
(

(51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every
G06F 21/62 (2013.01) H04L 9/32 (2006.01) kind of national protection av ailable) . AE, AG, AL, AM,

AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ,
(21) International Application Number:

CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO,
PCT/US20 18/030661

DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN,
(22) International Filing Date: HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP,

02 May 2018 (02.05.2018) KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME,
MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ,

(25) Filing Language: English OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA,

(26) Publication Language: English SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN,
TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(71) Applicant: HEWLETT-PACKARD DEVELOPMENT
COMPANY, L.P. [US/US]; 10300 Energy Drive, Spring, (84) Designated States (unless otherwise indicated, for every

Texas 77389 (US). kind of regional protection available) . ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ,

(72) Inventors: LOUTFI, Ijlal; Filton Road Stoke Gifford, P , UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
Bristol Bristol BS34 8QZ (GB). PLAQUIN, David; Filton TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
Road Stoke Gifford, Pt., Bristol Bristol BS34 8QZ (GB). EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,

(74) Agent: BURROWS, Sarah etal.; HP Inc., 3390 E . Harmo¬ MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM,

ny Road, Mail Stop 35, Fort Collins, Colorado 80528 (US). TR), OAPI (BF, BJ, CF, CG, Cl, CM, GA, GN, GQ, GW,
KM, ML, MR, NE, SN, TD, TG).

(54) Title: UPDATING A SECURITY POLICY

FIG. 1

(57) Abstract: An example computing system is disclosed comprising storage to store a plurality of security policies for respective
applications and storing, for each security policy, a respective security policy digest representing the security policy, a secure hardware
component to store a digest of the security policy digests, and a processor to execute a software component to update the respective
security policy digest of a first security policy of the plurality of security policies in response to an update to the first security policy,
and to cause the secure hardware component to store an updated digest of the security policy digests.

[Continued on next page]



W O 2019/212545 A 1

Declarations under Rule 4.17:



UPDATING A SECURITY POLICY

BACKGROUND

[0001] A computing system may include a number of software modules or

applications executing on the computing system. Each module or application may be

associated with a respective security policy, which may indicate how the module or

application is to operate in certain situations. For example, the security policy may

indicate resources of the computing system that the module or application may or may

not access.

BRIEF DESCRIPTION OF DRAWINGS

[0002] Examples will now be described, by way of non-limiting example, with

reference to the accompanying drawings, in which:

[0003] Figure 1 is a simplified schematic of an example of a computing system;

[0004] Figure 2 is flow chart of a method of updating a security policy;

[0005] Figure 3 is flow chart of a method of updating a security policy; and

[0006] Figure 4 is a simplified schematic of an example of a computing system.

DETAILED DESCRIPTION

[0007] Figure 1 is a simplified schematic of an example of a computing system

100. The computing system comprises storage 102 to store a plurality of security

policies 104, 106 for respective applications (not shown) and storing, for each security

policy, a respective security policy digest 108, 110 representing the security policy.

There may be any number of security policies and respective digests. The applications

(not shown) may in some examples execute on the computing system 100 and/or one or

more remote computing systems. The security policy digest for a security policy may be

for example a hash value of all or part of the security policy, or any value that represents

the security policy.



[0008] The system 100 also includes a secure hardware component 112 to store

a digest 114 of the security policy digests 108, 110. The secure hardware component

may be in some examples a trusted processor or a cryptographic component (CC). In

some examples, the digest 114 may be stored in storage that is accessible to the secure

hardware component 112 (e.g. internal storage of the secure hardware component 112)

and may be generally inaccessible by other components of the computing system 100.

The digest 114 may in some examples be a hash value produced from all of the security

policy digests 108, 110. Therefore, in some examples, the digest 114 may represent all

of the security policies 104, 106. If, for example, one of the security policies 104, 106 is

changed, the associated stored digest 108, 110 will be invalid, and hence the digest 114

will be invalid. Therefore, in some examples, the digest 114 and/or digests 108, 110 may

be used to detect unauthorized changes to a security policy 104, 106.

[0009] The computing system 100 also comprises a processor 116 to execute a

software component to update the respective security policy digest of a first security

policy of the plurality of security policies 104, 106 in response to an update to the first

security policy, and to cause the secure hardware component to store an updated digest

of the security policy digests 108, 110.

[0010] For example, the processor 116 may execute the software component to

update security policy digest 108 in response to an update of the security policy 104. In

some examples, the software component may perform the update of the digest 108 in

response to a request from an authorized party. The authorized party may in some

examples be the application associated with the security policy 104, a manufacturer of

the computing system 100, or any other authorized party. The software component may

in some examples determine that the request is from an authorized party by determining

that the request is signed and/or encrypted by an authorized party, for example using a

credential such as a key of a symmetric or asymmetric key pair.

