition for users’ attention. Our
work aims to further support this point within the IT professionals’ community.
This would be achieved by confronting them directly with their own password
practices which fail to adhere to what they preach to end users through several
educational channels, while they don’t lack themselves such knowledge. Such
a tactic would be anticipated to push them to make more conscious efforts in
exploring different venues and implementing more efficient solutions, other than
more education [45]. Indeed, research results should not stay confined within
the borders of their papers. We should find efficient tactics to reach out not only
to end users, but also to IT professional working in the ground: they are indeed
in important link in the chain.

In this paper, we argue that we should challenge the assumption stating
that investing in more education for the end users is the solution for their
inadequate password behavior. Such an approach presupposing that the lack of
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end users’ knowledge about safe password practices is the reason cause driving
their inadequate password behavior. Given the still unsatisfactory status of
online password usage despite the education efforts deployed, our hypothesis
hence, is that educating users is a necessary yet not a by itself a satisfactory
reason to practicing safe online password behavior.

Specifically, this study investigates this hypothesis through a survey whose
respondents were chosen to be the same people who design these educational
solutions: IT security professionals. (Please refer to the survey methodology
section for more details).

The services we enquired the respondents about were: Facebook, Gmail,
LinkedIn, Twitter, Work/studies email, bank account, online gaming accounts
and online storage services.

Furthermore, unlike the rest of the studies we have surveyed, this research
accounts for the bias in identifying the sensitivity of any one service. Indeed, we
let the respondents report their own perception the sensitivity level of each service.
All possible associations/correlations between the reported sensitivity level, the
reported password behavior and the profile of the users is then investigated.

For the sake of clarity, the below concepts are defined as follows, and should
be understood and interpreted as such:

• Reported sensitivity level: the level of sensitivity a user judges a service to
be to them.

• Reported password behavior: this is a measure induced from the individual
answers the users provide about specific aspects of the password they use
for each service (e.g.: length, character mix...etc.)

• Perceived password behavior: the judgment the users hold about how
healthy their password behavior is.

Lastly, an emerging alternative to the passwords based web authentication
is federated login. However, this mechanism raises serious privacy issues. One
other goal of the study is to measure to which extent is this a concern for a
person who is well informed about the issue [72].

Based on the above, the analysis of the results, coupled with other relevant
studies, should enable us to get more insights into the following high-level
questions:

• To which extent does cognitive knowledge about passwords behavior mate-
rialize into practical behavior?

• To which extent can we claim that education is a necessary yet not a
satisfactory requirement for a safe online password behavior

• Are we making the right investment to resolve the password behavior
challenge by increasing education channels about it?

• Is there a disparity between the perceived strength of passwords IT profes-
sionals use, and the strength we induce from their self-reported behavior?
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• Does cognitive knowledge about how sensitive a service correlate with how
well the password habits related to that account are?

• Is more granular advice about passwords’ behavior the answer?

• Are people who perceive themselves as concerned with their online privacy,
less willing to use federated login?

• What would trigger a user to become more aware about their password
behavior?

I.3 Survey Methodology

I.3.1 Audience and Methods

Because this survey is aimed at a specific focus group, we did not open it for
the large public. The target audience of the survey is IT professionals who are
working in different industries.

We used a web-based version of the survey that we have designed with a
premium account of Surveymonkey. The URL of the web-based survey was
distributed via email.

We solicited the response of 112 people. A number of participants did not
complete the survey or answered questions inconsistently. Their responses were
removed from the data set, leaving 66 valid responses.

Further, it was our intention not to disclose to the audience that we are
targeting IT professionals for this study. This would help minimize any kind of
bias the respondent might develop while answering the survey questions.

The participants came from our mailing list of industry partners, as well
graduate level students and above at the informatics department at the University
of Oslo, Norway. Amongst the latter, we included a list of graduate level students
who were taking an advanced security class during the semester the survey was
conducted.

Thus, this work assumes that the audience sample chosen has sufficient
knowledge about good password practice. However, the study did not employ any
further mechanisms to account for any possible dishonesty from the respondents.

I.3.2 Design

The independent variables of the study are gender, age, ethnic background,
country of residence, marital status, occupation, education level, number of
online accounts of the user and IT Skills. The independent variables that aim
at capturing features of the psychology of the user are: view of the world,
introversion vs extroversion.

Our dependent variables can be classified in 3 categories:

• Parameters capturing perception: confidence in the strength of the used
passwords, perceived sensitivity of an online service, and the reported
concern about privacy.
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• Parameters capturing the reported behavior: storage behavior of the
password for each service, length, characters mix, memorability, reuse,
usage of social login features, and usage of password managers.

– For each one of the above mentioned parameters capturing the re-
ported behavior, the survey results include results about the following
online services: Facebook, Gmail, LinkedIn, Twitter, Work/stud-
ies email, bank account, online gaming accounts and online storage
services

• Looking into the future: expressed willingness to improve password habits.

The placement of the questions was designed in a way that would optimize
the accuracy of the responses by minimizing embedded biases [112], [127]. Re-
spondents answer questions about their password habits for each online service
prior to rating the sensitivity of these services. The goal is to avoid any minimize
any intentional bias that would correlate the sensitivity level of a service with its
corresponding password behavior when there is none. Further, the respondents
rate their confidence level in their passwords’ strength prior to determining their
intent to improve their password behavior or not. Lastly, the respondents report
their federated login usage before rating their privacy concern. This would help
avoid exposing the correlation/association the study aims to measure.

I.4 Results and Analysis

For the purposes of this paper, and in line with the objectives outlined above,
we will focus on presenting and analysing the below data:

• The profile of the respondents:

• Password usage

– The behavior reported by users for each service.
– The perception the respondents hold about the strength of their

password behavior.
– Association and correlation analysis between the reported/self-perceived

behavior and perceived sensitivity of each service.

• Privacy

– The reported privacy concern.
– The reported privacy behavior expressed in the federated login sce-

nario.
– Association/correlation analysis between the self-reported and self-

perceived behavior regarding privacy and federated login.
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• Profile of people who express a willingness to reconsider their password
behavior. Further, for the purposes of this paper, we did not include the
data of Bank account behavior in the analysis. Most respondents referred
to using 2 factor authentications for this service, and we will be discussing
the impact of 2FA in the context of another research activity.

I.4.1 Respondents Profile

Demographic profile Psychological profile Digital behavior pro-
file

Gender, Age, Ethnic back-
ground, Residence, Coun-
try, Civil status, Occupa-
tion, Education.

Mood, World view, Social
login activity.

History with digital hack-
ing, Number of online ac-
counts.

Table I.1: Parameters of the respondents profile

The full distribution of the respondents’ profile can be found attached in
appendix 2.

I.4.2 Personal Usage

For each one of the 8 services studied(Facebook, Gmail, LinkedIn, Twitter,
Work/studies email, Bank account, online storage, online video games), the re-
spondents reported on their password behavior by answering questions enquiring
for the below information(Questions 19 through 23 in the survey attached in
appendix 1):

• Length of the password.

• Characters Mix in a password.

• Frequency of password changes.

• Usage of password recovery.

• Uniqueness of the password.

Further, the respondents reported on their password storage behavior.
From the above, we can note that:

• For each one of the 66 respondents: the study collected 41 individual pieces
of information about their password usage.

• For each one of the 8 services: the study collected 494 piece of infor-
mation about how our respondents interact with their password based
authentication.
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• Collectively, this makes up a total of 2970 pieces of information about how
all of our respondents interact with all the services studied.

The analysis of the data was completed in two iterations. The focus of the
first iteration was analysing the dataset as an aggregated set. This iteration is
qualified as initial because aggregated data does not provide insight into how
the observed behavior relates to neither the user’s profile nor to the sensitivity
level of the online services. Further, this first iteration provides little insight
into the statistical relevance of the results. Indeed, judgement cannot be made
about whether the highlighted correlations have any statistical significance. All
these noted shortcomings of the aggregated analysis of. Nonetheless, aggregated
data provides a great first stone in getting acquainted with the date set and in
spotting patterns. The focus of the second phase is the study of more granular
data, to the level of each respondent and each service.

The observations made in the initial iteration of data analysis are highlighted
below:

1) Hacking Attacks don’t Discriminate: 26 percent of respondents have been
victims of hacking in the past. This number, naturally, does not account for
people who have been victims to hacking without being aware of it. To put
things into context, during 2014, 47 percent of Americans were hacked. This
goes into showing that IT professionals are not immune to attacks.

2) IT Professionals Are Guilty: 11 percent of the respondents use non safe
ways to store their passwords: digitally in the clear or on paper. While this
might appear to be a small proportion of the respondents, the result should be
read and interpreted in the context that the people surveyed are working in the
IT field. These respondents are hence, likely to have responsibilities involving
handling whole IT infrastructures and/or end user data. while there are views
stating that writing down a password and physically storing in a secure location
is a secure behavior, we disagree with this stand. As a matter of fact, a user
would store a password physically if they estimate a high likelihood of forgetting
it. This assumes that the user would be retrieve the piece of paper physically
each time they do forget their password. We consider this behavior to increase
the risks associated with exposing the password.

3) Character Mix: As per the table below, a considerable percentage of
respondents do not always use a mix of characters when they are not forced
to do so. Further, this behavior is more pronounced in services like Facebook
and LinkedIn which don’t enforce such policies, and that are increasingly being
used as identity providers for other online services leveraging the federated
authentication method.

4) Password Change Frequency: the respondents do not always exhibit a
healthy pace of changing passwords when the policies do not enforce it.

5) What IT Professionals Are Best at: So for, for each one of the surveyed
services, 97 percent of users reported password lengths greater than 6 characters.

Perception of the respondents about their password behavior (questions 24,
27 and 16):
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Yes, Always Yes, Sometimes No Never
Facebook 76 21 3
Gmail 81 18 2

LinkedIn 71 21 7
Online Video Games 67 30 3

Work/Studies 17 83 0
Twitter 3 24 74

Online Storage 83 17 0
Bank Account 82 14 5

Table I.2: Password character mix

monthly 6 months yearly rarely When asked
Facebook 2 10 19 40 29
Gmail 2 8 24 34 32
LinkedIn 0 7 16 46 32
Online Game 3 3 12 41 21
Work/Studies 12 9 12 26 41
Twitter 0 5 16 45 34
Online Storage 2 10 16 36 36
Bank Account 3 8 17 42 30

Table I.3: Frequenct of changing passwords

Reused Unique
Facebook 47 53
Gmail 42 58

LinkedIn 55 45
Online Games 60 40
Work/Studies 18 82

Twitter 42 58
Online Storage 45 55
Bank Account 17 83

Table I.4: Percentage of uniqueness of the password per service
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• Sensitivity of the 8 services

• Perceived privacy concern

• Perceived confidence in the strength of the password used.

From the above we can note that:

• For each one of the 66 respondents: the study collected 9 individual pieces
of information about their perceived password behavior.

• For each one of the 8 services: the study collected 132 pieces of information
about how our respondents perceive their password usage behavior.

• Collectively, that is a total of 1056 pieces of information about how all of
the respondents perceive their password interactions with all the services
studied.

Similarly to the reported password behavior, the analysis first considers the
results of the initial iteration of data analysis. Hence, the dataset is first analysed
as aggregated set. The resulting observations are as follows:

High Sensitivity Moderate Sensitivity Low Sensitivity
Facebook 36 50 14
Gmail 58 31 11

LinkedIn 22 47 31
Online Video Games 13 30 57

Work/Studies 85 15 0
Twitter 11 37 53

Online Storage 68 30 2
Bank Account 95 5 0

Table I.5: Perceived sensitivity of a service

72 percent of the respondents reported a higher than average level of trust in
their behavior. (Average refers to the average score as defined by the scale of
choices given to the users to choose from: from 0 to 3).

Expressed confidence level Percentage
Totally Confident, 4 17

3 55
2 18
1 8
0 3

Table I.6: Expressed confidence in the password strength
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6) Reported Behavior Vs. Perceived Sensitivity: From the aggregated analysis
of the data above, we can already spot areas in which the password behavior of
IT professional is less than satisfactory.

The first question the study would explore is whether the observed passwords
behavior for each user correlate with the perceived level of sensitivity for each
service. As the data is categorical, the Chi square test will be used [135].

The Chi square test will be performed against the null hypothesis. The
latter assumes that two categorical variables are completely independent. The
Significance value the set for this study is 0.05.

The study aims not only to explore the statistical associations between the
variables, but also to determine the specific pairs of combinations that have
yielded the most significant results. To achieve this goal, the analysis of the
data also comprises computations of the residual deviation for each pair. The
significance range used is (-2,2) [135].The test is first run on all the services
combined. The results are as follows:

The residual deviation significance does not always indicate a practically
significant association. This, the analysis cross-compares the initial conclusions
drawn from the residual deviations, to visualizations of the raw data before
making any final conclusions. Such an approach is considered a good practice,
because the Chi Square is a test of statistical association and not of linear
correlation. The focus of this study is linear associations. The conclusions made
as well as the interpretation of their implication are as follows:

• Character length is the feature that the respondents have shown the most
ability to materialize from cognitive knowledge into practice. Indeed, more
sensitive services exhibited lengthier passwords.

• An association exists between the character mix and the sensitivity level
of services. There are strong evidences of a linear correlation in the data.

