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Food waste is a severe economic and social problem. Restaurants contribute significantly to food waste

because they face the classic trade-off between speed of service and leftover inventory, which is particularly

crucial in the context of quick service restaurants (QSRs). To offer a high speed of service, QSRs pre-

cook most of their food, but they can hold it only for a short time. To effectively manage this trade-off,

QSRs have become increasingly reliant on demand forecasts. However, online food-delivery platforms that

connect restaurants, riders/drivers, and consumers are growing in popularity, and it is unclear how the

growth of food-delivery platforms impacts the ability of restaurants to accurately forecast their demand.

We empirically investigate the impact of food-delivery platforms on the demand forecast error in QSRs

and analyze the underlying mechanism. We find that as customers become increasingly dependent on food-

delivery platforms, QSR demand becomes harder to forecast. We also find that the majority of the increase

in overall forecast error is due to an increase in the error associated with the demand pattern and a smaller

portion is due to error in forecasting demand amplitude. Based on our results, we offer suggestions for QSRs

on how to manage their relationship with food-delivery platforms to decrease their forecast error and increase

operational efficiency.

Key words : Food-Delivery Platforms; Quick Service Restaurants; Forecasting

The sad fact is that 30–40 percent of all food is wasted each year, yet as many as one

in eight people suffer from chronic hunger.

—Nicolas Burquier, Chief Customer and Operations Officer, Pizza Hut

1. Introduction

Food waste is an urgent economic and social problem on a global scale. The Sustainable

Development Goals 2030 charter, adopted by the United Nations in 2015, explicitly includes

food waste in its objectives, calling for efforts to “halve per capita global food waste at

the retail and consumer level, and reduce food losses along production and supply chains

1
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by 2030.” Each year, food losses and waste amount to US$1 trillion – more than 1% of

the global GDP. The hospitality and food service sector is a significant contributor to this

problem, and restaurants are the second largest contributor to food waste in the United

States (cf. ReFED 2016, Gunders 2017).

Food waste is a result of the classic trade-off that restaurants make between too much

and too little. This problem is particularly egregious for quick service restaurants (QSRs)

– an industry with estimated revenues nearing US$300 billion in 20191 – as QSRs pre-cook

most of their food and rely on speed of service as a key competitive advantage. Although

operational issues in the restaurant industry have previously been studied (cf. De Vries

et al. 2018, Pereira 2018, Ülkü et al. 2019), the rise of smartphone-enabled food-delivery

platforms is beginning to change the food service industry landscape and therefore compels

a fresh look at this topic.

Consumers who are already used to ordering books, clothing and accessories online are

now embracing the idea of ordering their food online as well. Advances in digital technology

(such as ubiquitous smartphones, API connectivity, and low-cost mobile data) have facil-

itated the growth of online food-delivery platforms that generate revenue by connecting

restaurants, riders/drivers, and consumers. Globally, the estimated food-delivery market

reached a value of US$94.4 billion in 2019, and it is expected to grow at a rate of 9.3%

CAGR to reach US$134.5 billion by 2023 (Klein 2019). Demand from delivery platforms

is often the fastest growing demand channel for QSRs (Khan 2019).

The growth of the food-delivery market has been further accelerated by the lockdown

measures implemented in response to the COVID-19 pandemic (Chiappetta 2020), as food-

delivery platforms have proven essential in cities around the globe. Even though restau-

rants’ dependence on these platforms is likely to scale back slightly post-lockdown, it is

unlikely to go back to the pre-lockdown levels for two reasons. First, patrons are hesi-

tant to visit restaurants and might continue to order home-delivered food (Awasthi 2020,

First 2020). Second, forced exposure may have accustomed consumers to the advantages

of home-delivery platforms (e.g., convenience, choice) over dine-in services, thus perma-

nently affecting consumer behavior. This creates an urgent necessity to understand the

operational implications of consumer participation in these platforms.