[0011] The software component may then update the digest 108, for example by

computing a new digest and storing the new digest in place of the previous digest 108.

The software component may in some examples request another component to compute

and/or store the updated digest 108, for example the secure hardware component 112.

The software component may also cause the secure hardware component 112 to store

an updated digest 114 of the digests 108, 110, including the updated digest 108. This

may be done for example by the software component computing the updated digest 114

and providing it to the secure hardware component 112, or by the software component

sending a request to the secure hardware component 112 to compute and store a new



digest 114 of the security policy digests 108, 110. In some examples, any

communication between the software component may be secured, e.g. signed and/or

encrypted, using a credential such as a symmetric or asymmetric key pair. In some

examples, the processor may provide functionality to secure the software component

and/or the credential, such as for example by encrypting a memory space associated

with the software component or credential or by preventing another software module or

application from accessing the memory space. Examples of such functionality include

Software Guard Extensions (SGX).

[0012] Thus, in some examples, the secure hardware component 112 may store

an update digest 114 that represents the digests 108, 110 and thus the security policies

104, 106, even in the event of an authorized update to one or more of the security

policies 104, 106. Unauthorized changes to the security policies may be detected in

some examples due to the stored digests 108, 110 which may not match a newly

computed digest (e.g. computed during a verification process) computed from the

security policies 104, 106. In some examples, even if an unauthorized change is also

made to one or more digests 108, 110 to cause them to match an unauthorized change

to one or more security policies 104, 106, this may be detected as the digest 114 may

not match a newly computed digest (e.g. computed during a verification process) of the

digests 108, 110.

[0013] In some examples, the computing system 100 stores a key (e.g. in a

memory of the computing system 100) to authenticate a request to update the first

security policy, and the processor is to update the first security policy in response to the

request. For example, the key may decrypt the request or verify that the request is

signed by a trusted source.

[0014] In some examples, the computing system 100 comprises an interface to,

in response to a request to verify a selected security policy of the security policies, verify

the selected security policy by verifying the security policy digest representing the

selected security policy and verifying the digest of the security policy digests. For

example, the request to verify may be received via the interface (e.g. a software interface

provided by the software nodule, or an interface provided by the secure hardware

component 112) from a party such as an application associated with the selected

security policy. The verification may in some examples include computing a digest (e.g.

hash value) of the selected security policy, and comparing the computed digest with the

corresponding digest 108, 110 stored in the storage 102. The verification may also in

some examples comprise computing a digest of the security digests 108, 110 and



comparing this computed digest with the digest 114 stored in the secure hardware

component 112. In some examples, if the verification indicates that the security policies

have not changed, e.g. the digests 108, 110 and 114 are valid, then the interface is to

provide an indication (e.g. to the sender of the request to verify) upon verification of the

security policy digest representing the selected security policy and verification of the

digest of the security policy digests. For example, the interface is to provide the

indication to the application associated with the selected security policy.

[0015] In some examples, the processor 116 is to execute the software

component to cause the secure hardware component 112 to store the updated digest of

the security policy digests by causing the software component to send a message to the

secure hardware component 112 using a secure communication channel between the

software component and the secure hardware component. For example, the software

component may include a credential, such as for example a key of a key pair, which may

allow the software component to encrypt and/or sign the message before sending it to

the secure hardware component. In some examples, the secure hardware component

112 may be able to decrypt the message and/or verify its signature, for example using a

second key of the key pair. In some examples, the processor 116 is to secure an area of

memory associated with the software component, the area of memory storing a key

associated with the secure communication channel. For example, the area of memory

may be secured using SGX.

[0016] Figure 2 is a flow chart of a method 200 of updating a security policy, for

example a security policy for a software component or application. The method 200

comprises, in block 202, in response to a request to update a security policy for a

software component, generating a hash value representing the security policy. The

request to update the security policy may in some examples be received from the

software component, and/or may be encrypted and/or signed using a credential to allow

the request to be authenticated.

[0017] The method 200 also comprises, in block 204, generating a root hash

value from (i) the hash value and (ii) a further hash value for a further security policy for a

further software component, and in block 206, storing the root hash value in a secure

storage device. Therefore, in some examples, the integrity of the security policy and the

further security policy may be verified by checking that the hash value and the further

hash value match their respective security policies (e.g. by recalculating the hash values

for the security policies and comparing them to previously generated and stored hash

values), and by checking that the root hash value matches the hash value and further



hash value (e.g. by recalculating the root hash value and comparing it with the stored

root hash value). Any unauthorized changes to any of the security policies may in some

examples ultimately result in a root hash value which is different to the value stored in

the secure storage device, and hence may be detected.