• Further analysis is needed for the reuse feature: the initial observations are
not conclusive and did not initially reveal any significant linear correlations.

• The strong association between the pairs suggest that there is a consistency
in the behavior of users who perform well. Specific pairs of combinations
require further analysis.

The correlation value measured between different pairs on the reported
password behavior yielded p values less than 0.001:

• This was an interesting result for us. Although it did not express what
kind of correlation exists between these parameters, it made us think
about investigating the behavior of single respondent across all the matrix
parameters and see if we can spot consistent behavior of safe/unsafe
password behavior.
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Sensitivity level Interpretations
comments

Password Length 0.007 The null hypothesis
does not hold. Strong
derivative chi square be-
tween high sensitivity
an increased password
length

Password Character
Mix

Less than 0.01 The null hypothesis
does not hold
Residual values of val-
ues of yes, always and
yes, sometimes ones
which are higher
The residual values ob-
servation is confirmed
by visualization of the
data.

Password Change P value could not be
computed because of a
high number of small
count cells.

No conclusion about
the association from
the p value
The residual margin
analysis significance be-
tween(low sensitivity,
only when prompted
to do it) and (moder-
ate sensitivity, every 6
months)
Visualization of data
are in sync with the
residual margin obser-
vations.

Use of password re-
covery option

0,06 Null hypothesis holds
No significant residual
margin values observed

Reuse Less than 0.01 The hypothesis does
not hold
Residual margin values
were significant for all
pairs of value
Closer look at the date
needs to be done to in-
fer the most relevant
pairs for our study.

Table I.7: P test Chi Square of the measured password behavior vs. the perceived
sensitivity level
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At this point, we can already observe that our respondents are not exhibiting
a strong correlation between the perceived sensitivity level and the password
behavior. Suggesting that indeed, there is a disconnect between cognitive
knowledge and practical behavior.

After having completed this round of analysis, we wanted to get a DEEPER
understanding of our data, by looking at interesting combinations of responses
that are hinted by the p values for Chi Square analysis.

7) Respondents with an Across-the-board Satisfactory Password Behavior:
Indeed, and as hinted and highlighted in our previous conclusions, there was
a strong suggested association between the parameters capturing the reported
password behavior of users. One particular subset we focused on was the one
of the respondents who exhibited satisfactory behavior across all metrics. We
made interesting observations about this subgroup:

• 69 percent of passwords across all services satisfy all the parameters needed
for a safe password at once.

That is a mere 12 percent of the whole of the passwords. The respondents of
this subset exhibited the below behavior:

• 100 percent of the Respondents with a satisfactory password and who don’t
think they should improve their future password behavior have expressed
a complete level of confidence in their behavior (4).

• 97 percent of the Respondents with a satisfactory password behavior and
who are expressing the intention to improve their password habits in the
future, expressed a level 3 confidence level in their password strength.

• 3 percent of the Respondents with a satisfactory password behavior and
who are expressing the intention to improve their password habits in the
future expressed a level 2 confidence level in their password strength.

There was one more observation which made us zoom more into this group
of respondents and study a subset within it:

The Chi Square values revealed a tight association between 3 of the 5
parameters measuring the password behavior. Amongst the 69 passwords, more
than 50 percent of the passwords mapped to 30 percent of the respondents that
are part of this subset A.

Amongst A, the respondents who exhibited safe online password behavior
across at least 50 percent of the services were further studied. These are the
users exhibiting the most optimal password usage across all services:

• Interestingly, 75 percent of these respondents answered by yes to the
question of whether or not they intent to improve their password habits in
the future.
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• 0 percent expressed a total confidence in their password strength.

• 100 percent expressed a level 3 confidence in their password strength.

8) Confidence Vs. Willingness to Change: The P value of the Chi Square
test revealed a strong correlation between the reported confidence level at the
beginning of the survey and the expressed intent to improve one’s password
behavior at the end of the survey. Indeed, the P test value of 0.042 means that
the null hypothesis does not hold. A second look at the visualized dataset in
light of this observation confirms it.

• 9 percent of the respondents who have expressed a total confidence in their
password strength have expressed no intent to improve their password
habits.

• 67 percent of the respondents who have expressed a level 3 confidence
in their passwords behavior have expressed no intent to improve their
password habits.

9) Perceived Privacy and Federated Login: Ever since their emergence, feder-
ated login mechanisms have sparked a lot of controversy in the security community.
On one hand, they introduced a convenient way for end users to authenticate
and alleviate their identity sprawl problem. On the other, they raised many
privacy issues. In the context of this paper, we will not discuss the other security
requirements federated login put at risk [72].

One of the assumptions put forward to explain the growing adoption of fed-
erated login is the users’ ignorance of its related privacy issues. This assumption
pre-supposes, once more, that the lack of information is behind this behavior,
and that in the presence of such knowledge, people will choose their privacy over
convenience and usability.

The aggregated analysis showed that a significant number of respondents
rely on federated login. The second iteration analysis did not find any significant
statistical correlation between the expressed privacy concern, and the user’s
federated login behavior.

The above suggests that our respondents did not translate their expressed
privacy concern into a corresponding usage pattern of federated login.

I.5 Conclusions and Future Work

The above data and its analysis provide significant insights into the password
habits of IT professionals. Although they possess enough cognitive knowledge
to be fully aware of what constitutes an adequate password behavior, they fail
to materialize it into practical habits in many instances. Evidently, the data
analysis revealed no statistically significant correlation between the reported
password behavior and the reported sensitivity level of the services. This strongly
suggests that the ever more granular advice users get about adopting varying
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password behavior for each level of sensitivity, is not very efficient. Indeed,
although cognitively convincing, the desired implications of such advice are
not reflected in practice. This particular finding is in line with what Cormac
Herley has highlighted in the more is not the answer paper [45]. More granular
security advice is likely to be ignored due to other competing messages for users’
attention.

While one might argue that IT professionals are scoring better than the
general public in some metrics, the fact and matter is, the studied data is
far from being satisfactory. Surely, we would be expecting a better return on
investment for the educational efforts invested in end users. Furthermore, one
is to remember that the respondents of this study do not only represent the
profile of an ideal end user, but that they are also IT professionals within their
organizations. Hence, they are likely to be handling security processes, or at
least be holding privileged accounts within their organizations.

The aim of this research study was to explore the hypothesis that education is
a necessary yet not by itself a satisfactory condition for ensuring a safe password
behavior. The data of the survey supports the hypothesis. The data revealed
interesting observations about the subset of respondents who exhibit satisfactory
password habits for all services. As future work, we look forward to building
upon this work and further investigating the characteristics which set apart this
subset.

Further, the data revealed a significant proportion of respondents who had a
shift in the expressed willingness to review their password habits between the
beginning and the end of the survey. These respondents are also noted to have
expressed a level 3 confidence in their password strength.

As a possible future work, we want to explore the following hypothesis: a
healthy level of doubt in the strength of one’s password habits and an expressed
growing mind mentality, might yield a better correlation between cognitive
knowledge and password practices. Being absolutely sure of the adequacy of
your password habits, might make you more vulnerable, or at best, will not make
you more secure.

This study notes that over the last decade, there have been some voices
presenting strong explanations for users’ inadequate password habits. However,
the desired implications of these studies have not materialized yet in the way
IT professionals are designing solutions. The old mindset of more education is
indeed still prevalent [45]. This study results are meant, hence, to confront IT
professionals directly with their own password practices which fail to adhere
to what they preach to end users through several educational channels. We
would anticipate such a straightforward approach to fasten the mind shift of
IT professionals. If their own solutions are failing them, then they would have
more reasons to let go of their long held biases, and take mindful steps towards
embracing the real reasons explaining end users’ inadequate password habits.
Implementing novel solutions in line with these studies would be the ultimate
outcome.

Great insights have emerged as a result of significant research efforts targeted
at resolving the online authentication challenge. However, given the urgency
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of the matter, we should strive to make the findings of these research studies
relatable to the relevant people. This work subscribes to this philosophy. Indeed,
this study targets in a straightforward manner IT professionals, gets them
involved, and discusses findings that are very relatable to their concerns. IT
professionals are a critical link in the security chain. The results of this study
would be anticipated to increase the likelihood of IT professionals to let go of
their old mindset, and fasten the pace at which they will start deploying new
more appropriate solutions for their end users.

Lastly, as an IT community, we should open up to other disciplines, obtain a
deeper understanding of the motivating factors for users’ behavior, and become
humbler in our perception of human capabilities. Knowing the right thing to
do, does not necessarily mean that we will do the right thing. We must learn to
practice what we preach.
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I.6 Appendix 1: Overview of the Survey Questions

For questions 19–24, answers were required for each one of the below online
services:

• Facebook

• Gmail/Google+/YouTube

• LinkedIn

• Online Video Games

• Work Studies Account

• Twitter.

Below are the answers collected from the questions which define the profile
of our respondents:
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Q1 Are you male or female?
Q2 What is your age?
Q3 What is your ethnic background?
Q4 Where are you currently living?
Q5 Which of the following best describes your current status?
Q6 Which of the following best describes your current occupation?
Q7 What is the highest degree you have received/working towards

completing?
Q8 How would you describe your mood today?
Q9 How strongly do you agree/disagree with the below statement

People are inherently bad.
Q10 How Would you describe yourself?
Q11 How often do you log into social media networks (e.g. Facebook,

Google+, etc.)?
Q12 How would you rate your computer Skills?
Q13 Have you ever been the victim of online theft...(stolen password,

unauthorized transactions in your name)
Q14 How many web accounts do you currently have
Q15 In which year did you get your first email address?
Q16 What is the typical length of the password you use for the below?
Q17 How confident are you in the strength of the passwords you use to

access your online accounts?
Q18 How do you store passwords?
Q19 What is the typical length of the password you use for the below?
Q20 For each of the below, do you by your own choice use mixes of

different character types?
Q21 For each of the below, do you Ever change your password because

you decide you do it?
Q22 For each of the below, how often do you forget your password then

use the recovery option?
Q23 For each of the below, do you use a Unique password or is it reused

with another account?
Q24 How sensitive do you consider the below online service are to you?
Q25 Do you use an online password Manager to store/manage your

credentials?
Q26 Social login is the option to use your profile from one service to

register/login into another online service
Q27 Do you worry about the privacy of your online presence?
Q28 Do you think you should improve your password habits?
Q29 Do you have further comments about your web password and online

identities that you would like to share?

Table I.8: Overview of the survey questions
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Answer Options for gender Response Percent
Male 84.8%
Female 15.2%
17 or younger 0.0%
18-20 1.5%
21-29 43.9%
30-39 22.7%
40-49 13.6%
50-59 13.6%
60 or older 4.5%
Primary School 0.0%
High school degree or equivalent 1.5%
Professional training 0.0%
Bachelor’s degree or equivalent 12.1%
Master’s degree or equivalent 68.2%
PhD 18.2%
1 online account 0.0%
2-5 online accounts 22.7%
6-10 online accounts 16.7%
11-20 online accounts 9.1%
21-50 online accounts 24.2%
>50 online accounts 27.3%

Table I.9: The respondents’ profile
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Abstract

FIDO (Fast Identity Online) is a new online identity management archi-
tecture, developed and promoted by a large industry consortium. Its goal
is to simplify and strengthen online user authentication by relying on local
device user authentication. Another goal is to finally put passwords to rest.
This solution requires strong trust between players and components in the
architecture. These aspects have received little attention from the FIDO
consortium. The aim of this paper is to analyse the trust requirements for
FIDO, and assess the cost of establishing the required trust.

II.1 Introduction

Nowadays, consuming services online has become an exponentially growing trend
within different industries. A robust online identity management solution to
these services is a critical requirement for establishing trust between end users
and service providers (SP). Within this context, Identity management is defined
as the process of representing and recognizing entities as digital identities in
computer networks. It includes many security constructs such as authentication,
authorization and access control. Authentication, which is the focus of this
paper, is an integral part of identity management, as it serves to verify claims
about holding specific identities[114]. In today’s online ecosystem, the average
online end user holds multiple identities with multiple online SPs[38]. Pass- word
based authentication methods are by far the most prevalent deployed mechanism.
However, their shortcomings are well documented and recognized. As a matter
of fact, the rapid growth in the number of online services based on this model
now results in the users being overloaded with identifiers and credentials that
they need to manage. As a result, end users resort to adopting non secure
password habits[18][13]. On the other hand, SPs also fail in protecting the users
credentials they have stored on their servers. Early in 2013, the annual Data
Breach Investigations Report published by Verizon, stated that approximately 90
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percent of successful breaches in 2012 analysed by Verizon started with a weak or
default password, or a stolen and reused credential[135] [18]. For this reason, new
identity management models are being proposed and implemented. Their goal is
to either minimize the reliance on passwords, or eradicate passwords all together.
Identity federation has marked the last decade as being the most prominent new
authentication mechanism. However, Fast Identity Online (FIDO), which started
in 2012 as an industry consortium, is currently gaining exponential momentum
in the market with big identity management players, that can influence the
reality of online authentication moving forward [41]. For instance, Microsoft is
adopting FIDO2.0 protocols for its upcoming windows10 release [138], Google
has already enabled FIDO authentication on its email services, and Samsung has
equipped its Samsung galaxy S6 with FIDO compliant hardware [104][40]. FIDO,
indeed, holds the promise to solve many of the problems inherent to password
based authentication. However, it relies on a completely new architecture which
introduces new trust requirements between different players and components.
Identifying, understanding and quantifying these trust requirements are crucial
in making us aware about what could go wrong while using FIDO, and if these
are risks we are willing to incur.