1 Revenues of the US fast food industry since 2002. (Statista)

https://www.statista.com/statistics/196614/revenue-of-the-us-fast-food-restaurant-industry-since-2002/
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While it is well-understood that platforms potentially increase a firm’s market size and

reach to its customers (Sharma and Mehrotra 2007, Xia and Zhang 2010), it is unclear

how they affect the firm’s operational performance. In particular, it is not clear how these

platforms impact two important operational measures for QSRs: customer waiting times

and food waste. Moreover, many QSRs do not have systems that reliably measure these

performance metrics on a continuous basis, preventing a rigorous study of these second-

order effects of food delivery platforms on restaurants. However, an operations management

(OM) lens can be a convenient tool to study these new business models even without such

detailed operational data: Fundamental OM principles dictate that the accuracy of demand

forecasting at a QSR will be a crucial factor that affects both food waste and customer

service levels. Measures of forecast accuracy can be constructed from the more reliable

(and easily available) sales data, clearing the path to study operational implications of

food delivery platforms on QSRs.

Given the criticality of demand forecasts in a QSR’s ability to balance food waste and

responsiveness, it becomes important to understand how increasing dependence on such

platforms may impact demand forecast accuracy. Yet there are competing hypotheses

about how food-delivery platforms can affect a QSR’s ability to forecast its demand. On

the one hand, delivery platforms reduce the impact of day-to-day noise on demand. When

customers order food from the comfort of their homes without regard for the conditions

outside (e.g., weather, traffic), the restaurant’s demand may become more stable and easier

to predict. On the other hand, delivery platforms may also increase heterogeneity among

customers’ order times (for instance, by removing the socialization aspect of dining in),

thus making the restaurant’s demand more noisy and harder to predict.

Additionally, on the one hand, delivery platforms increase the catchment area of a restau-

rant. This should pool the restaurant’s risk over a larger population of customers and

decrease the relative error in forecasting demand on any given day. On the other hand,

a customer browsing the delivery platform’s mobile application (or website) for dining

options can effortlessly switch between restaurants. This increases the level of competition

amongst restaurants (Mahajan 2019) and may increase the relative error in forecasting

demand for any given day. In the end, it is not clear how delivery platforms impact the

accuracy of a restaurant’s demand forecasts, which in turn will impact the restaurant’s

overall operational performance.
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The aim of this paper is to understand how and why food-delivery platforms impact a

QSR’s ability to forecast demand. We use a proprietary database of detailed transaction-

level data from a QSR chain. The database has a record of every transaction made in each

restaurant in the chain in 2018, totaling approximately 50 million transactions. For each

transaction, the database also has information on the mode of delivery to the customer:

dine-in, take-away, drive-through or delivery platform.

Our results show that a 10 percentage point increase in a QSR’s dependence on delivery

platforms leads to a 2.83% increase in its overall forecast error. This has significant impli-

cations in terms of food waste, speed of service and operational efficiency for QSRs that

are already finding it difficult to justify the commissions paid out to delivery platforms

(Dunn 2018, Cagle 2020, Tkacik 2020). These findings could be particularly significant for

the many restaurants that were forced to go purely online during the COVID-19 outbreak:

a simple linear extrapolation of our results suggests that some restaurants may have seen

a nearly one-third increase in forecast inaccuracy, leading to either substantial increase in

food waste, decline in service performance, or both.

Further, we show that the majority of this increase in overall forecast error is due to

an increase in the error of forecasted demand pattern, i.e., the distribution of demand

within a day. A smaller portion of the phenomenon is due to an increase in error of the

forecasted demand amplitude, i.e., volume on a specific day.2 Overall, our study suggests

that in order to mitigate the negative effect of delivery platforms on forecast accuracy,

restaurants should focus their efforts on stabilizing their demand patterns.

From an academic research perspective, our results have implications for future work

related to the operations of food-delivery platforms, as the decrease in forecast accuracy

should be accounted for in studies that model the relationship between restaurants and

online food-delivery platforms. From a practical perspective, our analysis of the underlying

mechanism allows us to offer suggestions for restaurants to attenuate the adverse effect of

food-delivery platform dependence on forecastability.

2. Contributions to the Literature

There is growing interest in understanding the strategies that underpin business models for

the app-based sharing economy and e-marketplaces. This is particularly the case for OM

2 We provide a detailed explanation of the terms amplitude and pattern in Section 3.
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researchers, who have studied various aspects: the fundamental theory of e-marketplaces,

optimization of underlying systems and technology, paths to adoption by participants, and

operational implications of participation.