[0018] Figure 3 is a flow chart of a method 300 of updating a security policy, for

example a security policy for a software component or application. The method 300

comprises, in block 302, in response to a request to update a security policy for a

software component, generating a hash value representing the security policy. The

method 300 also comprises, in block 304, generating a root hash value from (i) the hash

value and (ii) a further hash value for a further security policy for a further software

component, and in block 306, storing the root hash value in a secure storage device. In

some examples, the blocks 302, 304 and 306 of the method 300 are similar or identical

to the blocks 202, 204 and 206 respectively of the method 200 described above with

reference to Figure 2 .

[0019] The method 300 also comprises, in response to a request to authenticate

the security policy (e.g. from an application wishing to verify that its security policy is

valid), in block 308, verifying the hash value of the security policy. This may be done by

for example recalculating the hash value of the security policy and comparing it to a

previously calculated hash value. Block 310 comprises verifying the root hash value

from the hash value and the further hash value, for example by recalculating the root

hash value and comparing the result with the root hash value in the secure storage.

Block 312 of the method comprises providing an indication of authentication of the

security policy upon verification of the hash value and the root hash value, such as for

example providing the indication to the application associated with the security policy

and/or the sender of the request to authenticate.

[0020] In some examples, storing the root hash value in a secure storage device

comprises sending a message to a secure processor using a secure communication

channel to cause the secure processor to store the root hash value in the secure storage

device. In some examples, the message includes the root hash value.

[0021] Figure 4 is a simplified schematic of an example of a computing system

400 comprising a secure processor 402 to store a root hash value 404 of a plurality of

leaf hash values, each leaf hash value representing a respective security policy. The

system 400 also includes a further processor 406 to execute a software module 408 and



to provide a secure communication channel from the software module to the secure

processor 402.

[0022] The software module 408 is to, upon an update to one of the security

policies, generate an updated leaf hash value of the one of the security policies and to

send, via the secure communication channel, a message to the secure processor to

cause the secure processor to store an updated root hash value of the plurality of leaf

hash values.

[0023] In some examples, the computing system 400 is to, in response to a

request to verify a first security policy of the security policies, verify the leaf hash value of

the first security policy, verify the root hash value of the plurality of leaf hash values, and

provide an indication of the verification of the leaf hash value and the root hash value.

[0024] In some examples, the further processor 406 is to secure an area of

memory associated with the software module (e.g. using SGX or other functionality), the

area of memory storing a key associated with the secure communication channel. In

some examples, the area of memory also stores the instruction and/or data of the

software module.

[0025] Examples in the present disclosure can be provided as methods, systems

or machine readable instructions, such as any combination of software, hardware,

firmware or the like. Such machine readable instructions may be included on a computer

readable storage medium (including but is not limited to disc storage, CD-ROM, optical

storage, etc.) having computer readable program codes therein or thereon.

[0026] The present disclosure is described with reference to flow charts and/or

block diagrams of the method, devices and systems according to examples of the

present disclosure. Although the flow diagrams described above show a specific order of

execution, the order of execution may differ from that which is depicted. Blocks described

in relation to one flow chart may be combined with those of another flow chart. It shall be

understood that each flow and/or block in the flow charts and/or block diagrams, as well

as combinations of the flows and/or diagrams in the flow charts and/or block diagrams

can be realized by machine readable instructions.

[0027] The machine readable instructions may, for example, be executed by a

general purpose computer, a special purpose computer, an embedded processor or

processors of other programmable data processing devices to realize the functions

described in the description and diagrams. In particular, a processor or processing

apparatus may execute the machine readable instructions. Thus functional modules of



the apparatus and devices may be implemented by a processor executing machine

readable instructions stored in a memory, or a processor operating in accordance with

instructions embedded in logic circuitry. The term ‘processor’ is to be interpreted broadly

to include a CPU, processing unit, ASIC, logic unit, or programmable gate array etc. The

methods and functional modules may all be performed by a single processor or divided

amongst several processors.

[0028] Such machine readable instructions may also be stored in a computer

readable storage that can guide the computer or other programmable data processing

devices to operate in a specific mode.