II.2 Background and Related Work

FIDO came as a response to the shortcomings of the currently implemented
identity management (IdM) models. It also build on many of their concepts.
Hence, the first part of this section will focus on presenting the architectures
of these models. The identity management architectures to be discussed are as
follows:

1. Online isolated identity management.

2. Federated isolated identity management.

3. Local device identity management.

4. Fast Identity Online (FIDO).

II.2.1 Isolated Identity Management

In the simplest case where a set of users access a single SP, the traditional
approach is to let users identify themselves through unique identifiers, and
authenticate themselves using security credentials such as passwords. What we
have here is an isolated IdM model because each identifier that a user possesses
can only be used for one isolated service. This model, which is used for all types
of access to online services and resources, as well as for digital rights management,
is relatively simple for SPs [67]. In this architecture, online SPs act as both a
credential provider and an identifier provider to their clients. They control the
name space for a specific service domain, and allocate identifiers to users. A user
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Figure II.1: Isolated online identity management

gets separate unique identifiers from each service/identifier provider he transacts
with. In addition, each user will have separate credentials, such as passwords
associated with each of their identifiers. This is illustrated in Fig. II.1.

This approach might provide simple IdM from the SP point of view, but is
problematic for users, as the number of SPs that they transact with increases.
Users are faced with the daunting task of properly managing a large number
of passwords. This has led to very inappropriate password behavior which
compromises the security of end users (weak passwords, repeated passwords)
[67] [45] [100].

Because of all the above, academia and industry alike have been working
on alleviating the inherent problems of password based methods. One such
approach evolved from the idea that we need to move away from a siloed isolated
model, into a federated model. The latter would allow users to minimize the
number of credentials they need to manage. Thanks to the ever more increasing
adoption of social networks, federated IdM solutions have strongly impacted the
commercial end user online IdM scene over the last decade, after having been
confined to enterprise perimeters.

II.2.2 Federated Online Identity Management Solution

One of the purposes of identity federation is to address the type of inefficiencies
described above. Identity federation can be defined in this context, as the set of
agreements, standards and technologies that enable a group of SPs to recognize
user identifiers and entitlements from other SPs within the group. The basic
idea is to link different identifiers, and thereby their associated identities, owned
by the same user across multiple SPs. Then, allow the user to authentication
himself with a single identifier to one of the service providers, and thereby be
considered identified and authenticated by all the other SPs as well. The isolated
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Figure II.2: Federated online identity management

identifier domains within a federated group becomes a single federated identifier
domain [67]. This approach is illustrated in Fig. II.2.

Identity federation comes in many variations but is typically based on the
SAML1 standard which is implemented in applications such as Shibboleth,and
FacebookConnect. However, Identity federation does not fundamentally solve the
problem of identity overload. There will always be different federation domains,
because not all SPs will merge their respective user identity domains into a single
federated domain [81].

II.2.3 Local Owner Device Identity Management

While the two previous IdM models focused on online authentication, we will
shift our focus now into local owner device authentication (referred to in the rest
of the paper as user device authentication). Over the last decade, networked
computing devices have become a common commodity. The global smartphone
audience surpassed the 1,75 billion mark in 2014, while the number of computers
is still increasing despite the saturation of many developed markets. Furthermore,
we are witnessing the emergence of Internet of things where more and more
devices are entering the digital world [81]. This trend has been facilitated by the
decreasing costs of production of these devices. Numerous interesting aspects of
computing have been challenged by this trend. In the context of this paper, the
question that is most relevant to us is: How can end users identify themselves to
their local devices?

The answer to this question has long been simple: username, password pair.
However, numerous alternate authentication mechanisms such as biometrics
(fingerprint, iris) and TPMs are finding their place in user device authentication.

This is mainly due to two factors: the advancements made in the implemen-
tation of these new mechanisms. Also, its user acceptance is largely thanks to
the fact that user device authentication happens locally, and does not require the
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disclosure of any sensitive information (e.g.: biometrics) to third party SPs. The
market currently shows a growing trend in which users have accepted and em-
braced alternate authentication mechanisms for their local device authentication
[124].

II.2.4 Fast Identity Online: FIDO

FIDO Philosophy: In July 2012, the FIDO alliance became a 501(c)6 non-
profit organization. Its core idea relies on the following: leveraging local user
device authentication for online user authentication. In a Non FIDO scenario,
Bob would swipe his fingerprint into his mobile phone so as to authenticate himself
to the device as his owner. He would then select the mobile application of the SP
of his interest (e.g.: mybank), and use the corresponding online authentication
mechanism (username and password) in order to start his transactions with his
bank. In this scenario, Bob’s local user (owner) device authentication, and his
online authentication are two separate processes.

On the other hand, in a FIDO scenario, Bob would have a different experience.
In order to start his online transactions with his online bank, he would not
be required to enter any username, password pair. Bob would only have to
swipe his finger print, for example, into his smartphone, while being on the
authentication page on the mobile application for his online bank. What is
even more interesting in this new FIDO enabled scenario, is that from Bob’s
perspective, the authentication experience would be the same independently
of the SP he is interacting with. If Bob wants to connect into his Facebook
account, all he would have to do is open the Facebook mobile application and
swipe his finger again into his smartphone. In this scenario, Bob’s local user
(owner) device authentication has become part of his online authentication ,as
illustrated in Fig. II.3.(refer to section II.2.4 for more details about the FIDO
architecture).

First Mile Authentication: Figure II.3 above introduces the concept of hard-
ware authentication (hardware and authenticator will be used interchangeably).
It is expected that users will acquire FIDO Authenticators in various ways:
they purchase a new system that comes with an embedded FIDO Authenticator
capability; they purchase a device with an embedded FIDO Authenticator, or
they are given a FIDO Authenticator by their employer or some other institution
such as their bank. After receiving a FIDO Authenticator, the user must go
through an authenticator-specific enrolment process. For example, the user must
register their fingerprint(s) with the authenticator. Once enrolment is complete,
the FIDO Authenticator is ready for registration with FIDO enabled online
services and websites. Every time Bob wants to authenticate to an online SP,
his first mile would be to authenticate himself to his FIDO device [36].

Second Mile Authentication: The first mile authentication required the
interaction of Bob with his FIDO device/authenticator. However, the second
mile authentication will be transparent to Bob, not requiring him to further
interact with his device nor with the SP. After the completion of the first mile
authentication (Bob authenticating to the his FIDO device), the authenticator
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Figure II.3: FIDO authentication: high level overview

can attest to its identity to online SPs, on behalf of Bob. This is achieved by
relying on asymmetric public key cryptographic exchange.

FIDO User Authentication: Finally, after the completion of the second mile
authentication, the SP will authenticate Bob to his service, if the key exchange
was successful. Figure II.5 below is a high level summary of the both the FIDO
registration and authentication message flow.

The Concept of FIDO Authenticator: At the heart of FIDO protocols,
lies the concept of the authenticator. A FIDO Authenticator is a secure entity,
connected to or housed within FIDO user devices, that can create key material
associated to a SP. The key can then be used to participate in FIDO strong
authentication protocols. For example, the FIDO Authenticator can provide
a response to a cryptographic challenge using the key material. A FIDO au-
thenticator can be implemented within the user space or completely separate
from it. It is up to every SP to decide on the level of risk it wants to incur,
and hence, the type of authenticators it allows its end users to use [36]. Some
examples of authenticators are: a fingerprint sensor built into a mobile device,
a PIN authenticator implemented inside a secure element, a USB token with
built-in user presence verification, a voice or face verification technology built
into a device.

FIDO authenticators’ implementation are very varied. Each SP has the choice
to accept users with using a specific type of authenticators (e.g.: only accept
fingerprint readers that store the finger print and cryptographic keys in a secure
element, and that are manufactured by hardware manufacturer xyz). Hence, in
order to meet the goal of simplifying the integration of trusted authentication
capabilities, a FIDO Authenticator will be able to attest to its particular type
(e.g., biometric) and capabilities (e.g., supported crypto algorithms), as well as
to its provenance. This provides SPs with a high degree of confidence that the
user being authenticated is indeed the user that originally registered with the
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Figure II.4: FIDO registration [37]

Figure II.5: FIDO registration message flow [37]

67



II. FIDO Trust Requirements

Figure II.6: FIDO authenticator [37]

site [36].
So as to be able to perform the cryptographic operations defined in FIDO pro-

tocols, a FIDO authenticator needs to have some type of attestation mechanism.
This is achieved through the key structure as illustrated in Figure II.6:

The attestation key is used by an authenticator in order to attest to its type
and provenance to the SP. FIDO Authenticators are created with attestation
private keys used to create the signatures. FIDO SPs validate the signature
using the corresponding authenticator’s attestation public key certificate located
in the authenticator metadata. The metadata holding attestation certificates is
shared with FIDO Servers out of band [36].

Authentication keys: Every time a user wants to register with a new SP,
the authenticator generates a new private/public key pair called authentication
key pair. This key pair is unique for every combination of (end user, SP,
authenticator). The authenticator stores the authentication private key. The
corresponding authentication public key is communicated to the SP. After the
successful completion of the registration process, the authenticator performs a
challenge response exchange with the SP using the authentication keys, every
time a new authentication in required.

FIDO Architecture: Figure II.7 pulls all of the above FIDO concepts
together, by showing a detailed architecture of both the client side and the server
side of FIDO protocols.

II.2.5 Online Identity Management Trust Requirements

Now that we have introduced all the main IdM architectures, we will look at the
extent to which their trust requirements have been studied and analysed.

the concept of trust: Trust is typically interpreted as a subjective belief
in the reliability, honesty and security of an entity on which we depend for our
welfare. In online Environments, we depend on a wide spectrum of devices,
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Figure II.7: FIDO architecture [37]

ranging from computer hardware, software and data, to people and organizations.
A security solution always assumes that certain entities function according to
specific policies. To trust is precisely to make this sort of assumptions, so a
trusted entity is the same as an entity that is assumed to function according to
policy. A consequence of this is that a trusted component of a system must work
correctly in order for the security of that system to hold, meaning that when a
trusted component fails, then the systems and applications that depend on it
can no longer be considered secure. An often cited articulation of this principle
is: a trusted system or component is one that can break your security policy
(which happens when the trusted system fails) [65][128].

The transfer of the social constructs of identity and trust into digital and
computational concepts help in implementing large scale online markets and
communities, and also plays an important role in the converging mobile and
Internet environments. IdM (denoted IdM hereafter) is about recognizing and
verifying the correctness of identities in online environments. Trust management
becomes a component of IdM whenever different parties rely on each other for
identity provision and authentication[65].

II.3 Trust Requirements Analysis

While the focus of this paper is on FIDO, we believe that an accurate understand-
ing of its trust requirements cannot be achieved by analysing them in isolation.
They need to be compared and evaluated against the trust requirements of the
other existing IdM solutions: isolated, federated. Hereby, we will be presenting
in this section the trust requirements of all of the previously presently online
IdM solutions, with a special focus on FIDO. Subsequently, we will discuss the
implications of the varying trust requirements inherent to each solution.
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II.3.1 Trust Requirements of Isolated Online Identity Management

In this architecture, the trust requirements between users and SPs are well
understood in the form of specific security and privacy assumptions. In addition,
the industry has had several decades of experience with this model, and users
are familiar with it.

Trust complexity is greatly simplified when the same entity acts as identifier
provider, credentials provider and SP. Under these conditions, the client and SP
only need to trust each other for a small set of purposes [67]. Indeed, most of
the trust requirements fall under one of the two categories:

Client Trust in Service Providers:

1. The service provider has the expected identity.

2. The service provider protects client privacy.

3. The service provider has implemented satisfactory user registration proce-
dures and authentication mechanisms (from the clients perspective).

Service Provider Trust in Client:

1. The client handles their authentication credentials with adequate care.

II.3.2 Trust Requirements of Federated Online Identity
Management

While identity federation is aimed at simplifying the user experience, it increases
trust complexity both for the SPs and their clients. These trust requirements
can be classified as follows [67]:

1. Trust between Federated Service.

a) Service access by assertions between SPs on behalf of users will only
take place when legitimately requested by the client.

2. Trust in the Identity Mapping.

a) The mapping of identities between service providers is correct.

3. Client Trust in Service Providers.

a) The service provider adheres to the accepted policy for correlating
personal data about the same client from other service providers.
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II.3.3 Trust Requirements of FIDO

Given that FIDO is mainly an industry led initiative, and that its final protocols
have only been released recently, we found no existing studies to its trust
requirements. As far as our knowledge goes, this study will be the first one
to provide a basis for understanding FIDO trust issues that are seldom talked
about. They will help stakeholders who are joining FIDO better understand
what can go wrong with FIDO in real life. It will also help them understand the
hidden trust agreements they implicitly consent to, once they consent to using
FIDO. We arrived at these results by thoroughly studying FIDO protocols [36]
and its security reference[124] [37], then analysing them against the claims put
forward by the FIDO consortium in its official release[36].