The fundamental theory of e-marketplaces (and electronic commerce, more generally)

received significant attention even before the recent advances in digital technology made

e-marketplaces ubiquitous. Early work by Malone et al. (1987) predicted that advances in

technology would shift more economic activity into e-marketplaces. In subsequent years,

a robust body of literature developed to model how electronic marketplaces can reduce

transaction costs (Bakos 1997), resulting in reduced intermediation costs and more efficient

inter-organizational transactions (Bakos 1991), ultimately propelling us towards “friction-

less” markets (Bakos 1998). These papers were followed by empirical studies that tested

the theoretical hypotheses and added nuance to our understanding of the theory of e-

marketplaces (e.g. Smith et al. 1999, Brynjolfsson and Smith 2000).3

More recently, as economic activity in different sectors did indeed shift to e-marketplaces

(e.g., ride sharing, food delivery, gig workers), researchers responded by studying ways to

optimize the underlying systems of a marketplace. This rich stream of literature looks at

interconnected aspects of e-marketplace system design, such as auction types and strategies

(e.g., Bapna et al. 2004, Mithas and Jones 2007, Bapna et al. 2009), procurement (e.g.,

Chen et al. 2005, Chandrashekar et al. 2007), pricing (e.g., Banerjee et al. 2016, Cachon

et al. 2017) and order dispatching (e.g., Chen, Hu and Zhou 2019, Lyu et al. 2019, Özkan

and Ward 2020). Yet while there is a preponderance of such research into system design,

there are few articles studying the implications for e-marketplace participants (Kapoor

and Agarwal 2017).

In fact, in their review of literature on e-marketplaces, Standing et al. (2010) find

that this discrepancy constitutes a research gap: there is too much emphasis on the e-

marketplace and its workings and not enough on the impact of such business models on

participating firms. There are a few studies evaluating these business models from the

participant’s strategic perspective (e.g., Soh et al. 2006) and examining the benefits and

costs associated with participation (e.g., Standing et al. 2006). However, the operational

3 A comprehensive review of the literature on the theory of e-marketplaces is outside the scope of this paper, and we
refer the reader to Wang et al. (2008) and Standing et al. (2010).
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implications of e-marketplaces on participating firms still remain largely understudied, and

our paper contributes to this much-needed conversation.

Rather than examining the inner workings of app-based platforms (e-marketplaces), we

focus on how engaging with them is impacting established businesses, and we do this in

the particular context of third-party food-delivery platforms and QSRs. In doing so, we

build on the work of Feldman et al. (2018), who were the first to study the relationship

between food-delivery platforms and traditional restaurants. Using a queuing model with

a single observable stream of customers who choose between dining at the restaurant and

ordering on the food-delivery platform, they find that the commonly observed one-way

revenue contract yields inefficient outcomes from a system perspective.

Chen, Hu and Wang (2019) follow up by studying an unobservable queuing model with

two streams of customers that are heterogeneous in their tech-savviness. They find that

food-delivery platforms do not necessarily increase the overall demand for the restaurant,

but they might cannibalize demand from traditional channels as the segment of tech-savvy

customers grows. Our study complements these papers by empirically establishing a differ-

ent adverse consequence (reduced forecastability of demand) of a restaurant’s dependence

on third-party food-delivery platforms.

Our paper also complements the literature on multichannel retail businesses. When

a restaurant chooses to participate in an e-marketplace, it opens a new sales channel,

thus transforming into a multichannel sales enterprise. In a non-restaurant context, such

multichannel systems have been extensively studied to maximize the efficiency of inventory

procurement, warehousing and distribution to satisfy demand in both channels (see Burt

and Sparks (2003) for a review of relevant literature).