[0029] Such machine readable instructions may also be loaded onto a computer

or other programmable data processing devices, so that the computer or other

programmable data processing devices perform a series of operations to produce

computer-implemented processing, thus the instructions executed on the computer or

other programmable devices realize functions specified by flow(s) in the flow charts

and/or block(s) in the block diagrams.

[0030] Further, the teachings herein may be implemented in the form of a

computer software product, the computer software product being stored in a storage

medium and comprising a plurality of instructions for making a computer device

implement the methods recited in the examples of the present disclosure.

[0031] While the method, apparatus and related aspects have been described

with reference to certain examples, various modifications, changes, omissions, and

substitutions can be made without departing from the spirit of the present disclosure. It is

intended, therefore, that the method, apparatus and related aspects be limited only by

the scope of the following claims and their equivalents. It should be noted that the

above-mentioned examples illustrate rather than limit what is described herein, and that

those skilled in the art will be able to design many alternative implementations without

departing from the scope of the appended claims.

[0032] The word “comprising” does not exclude the presence of elements other

than those listed in a claim, “a” or “an” does not exclude a plurality, and a single

processor or other unit may fulfil the functions of several units recited in the claims.

[0033] The features of any dependent claim may be combined with the features

of any of the independent claims or other dependent claims.



CLAIMS

1. A computing system comprising:

storage to store a plurality of security policies for respective applications and

storing, for each security policy, a respective security policy digest representing the

security policy;

a secure hardware component to store a digest of the security policy digests; and

a processor to execute a software component to update the respective security

policy digest of a first security policy of the plurality of security policies in response to an

update to the first security policy, and to cause the secure hardware component to store

an updated digest of the security policy digests.

2 . The computing system of claim 1, wherein the computing system stores a key to

authenticate a request to update the first security policy, and the processor is to update

the first security policy in response to the request.

3 . The computing system of claim 1, comprising an interface to, in response to a

request to verify a selected security policy of the security policies, verify the selected

security policy by verifying the security policy digest representing the selected security

policy and verifying the digest of the security policy digests.

4 . The computing system of claim 3 , wherein the interface is provided by one of the

secure hardware component and the software component.

5 . The computing system of claim 3 , wherein the interface is to provide an indication

upon verification of the security policy digest representing the selected security policy

and verification of the digest of the security policy digests.

6 . The computing system of claim 5 , wherein the interface is to provide the

indication to the application associated with the selected security policy.

7 . The computing system of claim 1, wherein the processor is to execute the

software component to cause the secure hardware component to store the updated

digest of the security policy digests by causing the software component to send a



message to the secure hardware component using a secure communication channel

between the software component and the secure hardware component.

8 . The computing system of claim 7 , wherein the processor is to secure an area of

memory associated with the software component, the area of memory storing a key

associated with the secure communication channel.

9 . A method of updating a security policy, the method comprising:

in response to a request to update a security policy for a software component,

generating a hash value representing the security policy;

generating a root hash value from (i) the hash value and (ii) a further hash value

for a further security policy for a further software component; and

storing the root hash value in a secure storage device.

10 . The method of claim 9 , further comprising, in response to a request to

authenticate the security policy:

verifying the hash value of the security policy;

verifying the root hash value from the hash value and the further hash value; and

providing an indication of authentication of the security policy upon verification of

the hash value and the root hash value.

11. The method of claim 9 , wherein storing the root hash value in a secure storage

device comprises sending a message to a secure processor using a secure

communication channel to cause the secure processor to store the root hash value in the

secure storage device.

12 . The method of claim 9 , further comprising, in response to a request to update a

security policy for a software component, using a key to authenticate the request.

13 . A computing system comprising:

a secure processor to store a root hash value of a plurality of leaf hash values,

each leaf hash value representing a respective security policy;

a further processor to execute a software module and to provide a secure

communication channel from the software module to the secure processor;



the software module to, upon an update to one of the security policies, generate

an updated leaf hash value of the one of the security policies and to send, via the secure

communication channel, a message to the secure processor to cause the secure

processor to store an updated root hash value of the plurality of leaf hash values.

14. The computing system of claim 13, wherein the computing system is to, in

response to a request to verify a first security policy of the security policies, verify the leaf

hash value of the first security policy, verify the root hash value of the plurality of leaf

hash values, and provide an indication of the verification of the leaf hash value and the

root hash value.

15 . The computing system of claim 13 , wherein the further processor is to secure an

area of memory associated with the software module, the area of memory storing a key

associated with the secure communication channel.











Form PCT/ISA/210 (second sheet) (January 2015)


	abstract
	description
	claims
	drawings
	wo-search-report