In order to provide a simple view for our FIDO trust requirements results,
we classified every single trust requirement under one of these categories:

1. Trust in FIDO consortium.

2. Trust in service providers.

3. Trust in hardware manufacturer.

4. Trust local device computing platform.

5. Trust in end users.

6. Trust in FIDO protocols.

II.3.4 Trust in FIDO consortium

The FIDO consortium presents itself as an enabler for the promotion and
education about FIDO open protocols. However, it is responsible for certifying
the hardware manufacturers. It also ensures that the right metadata and root
certificates are being trusted. These tasks are detrimental to the overall trust of
FIDO as an IdM solution.

In this context, certification refers to the FIDO program that allows members
and non-members to measure compliance and ensure interoperability among
products and services that support FIDO specifications. Companies completing
certification may display the FIDO Certified logo to demonstrate to consumers,
customers and partners that they have created a high quality, interoperable
FIDO implementation that is known to work with other FIDO implementations.
In the case of a FIDO authenticator that is certified, it will be characterized
by a set of metadata information. This metadata is associated with an AAID
(Authenticator Attestation ID) and available from the FIDO Alliance. FIDO
Servers are expected to have access to up-to-date metadata to be able to interact
with a given authenticator. AAID is defined as a unique identifier assigned
to a model, class or batch of FIDO Authenticators that all share the same
characteristics, and which a SP can use to look up an Attestation Public Key
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and Authenticator Metadata for the device. Finally, FIDO alliance needs to
explicitly trust a root certificate to which all authenticator attestation Certificates
chain to, and that will be relied on by the SPs to assert to the validity of the
provided attestation certificates, and hence the metadata associated with it [36]
[124] [37]. The above process already introduces a number of trust requirements:

T1: Trust that the FIDO consortium has identified the right set of metadata
characteristics that are sufficient to identifying authenticators in ways that are
meaningful to SPs to accept or reject them.

T2: Trust that the certification is still meaningful throughout the time it is
valid.

T3: Trust that the FIDO consortium is able to detect and report authenticators
breaching the metadata characteristics declared in their certification process, and
update the metadata store accordingly.

T4: Trust in the validity of the FIDO PKI used (root certificate, attestation
certificates).

II.3.5 Trust in Service providers

In the previous section, we have discussed how FIDO consortium is responsible
for updating the content of the metadata. In this section, we will investigate how
SPs make use of the attestation PKI as well as the authenticators metadata store.
Indeed, SPs have the right to enforce policies about the type of authenticators
they want their users to use while consuming their services. It achieves this
through the use of an authentication policy. The latter is defined as a JSON data
structure that allows a SP to communicate to a FIDO Client the capabilities or
specific authenticators that are allowed or disallowed for use in a given operation.
The client then responds with an attestation certificate serving as a claim that
it possesses an authenticator that is compliant with the policy. It is then the
responsibility of the SP to ensure how genuine this claim is, by using information
in his metadata store. The latter should always be in sync with the central
FIDO metadata store that is supposed to hold the latest updates about all
authenticators [36] [124] [37]. The above process introduces two new trust
requirements:

T5: Trust that the SP is able to correctly assess the risk level associated with
the usage of his service by all his users.

The above risk assessment directly influences the service provider’s choice of
the allowed authenticators, and hence how the authentication policy is defined.
If the risk is estimated too high or too low, this will steer away consumers.

T6: Trust that the SP establishes the appropriate network connection while
updating the metadata store.

II.3.6 Trust in Hardware Manufacturers

The architecture of FIDO has brought hardware manufacturers into promi-
nence in the IdM trust requirements discussion. In all previous IdM models,
hardware manufacturers did not incur any significant trust requirements nor
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liability. However, in the context of FIDO, hardware manufacturers have central
responsibilities. For instance:

1. Manufacturing the hardware that is used as an authenticator for FIDO.
The user owner local device authentication is the first step in the new
FIDO authentication process.

2. Providing cryptographic evidence to the SP attesting to the type and
provenance of the authenticator.

Furthermore, a main tenant of the FIDO privacy-by-design premise is hard-
ware related. On one hand, as discussed in TR4, TR5, and TR6, FIDO protocols
provide a mechanism for SPs to get information about the type and provenance
of the authenticator being used. This is mainly achieved through the attestation
certificate. However, this poses the risk of exposing the privacy of users, in the
case that their authenticators can be identified individually by SPs. In order to
resolve this issue, FIDO protocols proclaim the following requirement:

UAF authenticators can only be identified by their attestation certificates
on a production batch-level or on manufacturer- and device model-level. They
cannot be identified individually. The UAF specifications require implementers
to ship UAF authenticators with the same attestation certificate and private key
in batches of 100,000 or more in order to provide unlikability [37].

All of these mechanisms introduce the following trust requirements:
T7: Trust that hardware providers will not unintentionally break the unlika-

bility property.
Due to the recent privacy scandals in which governmental states have been

involved, as well as the geopolitical changes the world is witnessing, the IT
market tends to be compartmentalized. Indeed, there are a number of states
that are wary of buying and using technology of its non-political allies (Russia,
China, Korea, USA). Especially at the beginning of FIDO adoption, this might
lead the attestation certificate revealing more information than it ought to. This
scenario can also happen in the case where specific hardware manufacturers are
known to traditionally provide for certain industries (e.g.: military, banking).
This risk becomes ever more relevant, with the recent news of the UK and US
government entities joining the FIDO alliance[91].

T8: Trust that hardware providers will not intentionally break the unlikability
property.

The FIDO consortium is not responsible for the ongoing testing process of
all authenticator units produced by every hardware manufacturer. Furthermore,
the metadata part of the metadata store and that are verified by APs during
the attestation process, are only a subset of the authenticators characteristics.
These facts give the opportunity to an evil hardware manufacturer to omit
security relevant characteristics from the metadata characteristics disclosed
during the certification process. This hardware manufacturer can then use this
as a backdoor into manipulating some individual or entire authenticators, by
making them susceptible for releasing private information for instance. As a more
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dangerous exploit, the hardware manufacturer can manipulate its authenticators
into compromising the cryptographic material it stores. The latter scenario leads
us into identifying another trust requirement [124].

T9: Trust that hardware manufacturers will not keep a backdoor in the
authenticator, and exploit it to release secret cryptographic information of its
users.

II.3.7 Local Device Computing Platform

The currently deployed online IdM solutions focus on defining more secure
communication protocols between their end points (client, SP server, identity
provider server). The question of whether the client computing platform (e.g.:
computer, mobile phone) end users use to connect to SPs is compromised or
not has been left out from their solutions. However, a number of the attacks
that are directed against online IdM solutions do start from a compromised
computing platform(a rooted computer, a keylogger, a compromised browser).
This kind of threats is not very far-fetched. According to PandaLabs estimates,
31.63 percent of the world’s PCs are infected with some sort of malware (Q2
2012) of 78.92 percent are Trojans [97]. This situation makes it so that even
with the most carefully designed communication protocol between end points,
and the most safely guarded server platform, the password of end users can still
be compromised if they are authenticating to their SPs from a compromised
device. Hence, one would deduce that any new online IdM solution aiming to
improve the strength of its solution would not introduce the clients’ computing
platform as a component of its architecture. Unfortunately, this idea lies at the
core of FIDO’s architecture:

1. Besides the user agent (browser, app), FIDO has introduced the concept
of the FIDO client. The latter communicates with both the FIDO authen-
ticator and the user agent, and may be implemented in whole or in part
within the boundaries of the user agent [124].

2. Furthermore, FIDO supports authenticators that are implemented as part
of the computing platform, where secret cryptographic information are
allowed be stored on the client’s platform user space.

Indeed, while FIDO has introduced the client’s computing platform as a
main new component in its architecture, its solutions assumes that the client
computing platform is not compromised by viruses or Trojans. Unfortunately,
the reality could not be further from that as the studies show.

T10: Trust that the user computing platform is not compromised by malicious
soft- ware.

II.3.8 End Users

The other side of trusting the local user computing platform to not be compro-
mised is to have trust in the user not compromising it:
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T11: Trust the user will not expose his or her device to compromise in
infected platforms.

II.3.9 FIDO protocols

FIDO is a very recent protocol. However, it has been interesting to see it
gaining ground so rapidly with industry players that have a very large base
of customer. FIDO protocols have received little challenge from the security
community. Most of the security reports and guarantees are coming directly
from the FIDO consortium itself. In other words, FIDO protocols have not been
put to the test of the market yet, decreasing hence the level of trust we can have
in their strength. The trust In FIDO protocols can be expressed in two aspects.

T12: Trust in the security of the protocol design.
T13: Trust in the security of the protocol implementation.
Indeed, on the user computing platform, the FIDO architecture has introduced

more layers of abstraction, that communicate with each other through FIDO
specific API. As illustrated in figure II.7, the layers of the abstraction from
top to bottom are as follows: user agent (browser, app), FIDO client, ASM,
FIDO authenticator. Except from ASM, all other components have already
been introduced throughout the paper. ASM is a platform-specific software
component offering an API to FIDO clients, enabling them to discover and
communicate with one or more available authenticators. A single ASM may
report on behalf of multiple authenticators. The interactions between all of these
new layers are done through FIDO specific API which has so far received little
challenge from the market.

II.4 Discussion

In order to arrive to an accurate assessment of FIDO trust requirements, it
is important to evaluate them against the trust requirements of the currently
deployed online IdM solutions (isolated, federated). In this discussion, we
distinguish between three categories of FIDO trust requirements (hereafter
referred to as TR): TRs that FIDO has inherited form the previous solutions,
TRs it has eliminated, and finally TRs it has introduced. Table II.1 summarizes
the trust requirements of all the previously discussed on- line IdM solutions. The
TRs that are common to more than one solution are only cited once.

Eliminated Trust Requirements: One of the main positive trust implications
of FIDO is the fact that it has freed service providers from a big liability they had
to incur. This has been achieved by the FIDO architecture which doesn’t rely
on service providers storing end users secret information, e.g. passwords. With
the increasing number of compromised service provider servers, this represents
indeed a significant trust improvement for FIDO over both the isolated and
federated online IdM solutions.

New Trust Requirements: FDO has introduced trust issues that were not
present in the previous online IdM solutions, namely: authenticator hardware
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Trust Requirements FIDO Isolated Federated
The SP protects client privacy.

√ √

The SP has implemented satisfactory user registra-
tion procedures and authentication mechanisms.

√ √ √

The client handles their authentication credentials
with adequate care.

√ √ √

Trust in the SP: ability to correctly assess the risk
level associated with the usage of his service by all
his users.

√ √ √

Trust in the computing platform: it’s not compro-
mised by malicious software.

√ √ √

Trust the user will not expose his device to compro-
mise in infected platforms.

√ √ √

Service access on behalf of users will only take place
when legitimately requested by the client.

√ √

The SP adheres to the accepted policy for correlating
personal data about the same client from other SPs.

√ √

Trust in FIDO consortium: it has identified the right
set of meta-data.

√ √

The SP has the expected identity.
√ √ √

Trust between Federated Service.
√

Trust in the Identity Mapping.
√

Trust in FIDO consortium: certificate is still mean-
ingful throughout its lifetime.

√

Trust in FIDO consortium: its ability to detect and
report authenticators breaching the metadata char-
acteristics declared in their certification process, and
update the meta-data store accordingly.

√

Trust in FIDO consortium: validity of the FIDO
PKI used.

√

Trust in Hardware manufacturers: they will not
unintentionally break the unlinkability property.

√

Trust in Hardware manufacturers: they not inten-
tionally break the unlinkability property.

√

Trust in hardware manufacturers: they not keep a
backdoor in the authenticators.

√

Table II.1: Trust requirements: FIDO Vs. Isolated IdM Vs. Federated IdM
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manufacturers and the FIDO consortium. As we can note from Table II.1, a
compromised authenticator can compromise both the secret key as well as the
privacy of its user. In order to resolve and mitigate this trust issue, FIDO
relies on its FIDO consortium, which will be responsible for controlling the
ecosystem of hardware manufacturers (certification process and metadata store).
We believe this is a very weak solution for such a severe trust risk (please refer
to section II.2.3 for details about the trust requirements related to hardware
manufacturers and the FIDO consortium).

Inherited Trust Requirements: Last but not the least, Table II.2.3 shows that
FIDO has just inherited several trust requirements from the previous online IdM
solutions, as its architecture didn’t resolve their underlying issue. The most
severe of these Trust requirements are the ones related to trusting the computing
platform. With 31.63 percent of the world’s PCs infected with some sort of
malware (Q2 2012) of which most (78.92 percent) are Trojans [97], working
under the assumption that the computing platform is not compromised is not
reasonable. This trust requirements is very relevant to FIDO because now the
end user secret key is not stored on the server side, but rather on his own
authenticator, which has to be connected to his possible compromised computing
platform.

The main claim of FIDO is that it is going to make authentication both
more usable and stronger. While FIDO does indeed offer a better usability
experience to its end users, by alleviating them from the burden of passwords,
and unifying their authentication experience across all their (FIDO enabled)
service providers, our trust requirement analysis shows that it falls short on the
front of strengthening the authentication process. The above discussions led
us to conclude that instead of solving the trust requirements of the previous
online IdM solutions, FIDO has just shifted them to other components in its
architecture. Indeed, FIDO has created a more complex ecosystem, with new
components (authenticator hardware manufacturers and the FIDO consortium),
to which previous trust requirements (mainly service provider ones) has been
delegated. We believe this new FIDO trust requirements map, puts too much
power and responsibility in the hands of entities that cannot be trusted, especially
in a world where online digital attacks are increasingly becoming state affairs.