For multichannel sales enterprises, the ubiquity of low-cost, high-speed mobile data and

high-performance processors is blurring the line between offline and online demand, as

customers are now able to switch between these channels seamlessly. This has prompted

researchers to study how processes in one channel can impact processes in another – for

instance, Gallino et al. (2017) and Akturk et al. (2018) study multichannel operations for

retailers with a “buy-online, ship-to-store” system, and Kumar et al. (2019) study how the

presence of an offline store impacts online sales for an apparel retailer. We refer the reader

to Agatz et al. (2008) and Zhang et al. (2010) for reviews of literature associated with this

theme.
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Although the literature of multichannel retailing that examines the interrelationships

between channels is relevant to our study, the restaurant industry differs from other retail

in an important way: the finished goods (cooked food items, in our context) are highly

perishable. This means that demand from the online channel (food-delivery platform)

cannot be pooled across stores and satisfied via drop-shipping or through a “buy-online,

ship-to-store” policy. While pooling demand across time and geographies might be possible

for online grocery retailers (cf. Belavina et al. 2017, Astashkina et al. 2019), the short

shelf life of finished goods (and the impatience of hungry customers) forces restaurants to

schedule all production at the store level.

Since restaurants regularly deal with finished goods that have a short shelf life, they try

hard to optimize their operations to minimize waste while maintaining a good quality of

service. Especially for a QSR, where speed of service is a key indicator of quality of service

and margins are razor thin, operational efficiency plays an important role in achieving

competitive advantage. In fact, improving efficiency through standardization of operational

procedures has been crucial in the in the worldwide success of QSR chains like McDonald’s

It is thus important for a QSR to accurately forecast its demand. Demand forecasts can

help regulate customers’ waiting time, which in turn affects consumption (Ülkü et al. 2019)

and restaurant revenues (De Vries et al. 2018). Accurate demand forecasts also play an

important role in reducing a restaurant’s food waste (Pereira 2018). However, very little

work to date directly studies the factors that impact demand forecasts, and we fill this gap

by studying how third-party food-delivery platforms are impacting traditional restaurants’

ability to accurately forecast their demand. To the best of our knowledge, we are the first

to study this problem – empirically or otherwise.

3. Hypothesis Development

Since restaurants are in the business of selling highly perishable goods to impatient cus-

tomers, they must navigate a common trade-off inherent to all businesses dealing with

demand uncertainty. In this context, that means finding the right balance between speed of

service and food waste. Pre-preparing too much food improves responsiveness but increases

food waste. On the other hand, not pre-preparing enough food reduces food waste but

hurts speed of service. In this scenario, accurate and granular demand forecasts can help

a restaurant achieve the right balance (Wiggers 2018, Magnin 2019).
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The granularity with which these forecasts must be made varies from restaurant to

restaurant and depends largely on a customer’s willingness to wait. In restaurants offer-

ing sit-down service with a waiter, customers are comfortable with (and sometimes even

expect) a wait time of few minutes between placing their order and being served. These

restaurants typically optimize their menu such that several dishes have recipes that are

largely similar except for the final few steps. This allows staff to pre-prepare the base for

several dishes in bulk and then execute the final steps to differentiate into individual dishes

only after an order is placed (commonly known as postponement in the OM literature; cf.

Swaminathan and Lee (2003)). Typically, the pre-prepared base has a longer holding time

than the finished dish and is prepared only once or twice per day – removing the need for

hourly (or more frequent) forecasts.

In contrast, customers visiting QSRs are disinclined to wait. For instance, Allon et al.

(2011) find that customers at QSRs value their wait time at several times the average wage

in the US. QSR chains are cognizant of this and routinely compete to offer shorter wait

times (Pittman 2019). They achieve this by standardizing their operational procedures and

pre-preparing most of their food even before an order comes in. Since such pre-prepared

food has a very short holding time (typically only a few minutes), it is even more imperative

that QSRs are able to accurately identify peaks and troughs in demand throughout the

day to ensure that ingredients are ready when demand materializes. An accurate demand

forecast will be able to identify this pattern and thus help the restaurant better match

supply (e.g., staff, ingredient preparation) and demand.

In addition to accurately predicting the pattern of demand within a day, it is also impor-

tant that restaurants are able to accurately estimate the total demand that will materialize

on a particular day. If daily demand is anticipated to be higher than its actual value,

this can result in various inefficiencies including overstaffing, unnecessary preparation of

product components, and squandered utilities (Cachon and Terwiesch 2016, p. 390-391).