II.5 Conclusion

Adequate management of identities in open computer networks is crucial to
providing security and improving efficiency. IdM requires an integrated and
often complex infrastructure where all involved parties must be trusted for
specific purposes depending on their role. The variety and complexity of the
trust relationships required in the various IdM models can cause confusion for
stakeholders. Satisfying the trust requirements also has a cost. Our study has
tried to concisely analyse the trust requirements related to FIDO, and thereby
allow these issues to be clarified. This study provides a basis for assessing the
cost of satisfying the trust requirements, as well as for discussing and comparing
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IdM solutions [67]. We have concluded that instead of solving the real trust
requirements of the previous online IdM solutions, FIDO has merely created a
new complex ecosystem, with new components to which these trust requirements
have been shifted. While we do recognize the great usability advantages this
solution brings to end users, we think FIDO is not making online IdM necessarily
stronger. it is crucial to not jump on the fast adoption bandwagon before
being fully aware of its trust requirements. This study will help all stakeholders
understand what can go wrong with such a solution. And if we have learned
anything from the unfolding of many security scandals over the last years, it is
that: If anything in computer security can go wrong, it will eventually go wrong.
In which case, we need to be ready to accept or mitigate the consequences. As
an academic community, we have a lot to offer to this big industry led initiative
FIDO, especially in terms of reviewing its trust requirements of this.
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Abstract

As the proliferation of web services continues to increase, so does our
reliance on web browsers. On the one hand, users routinely input sen-
sitive data, such as passwords, into its web-pages. Yet, nothing stops
a compromised browser from leaking it to malicious third-parties. On
the other hand, users also trust the displayed browser web-pages to be
non-tampered with. Yet, a Man-In-The-Browser malware (MITB) can
stealthily modify the HTML rendering of these sensitive web-pages. MITB
can inject authentic looking input fields into legitimate web-pages, prompt-
ing unsuspecting users to enter their sensitive data into them. It can also
change the displayed value of a payment amount transaction to get the
user to approve it, while rerouting the funds to a different account.

Indeed, the lack of trusted input and output channels compromises
the trust between web users and their respective web service providers.
Therefore, the aim of this paper is to enable trusted input and output
channels from end-users to web servers, despite the presence of a malicious
browser, and even a compromised system software.

TrustUI is the name of the paper’s proposed solution. On the one
hand, TrustUI mitigates the lack of trusted output channels by first
programmatically capturing the browser’s screen directly from the GPU’s
frame buffer. It then runs image-analysis on the captured screen to compare
it to a generic trustworthy reference image. On the other hand, TrustUI
solves the lack of trusted input channels by establishing an end-to-end
encrypted channel between web users and servers. It achieves this with a
combination of two trusted execution environments: An Intel SGX web
enclave instantiated within the browser address space, and a personal
security device showcasing a secure element and a separate keypad input
at the side of end-users.
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This paper also experimentally evaluates the core functionalities of
TrustUI and reports its results.

III.1 Introduction

The web has become a vital part of today’s modern society. Millions of users rely
on it daily to retrieve information, transfer money, access e-government services,
and conduct business [118]. They also rely on it to configure various safety-critical
devices, such as industrial control systems and medical devices, which offer web in-
terfaces for remote configuration [28]. This has made the web an attractive target
for cybercriminals, who look for ways to compromise all its three core components:
web servers, web clients and the network communication layer [103]. As a defence
mechanism, the communication layer between web clients and servers is protected
by end-to-end encryption technologies such as the Transport Layer Security,
while web servers run on tightly managed commercial server platforms. They
are frequently updated and often hardened with enterprise grade security mecha-
nisms, such as Hardware Security Modules [101]. However, the web client remains
the weakest attack vector, as it runs on the untrusted platforms of end-users.
Problem Statement. One of the most critical components of the client plat-
form is the browser software. For many web users, it is their primary gateway for
reaching and consuming web services. Consequently, browsers process and store
various security-sensitive data, such as authentication credentials and credit card
details. In this paper, we focus on the two following attack classes:

1. Trusted Input Channel Attack: when users need to communicate
with their remote web service providers, they enter input data into their
platforms through standard input interfaces, such as the keyboard. This
input is then processed by the system software and the browser before
being sent over the Internet to the web server. The later relies on this
input to make various security decisions, such as granting access to the
end-user and approving their transactions. However, a malicious browser
or a keylogger which has hooked into the kernel or the browser’ API is
able to leak it to third-parties [92].

2. Trusted Output Attack: Web users routinely rely on what the browser
displays to them in order to make security decisions. For instance, they
check the banking transaction amounts displayed in their screen before
approving them for payment. However, nothing stops a compromised mali-
cious browser from redirecting the payment transaction to the attacker’s
account, then modifying the HTML rendering of the banking web page to
still display the legitimate transaction. The end-user would then unsus-
pectingly confirm the transaction, and the bank would process it as if it
originated from a legitimate user. It can also inject new authentic-looking
fields prompting the user to enter sensitive information such as their credit
card details. As the rest of the web-page, such as the URL and the ‘https’

80



Introduction

lock, remain unchanged, it is very difficult for users to detect that they
are interacting with a maliciously tampered web page [140] [11]. This type
of malware is referred to as Malware-in-The-Browser (MITB).

Indeed, the lack of trusted input and output channels compromise the trust be-
tween end-users and their service providers. Therefore, the main research question
of how to enable web users to securely communicate with web application servers.
In other words, we need to enable trusted input and output channels from the end-
user to the web application, despite the presence of a malicious browser and even
system software.
Our Solution. In this paper, a two-part solution architecture called Trus-
tUI is proposed:

• TrustUI-Trusted Output Solution: The intuition behind TrustUI is
the observation that it is ineffective to leave it to end users to detect
when a web page’s rendering has been modified as the new modified,
since the rogue web-page can look completely identical to the original
one. Furthermore, solutions proposing out-of-band verification, such as
SMS’s sent by banks to confirm payment details, can still be defeated.
This is due to two fundamental weaknesses: on the one hand, out-of-band
modalities are subject to habituation. Users simply start confirming the
transactions out of habit without double-checking their details, or become
inattentive to small transaction modifications such as similar bank accounts,
or slightly rounded transaction amounts [3]. On the other hand, even if out-
of-band verification is successfully carried out by the user, its effectiveness
is only limited to attack scenarios where only dynamic page values, such as
transaction amount, are modified. Multi-Factor out-of-band solutions are
ineffective against attack scenarios where rogue elements are added into
the web page, such as input fields prompting users to enter the passwords
into them. However, TrustUI intuition is that a web server, such as a bank,
can increase trust in the transaction they are processing if they have a
guarantee that it matches the screen displayed to the end-user. In a parallel
world, web servers would have a way to access the users’ screen before every
transaction. In the absence of that, TrustUI proposes a two-step solution
which can achieve the same guarantees, albeit in a different manner. The
first component is a screen capture engine: it programmatically captures
a bitmap representation of the rendered display directly from the GPU
frame buffer, which is out of reach from malware-in-the-Browser. The
second component is the image analysis engine, which cross-compares the
captured image to a reference one. This allows it to detect any rogue
injected elements. Furthermore, if the goal is to detect tampering with
dynamic values such as the transaction balance, the optical character
recognition can be performed.

• TrustUI-Trusted Input Solution: to protect the confidentiality of user
input from a compromised browser and operating system, TrustUI aims to
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build an end-2-end encrypted input channel between the end-users’ input
interface and their web server. A straightforward solution to this problem
would be to encrypt all sensitive input at the level of the keyboard’s
subsystem, before it becomes accessible to the rest of the platform’s
system software and browser. However, this solution is impractical with
out-of-the box commodity platforms, since the standard keyboards are
not able to perform secure cryptographic operations and negotiate keys.
Instead, TrustUI proposes to equip users with personal security devices with
dedicated input keypads. These PSDs can establish an end-2-end encrypted
channel to a web enclave which TrustUI establishes within the browser’s
address space. Intel SGX can protect user’s input secure against all platform
malware, including a malicious operating system. Furthermore, the security
of PSD’s is based on an embedded secure element, and a separate keypad
and display[66]. These two Trusted execution environments negotiate and
establish an end-2-end encrypted channel. The user then uses the keypad
of the trusted device to enter their security sensitive input, which is sent
encrypted to the web enclave and finally to the web application.

Outline. The rest of the paper is organized as follows: section 2 presents the
needed background. Section 3 introduces the proposed solution. Subsequently,
section 4 presents the experimental results. The paper then follows with an
overview of the related work, and concludes with a discussion of the results, open
research questions and suggested future work.

III.2 Background

III.2.1 Man-in-the-Browser-Attacks

Man-In-The-Browser malware (MITB) is a ‘Trojan that infects endpoints through
malicious email attachments, links, or even when a user visits an infected website
[113]. Once a platform is infected, MITB malware hooks itself into browser
elements such as Browser Helper Objects (BHO), plugins, JavaScript, Add-on
features, Ajax calls and DOM Object models[11].An MITB can then see and do
everything a web user can see and do with a browser. The attacks it launches
usually fall into one of two common patterns. First, MITB can silently wait for
the user to visit a target web-page, such as the authentication page of a bank. It
then intercepts the authentication credentials and leaks them to other malicious
third-parties. In the second attack scenario, the MITB takes a more active role.
It modifies the rendering of the webpage elements, effectively changing what is
being displayed for the user. For instance, it can modify the value of a payment
transaction, or even inject new authentic-looking fields prompting the user to
enter sensitive information such as their credit card details. As the rest of the
web-page such as the URL and the ‘https’ lock remain unchanged, it is very
difficult for users to detect that they are interacting with a maliciously tampered
web page.
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In this way, MITB malware is different and more dangerous than traditional
phishing attacks. while the later uses links or email attachments to get users
to a fake website where they input their secure data, MITB still lets the victim
interact with the legitimate website, while passively stealing their data or actively
modifying their web-page display [113].

III.2.2 Frame Buffer

The frame buffer is part of the graphics subsystem. It is a large, contiguous piece
of computer memory that sits between the processor and the display. Whenever
the CPU sends a frame update to the graphics subsystem, the graphics processor
forms a picture of the screen image and stores it in the frame buffer. ‘It typically
stores a bitmap representation of the screen, which consists of colour values for
every pixel to be shown on the display. Colour values are commonly stored in
1-bit binary (monochrome), 4-bit palettized, 8-bit palettized, 16-bit high colour
and 24-bit true colour formats. The data is sent as a digital signal to the display
[84] [44].

Figure III.1: Buffer frame: a system overview

III.2.3 Intel Software Guard Extensions

A Trusted Execution Environment (TEE) is a system security primitive that
provides enforced isolation for executing security sensitive application logic. The
TEE isolates its hardware and software resources from a general processing
environment, also referred to as the rich execution environment (REE), where
most of the platform software, including the primary operating system, runs.

Intel Software Guard Extension (SGX) are a recent security extension for
the X86 Intel processor family. Its main aim is to allow ring 3 applications to
control their own security by creating enclaves [20]. Enclaves are thus hardware
TEEs that applications can create within their address space. Enclaves can then
be used to run security-sensitive code and data, where no other software residing
on the platform can access it, including the privileged system level software
such as the operating system and the hypervisor. Inside the CPU’s perimeter,
enclave’s data is processed in plaintext. Once outside the CPU, it always remains
encrypted by the new encryption engine, using a hardware protected key which

83



III. TrustUI

is generated upon every platform reboot. However, enclaves lack the ability to
execute system calls, as this relies on the operating system which is considered
untrusted within the SGX threat model [20].

III.2.4 Personal Security Devices

Personal Security Devices (PSD) are minimal portable embedded devices, which
are used to carry security-sensitive operations outside the perimeter of the poten-
tially compromised general-purpose end-point devices. One way to conceptualize
them is as a smart card with a display and a keypad. Indeed, they are often
designed around a secure element, which is augmented by secure storage, and
IO channels. While PSDs have been around for many decades, they have been
popularized in recent years by the rise of cryptocurrencies which has prompted
the need for wallets to store the cryptographic keys away from the malicious
platforms [98].

OffPAD is a one such PSD which has been developed within the university
of Oslo. It uses a secure dual-architecture, where certified secure elements are
attached to a general-purpose microcontroller which drives the attached UI
devices. These are a fingerprint reader, a keypad and a screen [132]

III.3 Solution Overview

III.3.1 TrustUI-Trusted Output Channel Solution

As discussed in the introduction, there are currently no perfect solutions for users
and web servers to detect a browser page that has been tampered with. Even
multi-factor authentication solutions which rely on out-of-band modalities such
as SMS’s are not enough. They are completely useless against MITB attacks
which inject rogue new elements into the browser’s page. Furthermore, even if
they can help guard against modifications to dynamic values, such as transaction
amounts, they are vulnerable to habituation. Users simply start confirming
the transactions out of habit without double-checking their details, or become
inattentive to small transaction modifications such as similar bank accounts, or
slightly rounded transaction amounts [3].

Therefore, TrustUI intuition is that a web server, such as a bank server, can
increase trust in the transaction they are processing if they have a guarantee that
it matches the screen displayed to the end-user. TrustUI proposes the following
two-steps solution: first, a screen capture engine which programmatically captures
a bitmap representation of the rendered display directly from the GPU frame
buffer, which is out of reach from malware-in-the-Browser. Second, an image
analysis engine, which cross-compares the captured image to a reference one,
or which perform Optical Character Recognition, depending on the type of
transaction being processed.
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III.3.1.1 USE CASE

While we have expanded on the description of such a malware-in-the browser
attack in previous sections, we would like to provide the following use case as
concrete motivating example to use for the rest of the paper:

1. A user wants to pay 100 USD to the merchant’s account A.

2. A Man-In-The-Browser intercepts the transaction and changes the details
to ‘pay 200 USD to the intruder’s bank account B’, then forwards it to the
bank web server.

3. the bank’s web server sends a confirmation request to the user to approve
the payment of 200 USD to the intruder’s bank account B, in the form of
a web page to be rendered by the browser and displayed on the screen.

4. The Man-In-The-Browser malware intercepts the HTML rendering request,
and modifies it to display ‘approve 100 USD to the merchant’s bank account
A’.

5. The user is prompted to approve the payment of 100 USD to the Merchant’s
bank account A.

6. The user approves the payment transaction, and the browser relays it to
the bank’s server.

7. The bank processes a payment of 200 USD to the intruder’s account.

Figure III.2: Malware In the browser attack scenario
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III.3.1.2 SOLUTION ARCHITECTURE

TrustUI proposes a two-step solution to allow web servers to gain trust that
users are not viewing tampered with web pages.

1. Screen Capture Engine: it captures a bitmap representation of the
rendered display directly from the GPU frame buffer, which is out of reach
for MITB malware.

2. Image Analysis Engine: It cross-compares the captured image to a
reference one and/or perform OCR to extract numerical and textual values
from the capture.

Figure III.3: TrsutUI solution overview for the trusted output channel attack

III.3.1.3 SCREEN CAPTURE ENGINE

To get a trustworthy copy of the displayed image, we need to capture it pro-
grammatically from a system component that is deemed trustworthy under our
threat mode. The frame buffer is one such component. On the one hand, it
always has a bitmap representation of the image to be displayed. On the other
hand, MITB malware cannot tamper with its content. To securely access the
frame buffer, there exists several options which are platform-dependent. In this
section, we discuss solutions relevant to Windows platforms, since we used it to
run the experiments part of this paper:

• Kernel Mode Capturing: it requires writing a kernel video miniport
driver, that would have unprivileged access to the frame buffer [96].

• User Mode Capturing: it leverages one of the APIs that are offered by
the Windows operating system for applications to programmatically access
the frame buffer.
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1. Microsoft DirectX: This is a collection of application programming
interfaces (APIs) for handling tasks related to multimedia, especially
game programming and video, on Microsoft platforms [96]. The most
interesting API for this paper is the desktop duplication API. It
provides controlled access to applications which require remote access
to a desktop , and allows them to capture frames as they are updated.
‘The interface IDirect3DDevice8 provides GetFrontBuffer() method
that takes a IDirect3DSurface8 object pointer and copies the contents
of the front buffer onto that surface. Once the screen is captured
onto the surface, we can use the function D3DXSaveSurfaceToFile()
to save the surface directly to the disk in bitmap format’ [96].

2. Graphics Device Interface GDI is also a collection of APIs. It is
used for representing graphical objects in the frame buffer, and then
transmitting them to output devices such as monitors and printers.
GDI is based on the Device Context (DC) object, which is handle to
either an entire screen, a window, a subset of a window or a printer.
Details about how to use GDI for screen capture are outline in the
implementation section.

III.3.1.4 IMAGE PROCESSING ENGINE

Once we have programmatically captured the content of the screen from the
frame buffer and reconstructed the image, we need to process it so as to decide
whether it has been tampered with or not. The most straightforward solution
here is to compare the captured image to a reference one, which we assume would
have been sent by the web server securely. This is sufficient when TrustUI needs
to detect whether MITB has injected new elements into the webpage or not,
this would be sufficient to conclude whether the web page has been tampered
with. However, if the goal is to detect whether a dynamic value such as the
bank transaction details has been modified, then Optical Character Recognition
is also needed. It can then be compared to the transaction amount being sent
back to the server.

While TrustUI can handle both cases, the experiments reported in this paper
focus only on comparing a screen capture to a legitimate reference one, without
the OCR part. A straightforward solution for TrustUI is to compare the bitmap
representation of the two images pixel by pixel. This is sufficient in our case,
since TrustUI needs to capture the visual similarity between two images and not
its semantic one.

III.3.2 Trusted Input Channel

When an end-user inputs their sensitive data into the platform’s keyboard, its
confidentiality can be compromised not only by a malicious browser, but also
by all the software stack on that platform. A straightforward solution to this
problem would be to encrypt all sensitive input at the level of the keyboard’s
subsystem, before it becomes accessible to the rest of the platform’s system
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software and browser. However, this solution is impractical for several reasons:
first, standard keyboards are not able to perform secure cryptographic operations
and negotiate keys. Second, it is not clear where the decryption would take place
in such a scenario.

TrustUI still relies on the same idea of having the sensitive input encrypted
while it is present within the platform. However, given the above discussed
limitations, TrustUI leverages two additional hardware-based trusted execution
environments to enable the solution.

• End-user side: instead of relying on the default platform keyboard interface,
TrustUI equips the user with trusted embedded device, otherwise referred
to as Personal Security Devices, PSD. At the core of PSDs’ architecture
is a secure element able of securely performing cryptographic operations,
and which communicates securely with the PSD’s dedicated UI channels,
namely its keypad and display.

• Browser side: TrustUI instantiates an Intel SGX enclave within the
browser’s address space. This web enclave can then securely negotiate a
secure channel with the user’s PSD, decrypt all incoming sensitive input,
and then forward it to the appropriate service provider. The enclave’s
operations are protected against any malware residing within either the
browser or the platform’s system software.

In order to enable this use case, TrustUI relies on a two-step protocol:

1. Secure Channel Establishment: this is a one-time interactive protocol
which aims to establish a shared secret key between the web enclave and
the personal security device.

2. Message Exchange: it takes place every time a user wants to enter security
sensitive web input into a browser’s page. The PSD uses the pre-shared
secret key, negotiated in step 1, to encrypt the input, while the web enclave
uses it for decryption.

III.3.2.1 INTEL REMOTE ATTESTATION

A core component of TrustUI secure channel establishment is the Intel remote
attestation procedure. This section outlines its details before moving forward
with presenting the solution.

Before a remote service provider provisions secrets into the enclave or accepts
the output of its computation, it needs to establish two trust guarantees. First,
the enclave needs to be running on a genuine SGX enabled Intel processor,
and not an emulated environment. Second, the enclave’s initial code and data
which were loaded by the operating system should not have been tampered with.
Remote attestation is the process which ensures these two guarantees. It is an
interactive protocol between the attested platform, the attesting remote service
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provider and the Intel Attestation Service (IAS), online service operated by Intel
[20] [29].

Each SGX hardware has a unique attestation key, which is only accessible by
special Intel SGX architectural enclaves, such as the quoting enclave. During an
attestation protocol, the quoting enclave first forms a structure referred to as a
quote, composed of a hash of measurements reflecting the order and the content
of code which has been initially loaded into the enclave by the operating system.
Subsequently, the quoting enclave signs the quote using the attestation key and
forwards it to the remote service provider and the Intel Attestation Service. The
IAS verifies that the signature has been generated by a genuine non-revoked
Intel SGX hardware, while the service provider compares the measurement value
to a reference one, so as to ensure that the enclave code has not been tampered
with during the loading process [20] .

Figure III.4: Malware In the browser attack scenario [57]

III.3.2.2 SOLUTION COMPONENTS

In this section, we present an overview of the components that are part of the
TrustUI solution of the trusted input problem, before introducing the secure
channel establishment protocol.

Intel Attestation Service: IAS is involved during the remote attestation
process of the web enclave. It has an identity key pair and a certificate signed
by Intel.

Remote Service Provider: in our use case, RSV is the web server who
needs to establish trust that the input it receives is coming from legitimate users
and not malware.
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Figure III.5: TrustUI trusted input solution overview

Personal Security Device: the PSD has an identity key pair, whose public
key is certified by the manufacturing authority. The certificate authority public
key is publicly available to third-parties.

WebEnclave: it is responsible for negotiating the secure channel with the
PSD, and then using the pre-shared key to decrypt the PSD’s encrypted input.

III.3.2.3 SECURE CHANNEL ESTABLISHMENT

This a one-time interactive protocol performed at set up time, so as to provide
the PSD and the web enclave with a symmetric share key they can use for
subsequent communication.

Figure III.6: Secure channel establishment protocol
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1. PSD generates Pa and constructs Msg1=(nonce,Pa), signs it with its
identity private key and sends it to the web enclave.

2. The web Enclave verifies the PSD signature to ensure it has been generated
by a genuine hardware non-revoked PSD. We assume that all manufactured
PSDs are signed by an authority whose certificate is public ally available
to all parties involved in the protocol.

3. The web enclave invokes the quoting enclave to generate a quote structure
and sends it to the RSV.

4. RSV forwards the quote to the IAS.

5. IAS verifies that the quote structure has been generated by a genuine
non-revoked Intel SGX hardware.

6. IAS returns the attestation status to the RSV.

7. RSV verifies the attestation status and the enclave measurement, so as to
ensure that the enclave has been loaded properly by the untrusted system
software.

8. RSV constructs Msg2 = Signed by RSV identity private key (IAS quote
response). RSV sends Msg2 to the web enclave.

9. Web enclave generates Pb, and derives Pab and constructs Msg3= (Msg2
+ nonce + Pb) encrypted with Pab+ Pb

10. PSD derives Pab, decrypts Msg3, and verifies the IAS and RSV signatures.

11. Web enclave generates gd, and a TPM signature over the quote

12. OffPAD verifies TPM quote with enterprise certificate. Verifies signature
of IAS, RS, and device’s shared key

At the end of this protocol, both enclave and OffPAD derives a shared secret
key K.

III.4 Experimental Set-Up and Evaluation

III.4.1 Trusted Output

The experiments were performed on an HP machine with an Intel Core(TM)i7
-75000 CPU, a 32GB RAM, and an Intel(R) HD Graphics 620. The platform
runs a 64-bit Windows 10 Operating system Home edition. The experiment
uses Instagram’s login page as a use case. In order to mimic the MITB attack
which injects rogue input fields into a page, we draw a rogue Instagram mock-up
login page. This malicious page hides the legitimate username and password
fields, which are centrally indented in the legitimate page, and replaces them
with identical looking username and password input fields which are indented to
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Figure III.7: Legitimate web page-username/password fields are in the center

Figure III.8: Malicious web page- rogue injected username/password field are
left indented

the left. Except from this modification, the webpage including the URL looks
completely identical to the legitimate Instagram login page.

In order to capture the displayed screen, TrustedUI used an open source
implementation of the GDI screen capture solution.[131]. GDI is based on the
Device Context (DC) object, which is a handle to either an entire screen, a
window, a subset of the window or a printer. Therefore, when TrustUI needs
to programmatically capture the screen displayed by the browser, the following
steps are followed:

• Get the device context of the desktop to be captured using the function
GetDeksopWindow().

• Get the DC of the desktop window using the function GetDC();

• Create a compatible DC for the Desktop DC along with a compatible
bitmap to select into that compatible DC using CreateCompatibleBitmap()
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After having captured the image from the frame buffer, we perform a pixel-
by-pixel comparison of the bitmap representations of the reference image and
the captured one, which is supposedly malicious. As the two images we used are
different, we get a trigger that the webpage is malicious.

While the delay introduced by the screen capture image is insignificant, the
image analysis takes 4 seconds to complete.

Figure III.9: MITB attack detected

III.4.2 Trusted Input

The implementation of TrustUI trusted input focuses on its core component,
which is the client side. The experiments were run on an HP machine with an
Intel Core(TM)i7 -75000 CPU that is SGX enabled, a 32GB RAM. The platform
runs a 64-bit Windows 10 Operating system Home edition. The provisioning
was left out of this paper’s experimented and assumed to have been carried at
a prior time as per the above described protocol, or that the shared key has
been instantiated manually during the platform initialization. For the personal
security device, the experiment uses an Arduino Uno, which simulates the keypad.
The Arduino Uno sends encrypted messages over a serial communication port
to the application which creates an enclave. This experiment used AES-256 for
encryption. The main overhead introduced in this scenario is the fact that the
user needs to use an additional piece of hardware to enter his input.

III.5 Related Work

Trusted Input: The lack of a trusted channel from the web user to the web
server is a recognized problem. Since the release of Intel SGX, it became apparent
that enclaves can play an important role in protecting security-sensitive input
data from malicious client platforms. However, Intel SGX lacks support for
trusted input channels to the end-user. Therefore, there have been several
proposals to resolve this. One set of solutions relies on the hypervisor to
establish generic secure IO channels, as is the case of SGXIO [137]. The other
set of solutions uses external embedded hardware devices to establish a secure
communication channel to either the SGX enclave of the web server. Indeed, the
idea of using an external trusted embedded for trusted UI is not new, as it dates
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Figure III.10: Arduino serial communication

back to the 80s, before the proliferation of smart phones and personal security
devices [126]. More recently, there has been a renewed interest in using these
trusted devices with Intel SGX. Just as we were working on this research paper,
SGX-USB proposed a solution with practically the same architecture as TrustUI
[63]. Fidelius and ProximetEE also propose very similar architectures [34] [29]

Trusted Input: Authentication credentials are a common attack target
for active Man-In-The-Browser malware. Therefore, many service providers,
such as banks, propose two-factor authentication which rely on out-of-band
verification to mitigate this attack. Such solutions can be defeated because
of two fundamental weaknesses. On the one hand, the out-of-band modality
such, as SMSs sent by the bank to confirm transaction details, are subject to
user habituation. Users simply start to confirm the transactions out of habit
without verifying the SMS details, or become inattentive to small transaction
modifications such as similar bank accounts, or slightly rounded transaction
amounts [3]. On the other hand, even if out-of-band verification is successfully
carried out by the user, its effectiveness is only limited to attack scenarios where
only dynamic page values are modified. It is, however, ineffective against attack
scenarios where rogue elements are added into the web page, such as input
fields prompting users to enter the passwords into them. Therefore, solutions
which aim at improving the overall security of the browser software have been
proposed. Promos integrates support for browsers at the OS-level [120]. Cloud
terminal runs a lightweight secure thin terminal locally and outsources the rest
of the security-sensitive computation to a remote server [1]. Shadowcrypt uses a
Shadow DOM to allow encrypted input/output for web applications [43].

III.6 Conclusions and Future Work

Users and web browsers make various security decisions based on client input
and output channels. Therefore, this paper proposes TrustUI, a new architecture
solution for enabling secure input and output channels from the end-user to the
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web server, despite the presence of a malicious browser, able to leak sensitive users’
input, and modify the browser pages displayed to them. In order to mitigate
the trusted output attacks, we design a two-component solution, where we first
programmatically capture the screen directly from the frame buffer, then compare
it to a reference trustworthy screen. The paper then experimentally evaluates
the screen capture engine using an open source GDI API implementation. As
for the trusted input attack, we propose to equip users with personal security
devices with dedicated input keypads. These PSDs are able to establish an
end-2-end encrypted channel to a web enclave which we establish within the
browser’s process address space. We use an Arduino Uno to simulate user’s
input into the PSD and send AES encrypted input messages to the application.

As a future work, we would like to implement and run both the image
processing and screen capture engines within a more trustworthy execution
environment, such as an Intel SGX enclave. In this case, TrustUI would need to
utilize libraries which allow applications to run unmodified within the enclaves,
such as Graphene [129]. Finally, TrustUI acknowledges the fact that it burdens
the user with the need to carry an extra hardware device. Therefore, we would
to explore as a future work to explore the feasibility of using the new android
transaction confirmation API. This would allow TrustUI to use smartphones
instead the personal security devices, while providing similar security guarantees
and more usability [25].
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Abstract

Human computer interaction is a fundamental part of the modern com-
puting experience. Everyday, millions of users rely on keyboards as their
primary input interface, and use them to enter security sensitive informa-
tion such authentication credentials. These can be passwords, but also
multi-authentication factors received from other devices, such as One Time
Passwords and SMS’s. Therefore, the security of the keyboard interface is
critical. Unfortunately, both PS/2 and USB keyboards have open buffers
which are vulnerable to sniffing by keyloggers. This paper focuses on
the detection of the stealthiest variance of keyloggers, which is deployed
within IO devices firmware, such as GPUs. We propose to use principles of
security by deception: We inject decoy credentials into the open keyboard
buffers, and give GPU keyloggers the opportunity to sniff them. These
decoy credentials are then sent to a remote server that can raise an alarm
anytime an attacker uses them. We assume a strong adversary that can
infect both the GPU and the kernel. Therefore, we propose to deploy the
solution within System Management Mode, and leverage Intel Software
Guard Extensions for network communication. Both SMM and SGX are
hardware protected against the OS and DMA, and provide thus strong
security guarantees to our solution, which we name SMMDecoy.

IV.1 Introduction

Despite recent advances in user authentication, the most commonly deployed
mechanism in the internet today is still passwords. Everyday, millions of users
rely on their username/password credentials to gain access to security-sensitive
digital services. However, password-based authentication is routinely compro-
mised. The main attack vectors can be classified in three categories: 1) the
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server side where password files are stored, 2) users’ bad cognitive habits of
choosing weak and redundant passwords or falling prey to social engineering 3)
and finally, vulnerabilities within end-user devices where passwords are stored
and operated on [47] [39].
As a matter of fact, over the past decade, we have witnessed many password
disclosures of high profile companies such as Sony, Yahoo, and LinkedIn. Analysis
of these breaches revealed that many of these online service providers implement
bad security practices, such as using unsalted hashes, and weak deprecated
hashing algorithms. The silver lining of this slew of high-profile password com-
promises, is the increased awareness about the issues, which has prompted many
companies to review and harden their password servers’ security. Consequently,
this has been increasing the cost of attack of database servers, and thus, turning
the attention of attackers to endpoint devices as a more attractive attack vector
[125] [48].
Furthermore, the adoption of multi-factor authentication by many online service
providers has further motivated attackers to focus on endpoints. For example,
many banks distribute One Time Password generators (OTP) to their users,
while others rely on out-of-band methods such as SMS to send second factor au-
thenticators. However, users still need to input these second factors into the same
endpoint device where the password is entered. This mechanism consolidates the
whole authentication process into one attack vector, aka the endpoint device,
where they can be exposed to a host of attacks. One such critical endpoint
attack vector is the keyboard device. Since users almost exclusively use it as an
input channel, it is of uttermost importance that it preserves the confidentiality
and integrity of users’ data [60].

IV.1.1 Problem statement

Unfortunately, keyboards suffer from a big sniffing problem. This is due to their
hardware interface, which is open for direct reading by privileged software as
well as DMA capable devices. This is true for both PS/2 and USB keyboards
[93].

• for PS/2 keyboard, the data output buffer which resides on the chipset key-
board controller and is used to transfer scan codes upon a key press/release,
is exposed to the platform host [145].

• For USB keyboards, the data transaction buffers which are memory mapped
are also exposed to the host[70].

One critical malware category that takes advantage of this insecure keyboard
interface is keyboard sniffers, more commonly referred to as keyloggers. Once
they infect a platform, keyloggers log keyboard activity, and leak data to remote
third parties. As documented in numerous disclosed attacks, keyloggers pose
a serious threat against personal and financial data, despite continuous efforts
to guard against them. For instance, keyloggers have been used to steal 10775
unique bank account credentials for customers who have shopping at Barnes and
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Noble stores over a period of 7 months [111] . Even governmental agencies have
relied for years on hard disk based keyloggers, as documents by recent leaks
[50] .While keyloggers can be implemented on either hardware or software, we
focus in this paper on the latter, as it is much more widespread and assumes a
stronger attacker. Software keyloggers can be classified under three categories:
[93]:

• User-level keyloggers: They often hook into application-level API, but can
also reliably detected, through more privileged system level hook-based
techniques.

• Kernel-level keyloggers: they hook into kernel-level API, and by doing
so, inadvertently modify the kernel’s code base, and thus its signature.
Therefore, they can often be detected based on integrity verification and
code attestation techniques.

• Firmware level keylogger: They can exploit firmware level vulnerabilities
within the BIOS or any IO device, especially ones which are open to general
computations such as modern GPUs. Therefore, they live outside of the
CPU execution environment, and can evade its detection mechanisms.
They can rely on the IO device DMA capabilities to directly read and sniff
the keyboard’s data registers.

In this paper we focus on firmware level keyloggers, and formulate our research
questions as follows:

How can we reliably detect the presence of stealthy GPU keyloggers on
endpoint devices? This research question is important the following reasons:

• The increased complexity of devices functionality, which is correlated
with an increased complexity of its corresponding firmware, has made the
firmware attack vector significantly larger.

• Many firmware malware categories, such keyloggers, do not need to hook
into any kernel API or structures. Therefore, system level detection
mechanisms such as code integrity and control flow integrity are inefficient
against it.

• CPU-based monitoring solutions, e.g. antivirus systems, cannot monitor
code residing on other execution environments within other devices.

• The increasing ease of deploying firmware Malware. This is especially true
for devices such as GPUs, which have become open to general-purpose
computations. In fact, GPUs have been traditionally used to process
graphics rendering code, relieving the CPU this way from these heavy
computations. However, the popularity of the gaming and AI industries,
and their increasing demand for more GPU computational power and
functionality, has made GPU general purpose computing much more ex-
tensive. Attacker are naturally interested in exploiting this large attack
vector. Furthermore, 99 percent of worldwide GPUs support GPGPU
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computations, which greatly increases the infection ratio of GPU malware.
This is different from previous firmware attacks, which had to be more
targeted, and thus limited to smaller infection ratios [70].

*For the remainder of this paper, we will use GPUs as an example for devices’
firmware level software.

The solution proposed in this paper is inspired by deception-based techniques,
which are traditionally used within the server side in order to harden the detection
of password database files breaches. An example of such solutions are honeywords,
where each user is associated with one legitimate password, and n fake ones.
This directly increases the effort required by attackers to brute force passwords.
Furthermore, in case a fake one is used, it automatically triggers an alarm
signalling a potential breach [136].

Similarly, this paper’s main intuition is that we need to deploy a transparent
mechanism which can inject intentionally crafted noise, which mimics authen-
tication credentials, to the keyboard’s buffer, and allow any potential GPU
keyloggers to monitor and sniff it. SMMDecoy would subsequently send a list of
injected decoy credentials to a remote third party. We propose to deploy such a
solution within System management mode, SMM, in order to take advantage of
its integrity and transparency guarantees. We also propose to use Intel Software
Guard Extension remote attestation capabilities to send decoy credentials over
the internet. We call our solution, SMMDecoy. The rest of the paper is organized
as follows: section 2 presents the necessary background. We then introduce the
threat model, the solution design, and its message flow. An overview of previous
related work is presented next. The paper closes with a set of conclusions as
well as an overview of open questions and suggested future work.

IV.2 Background

IV.2.1 Keyboards Hardware Interface

Keyboards are such a prolific part of everybody’s computing experience. They are
also a critical security component, since they are used as the main input channel
on many types of endpoint devices and are relied upon to communicate security
sensitive information to the system software and eventually to our trusted online
service providers. Examples of such information are authentication credentials.
There are several ways of connecting a keyboard to an x86 Intel platform: they
can be either wireless or wire-base. For the latter, we can further classify the
connections as either PS/2 or USB based. While the latter rely on a serialized
protocol, their interface to the host is different:

• The PS/2 Keyboard interface is composed of keyboard processor which
resides inside the keyboard itself, and a keyboard controller which is part
of the host chipset. The interface of the keyboard controller has 2 pairs
of output buffers in the direction of the CPU, and 1 pair in the direction
of the keyboard. The output buffer is used to transfer the scan code if a
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key is pressed. It is readable by any software and causes keyboard sniffing
problem [10].

• USB based keyboard don’t have a chipset-resident keyboard controller.
They have instead a host controller and a root hub. The host controller is
represented by a set of buffers and structures, which are mapped to main
memory, and are accessible through a set of system registers, also creating
a snigging vulnerability [10].

IV.2.2 Scan Codes

“A Scan Code is a data packet that represents the state of a key. If a key is
pressed, released, or held down, a scan code is sent to the computers onboard
keyboard controller. There are two types of scan codes: Make Codes and Break
Codes”, which are used for the events of key press or release. For every keyboard
key, there exists a unique make code and break code. When a user presses a key
on the keyboard, a scan key is sent to the keyboard chipset-resident controller,
which then buffers it on the output data buffer. It then raises the Interrupt
request line, which will cause the IRQ 1 to be fired if it is not masked. When
the interrupt is scheduled, the corresponding keyboard handler reads the output
buffer and converts the scan codes into their corresponding key value. It is
important to note that the scan codes within the output buffer can be read by
software, even outside the interrupt handler procedure, and this is the crux of
the keyboard sniffing challenge [87] [10] .

IV.2.3 System Management Mode

System Management Mode, SMM, is a highly privileged x86 CPU mode. SMM
code is part of the BIOS code that resides on the SPI flash memory. During the
system boot up and before the operating system is loaded, the BIOS loads SMM
into a hardware protected memory area referred to as SMRAM, and which is
not addressable from any other CPU mode, including kernel and VMX modes
[142]. SMM implements a number of SMI handlers, which traditionally handle
system control functions, such as power management. In order to execute SMI
handlers, an SMM pin should be asserted, which will then trigger an SMM
interrupt. Before the system switches to SMM mode, the CPU state is securely
saved into SMRAM, so that it can return to it upon exiting SMM. This makes
SMM highly transparent to all privileged system level software. This feature
has been recently motivating many novel ways of using SMM for non-traditional
purposes, e.g. debugging and system introspection [27].

IV.2.4 Software Guard Extensions

Intel’s SGX are security extensions which are come as part newer Intel X86
CPUs. Its main aim is to instantiate an isolated trusted execution environment
within the user space, called an enclave. Enclave code and data reside in
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specialized protected memory called enclave page cache (EPC), which encrypted,
and hardware protected. No privileged mode code can access the enclave,
including the OS and hypervisor. SGX enclaves also rely on the intel management
engine EPID group identity to establish a remote attestation protocol with Intel
attestation servers, and through it to third party service providers [130].

IV.3 Solution Overview

IV.3.1 Threat Model

SMMDecoy assumes an active attacker who has unlimited computing resources
and can exploit zero-day vulnerabilities of the host OS and user level applications.
It also assumes that the GPU is compromised, and so are all other I/O devices,
with the exception of the keyboard. Therefore, the only trusted components of
the system, are the BIOS and the keyboard. SMMDecoy requires BIOS to be
trusted only upon boot up, and not during runtime. We also assume that the
attacker does not have physical access to the machine. We do not consider Denial-
of-Service (DoS). The BIOS is trusted because newer X86 platforms are equipped
with a Static Root of Trust of Measurement, SRTM, with a corresponding secure
implementation of a Core Root of Trust of Measurement, which can ensure the
code integrity of the BIOS upon boot. Some solutions such as HP SureStart
also ensure that BIOS recovery as well, in case a code integrity compromise is
detected.

IV.3.2 High Level Architecture

The intuition behind SMMDecoy is to inject specially crafted noise which mimics
genuine authentication credentials into the keyboard output buffers. We assume
that potential firmware keyloggers will be monitoring the buffers. We will then
communicate these decoy credentials to relevant remote third parties. If we
detect any authentication attempt using any of the reported decoy credentials,
an alarm should be raised. Such a detection mechanism would subsequently
provide a wealth of information about how the malware attack space, and the
platforms from which it spreads. Thus, the requirements of such a solution are
as follows:

1. SMMDecoy should be implemented within a system component that would
allow it to be transparent to both the OS kernel and to the GPU malware.

2. The decoy authentication generation algorithm should mimic real world
passwords as much as possible.

3. SMMDecoy should provide a mechanism for communicating with third
party remote servers securely.

As figure 1 illustrates, SMMDecoy is made up of two parts:
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Figure IV.1: SMMDecoy architecture: trusted components in green

• SMMDecoy SMI handler :it is the trusted part, and is used to generate
decoy credentials, inject them into the buffer interface, and then report
them to a remote server.

• SMMDecoy SGX enclave; It used to establish an end-to-end secure channel
between SMM and a remote server, which will be responsible for raising
alarms when a decoy credential is used by attackers.

IV.3.3 SMMDecoy Message Flow

At a conceptual level, SMMDecoy adopts the same architecture for both PS/2
and USB keyboards. However, their interfaces are different and so are their
implementation details. We present SMMDecoy for each keyboard separately.

Step 0: This is a common step for both implementations, and it takes place
before the deployment of the solution. We need to customize the BIOS firmware,
and add to it the SMMDecoy SMI interrupt. If this solution is deployed within
an enterprise environment, this can be done as part of the platform provisioning
by the IT department. Upon system boot up, SMMDecoy SMI will be loaded
securely into SMRAM. From this point on, SMMDecoy message flow will diverge
depending on the keyboard connection, PS/2 or USB, which can be detected
upon boot up.

IV.3.3.1 PS/2 Message flow

• In step 1, SMMDecoy SMI generates fake user authentication credentials,
which mimic legitimate credentials (more details in section 4.5) and converts
them into scan codes.

• In step 2, SMMDecoy SMI is triggered based on A timer. The system then
enters SMM modes, saves the CPU system state, as well the keyboard
buffer content into SMRAM. o SMIDecoy then sends a 0xD2 command
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into the keyboard control register, whose address is 0X64. This command
allows anything that is subsequently written into the output buffer to
appear as if it was generated by the keyboard.

• step 3, SMMDecoy decoy injects the scan code corresponding to the
generated Decoy credentials into the keyboard data output buffer, by
writing into address 0x60.

• In step 4, and after enough time elapsed to allow any potential firmware
keylogger to sniff the keyboard output buffer, SMMDecoy SMI restores the
state of the keyboard buffer, and exits SMM mode. This restores the CPU
state, and gives back control to the OS so that it can resume its normal
execution.

• In Step 5, SMMDecoy periodically communicates the list of decoy credential
used to a remote server. We differ the details of this step to section 3.7.

Figure IV.2: PS/2 SMMDecoy message flow

IV.3.4 USB Keyboard

• In step 1, SMMDecoy searches the system memory in order to find the
memory address for the system keyboard buffer. In Linux, an attached USB
device is represented by a USB Request Block (URB) structure, defined in
the linux/usb.h header file of the Linux source tree. The keyboard buffer
is part of this URB structure. The SMI then saves the physical address so
as it can properly access it [70].

• In step 2, SMMDecoy SMI generates decoy credentials, which mimic
legitimate credentials (more details in section 3.6), and converts them
into scan codes. SMMDecoy SMI injects the scan codes corresponding
to the generated Decoy credentials into kernel keyboard bugger, which it
addresses using its physical address.
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• In step 3, and after enough time elapsed to allow any potential firmware
keylogger to sniff the keyboard output buffer, SMMDecoy SMI restores the
state of the keyboard buffer, and exits SMM mode. This restores the CPU
state, and gives back control to the OS so that it can resume its normal
execution.

• In Step 4, SMMDecoy periodically communicates the list of decoy credential
used to a remote server. We differ the details of this step to section 3.7.

IV.3.5 Writing Into The Buffer

For both the PS/2 and USB keyboards, we mentioned that the SMMDecoy
SMI injects decoy credentials into either the output buffer of the system buffer.
However, this is an abstraction, since the buffer size is limited and would require
multiple coordinated writes. For instance, the Linux keyboard buffer has 16
bytes, and each scan code is 3 bytes long. Therefore, SMIDecoy is expected to
perform multiple consecutive writes into the buffer [87].

IV.3.6 Generating Fake Credentials

The injected decoy credentials need to be statistically indistinguishable from
genuine credentials. This can be achieved by encoding password generation
policies into the SMMDecoy SMI handler, such as using a combination of
characters and numbers, and having a minimum password length. Furthermore,
we can dynamically update this algorithm with contextual user specific data, that
the SMMDecoy handler would collect from the system. Such as other passwords
used by the user, his name/ID. . . etc

IV.3.7 Establishing a secure channel between SGX enclave and
SMM

Deception techniques are useful only if we are able to detect the decoy credentials
being used or leaked by potential malware at some point in time. For SMMDecoy,
this can happen at two points:

• Local detection: SMM can choose well-crafted patterns for the decoy
credentials it injects. Therefore, it could also intercept all outgoing networks
packets and look for the same pattern. Such solutions have been previously
explored in the literature and are not the focus on this paper [94]

• Remote detection: SMMDecoy can send the injected decoy credentials to
a remote server, which might be the service provider whose credentials
we have been injecting into the keyboard buffer. While the actions the
remote server takes upon detection of a used decoy credential are outside
of the scope of the paper, we discuss a number of options here for the
same of completeness. In fact, decoy credentials can be used to augment
an already existing honeyword implementation. In this case, SMMDecoy
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will increase the probability of the attacker choosing a decoy honeyword
to authenticate to the server provider. Furthermore, unlike a traditional
honeyword which would only signal the existence of a breach, SMMDecoy
reveals a wealth of information about the malware attack vector and the
platforms from which it is spreads. Decoy credentials could also be used as
a standalone honeyword where decoy accounts are provisioned in order to
allow the attacker to log into them, and leave traces of their attack details,
such as the amount of money they transfer.

We have considered two approaches to achieving the remote detection:

• Porting trusted network drivers into SMM.

• Relying on Intel SGX remote attestation.

While SMMDecoy proposes to use intel SGX, we discuss both approaches subse-
quently for completeness.

IV.3.7.1 SMM Trusted Network Drivers

If SMMDecoy wants to send data over the network, it needs to make use of
the network drivers which are part of OS. However, the latter is assumed to be
malicious within our threat model. This question has been a common challenge
for many SMM based solution. One way it has been solved is by porting
commodity drivers into SMRAM. This has been possible because SMM mode is
similar to kernel mode where privileged CPU instructions are available. Aurora
authors also argue that the mechanism of interrupt rerouting helps SMM driver
design concentrate on the interrupt handling rather than device initialization or
resource management, making it thus faster [75].

IV.3.7.2 Intel SGX Remote Attestation

In this approach, we propose to keep the SMMDecoy SMI simple, and rely on
the remote attestation capabilities of Intel SGX to communicate with a remote
server. This approach also respects the threat model, since Intel SGX enclaves
are hardware protected from the operating system.

Provisioning Key provisioning happens once, and it involves the following
steps:

1. Authenticating SMMDecoy to Intel Remote Server.

• During start-up, the BIOS uses the Intel remote server PKI to establish
a secure channel with it.

• The BIOS computes a token on the SMMDecoy to be loaded into
SMRAM and sends its hash signature to verify its integrity and prove
its identity.
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2. Authenticating SGX enclave to Intel Remote Server, using intel SGX
remote attestation

3. The enclave generates a symmetric secret key K which it securely forwards
to the IAS, which securely forwards the key to the SMMDecoy SMI on the
same platform as the SMMEnclave.

At this point, a unique session has been successfully established.

Communication Once a shared secret key is established between SMMDecoy
enclave and SMI, the interrupt is ready to secretly send decoy credentials to the
enclave. The enclave then engages in a standard remote attestation protocol
and establishes a secure channel with the remote server.

IV.3.7.3 Proposed implementation details

We propose to use Coreboot as a BIOS distribution to implement SMMDecoy
on. Coreboot is “an extended firmware platform that delivers a lightning fast
and secure boot experience on modern computers and embedded systems. As
an Open Source project, it provides auditability and maximum control over
technology”[141]. This is important for us to be able to implement and deploy
the custom SMMDecoy Interrupt handler into the platform.

IV.4 Related Work

In this section we discuss three lines of related work: GPU malware detection,
SMM based systems and security by deception.
In order to detect stealthy GPU malware, prior work suggested monitoring the
side effects the malware generates, as CPU solutions are unable to access and scan
the GPU. However, these measurements are only reliable in the case of malware
which performs bulk DMA transfers, which is not the case for GPU keyloggers.
Other work suggests using the cuda-gdb real time debugging capabilities in order
to monitor the GPU’s access patterns. However, GPU malware could remote
debug points from its code base [32].

SMM has been traditionally used to secure the execution of platform manage-
ment functions such as power and hear control. However, it has been increasingly
used to deploy security sensitive solutions, which require strong hardware access
control guarantees. Such systems are HyperCheck that is used for hypervisor
integrity verification and IOCheck and SMMDumper that scans system memory
and dumps it for forensic analysis [106] [141]. Aurora leverages SMM to provide
intel SGX enclaves with trusted network and time services, by porting their
corresponding drivers into SMM [75]. Researchers have also been long aware
of the keyboard sniffing problem. TrustLogin proposes a solution to prevent
credentials leakage while they are from the keyboard to the Network Interface
Card, NICl. It uses SMM to encrypt the credentials, and forward them securely
to the NIC. [145].
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Finally, Deception and decoy has always been part of the defence arsenal of
cybersecurity. The most widely discussed deception-based solution is arguably
honeypots. The intuition behind honeypots is to "provide fake information which
is attractive to attackers. The attacker, in searching for the honey of interest
comes across the honeypot, and starts to taste of its wares. If they are appealing
enough, the attacker spends considerable time and effort getting at the honey
provided. If the attacker has finite resources, the time spent going after the
honeypot is time not spent going after other things the honeypot is intended
to protect. If the attacker uses tools and techniques in attacking the honeypot,
some aspects of those tools and techniques are revealed to the defender in the
attack on the honeypot" [16]. The earliest and most notable use of honeypots
was in 1991 from ATT researcher in a paper called “jail”, which aims to lure
attacks in order to monitor their behaviour. Since that time, deception has
increasingly been explored as a key technology area for innovation in information
protection [136].The idea of honeypots has been further explored more recently,
and applied to detect authentication into financial institutions, by creating an
account which mimics a real account through all its attributes, minus the fact
that it isn’t backed with any money which can actually be stolen. When an
attacker gains access to such accounts, it will be indistinguishable to them from
any other real account, as they will have access to the same services, except the
fact that the bank will not be validating any money transfers linked to the faked
account. This constitutes a very efficient solution not only for the detection of
account breaches, but also a great opportunity to learn about the behaviour,
strategy and intention of attackers [68].

IV.5 Conclusions and Future Work

In this paper, we presented SMMDecoy, a deception-based technique to detect
GPU keyloggers, which sniff the open keyboard interface. We protect against a
strong adversary which can take control over the platform’s user applications,
kernel, and GPU. SMMDecoy generates and injects decoy credentials, which
should indistinguishable from legitimate ones. They are then sniffed by the
GPU malware. SMMDecoy relies on strong hardware enabled access control
mechanisms. It uses SMM to protect the integrity and transparency of the decoy
credentials’ injection. It also uses SGX to establish a secure channel to a remote
server, over which the injected decoy credentials would be forwarded. If a decoy
credential is detected to be used by a malware, an alarm should be raised. Unlike
traditional honeywords, an SMMDecoy alarm reveals a wealth of information
about how the malware spreads. The paper also discusses the implementation
feasibility of SMMDecoy. Future work is to naturally implement the solution and
evaluate its performance. We also plan to use SMMDecoy as part of a longitude
study in which we aim at detecting GPU, and other firmware, malware which is
not possible to detect using traditional CPU based mechanisms.
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