On the other hand, underestimating demand can result in high workload in the kitchen,

delays in service (Thompson 1998), and an increase in avoidable errors (Tan and Netessine

2014). Therefore, restaurants must also be able to accurately identify the scale of demand,

i.e., its amplitude, when forecasting.

Given the importance of both amplitude and pattern when constructing a demand fore-

cast within a QSR, the next sections discuss the anticipated impact of a food-delivery

platform on each of these two metrics.
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3.1. Demand Amplitude

By participating in a third-party food-delivery platform, a traditional restaurant is estab-

lishing an online sales channel in parallel to its existing offline channel, giving customers

the option to seamlessly switch between channels according to their personal preferences.

The advantage of opening an online sales channel is that it increases a firm’s reach to its

customers (Sharma and Mehrotra 2007), effectively increasing its market size (Xia and

Zhang 2010). As the pool of potential customers increases, it can lead to a lower relative

error in forecasting demand amplitude – a phenomenon extensively studied in the risk

pooling literature (cf. Levi et al. 2003).

On the flip side, food-delivery platforms adversely impact the competitive landscape in

which a restaurant operates. Any restaurant can potentially participate on a platform,

including so-called virtual kitchens that do not have any offline presence (cf. Isaac and

Yaffe-Bellany 2019). In addition, instead of only competing with other restaurants in its

geographic area, a restaurant opening an online channel is now competing with others that

have the same delivery area, which may be different and also larger. Thus a restaurant may

gain many competitors that do not exist or do not compete with them in the offline space.

Moreover, delivery platforms’ apps and websites are designed to effortlessly compare prices,

customer ratings and menu choices, allowing customers to easily switch between restaurants

while browsing – which can increase price sensitivity among consumers (Lynch Jr and

Ariely 2000). An increase in the number of competing restaurants, together with increased

price sensitivity and very low switching costs for the customer, can make the restaurant’s

day-to-day demand more volatile and harder to predict.

On balance, then, it is not clear how third party food-delivery platforms will impact a

restaurant’s ability to accurately forecast demand amplitude, so we pose it as an empirical

question to be answered in this paper:

Empirical Question 1: As dependence on third-party food-delivery platforms increases,

how does it impact the forecast error in a QSR’s demand amplitude?

3.2. Demand Pattern

QSRs plan their within-day operations (staffing, inventory to pre-prepare, etc.) based on

their demand pattern forecasts. However, demand patterns can be disrupted by several

exogenous, unforeseeable factors. For example, sudden changes in weather or traffic condi-

tions can deter a customer from physically traveling to a restaurant. But customers in the
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restaurant’s online sales channel are not impacted by such exogenous factors. In fact, there

may be a negative correlation between demand coming from the online and physical chan-

nels, attenuating the variability in demand. As such, as a restaurant depends increasingly

on delivery platforms, patterns in its overall demand should become easier to forecast.

However, online channels may also expose restaurants to more heterogeneity in cus-

tomers’ order times. Offline, customers’ restaurant visits may be channeled into certain

predictable times of day because customers are socializing with others (Andaleeb and Con-

way 2006) or because of workplace restrictions. But delivery platforms nullify such factors

and remove the time constraints, giving customers the flexibility to order and receive food

based on their personal preferences. This may make it difficult to accurately forecast the

pattern of demand within a day and may increase the error in forecasting demand patterns.

It is therefore not clear how third party food-delivery platforms will impact a restaurant’s

ability to accurately forecast their demand pattern, so we ask:

Empirical Question 2: As dependence on third-party food-delivery platforms increases,

how does it impact the forecast error in a QSR’s demand pattern?

3.3. Total Forecast Error

It is possible for a QSR to accurately forecast demand amplitude but misallocate demand

pattern. In this case, it will experience food shortages (and consequently low speed of

service) during the periods where demand was underestimated and food waste during

the periods where demand was overestimated. A QSR that accurately forecasts the day’s

demand pattern but overestimates the demand amplitude will waste food in every period

on that day. On the other hand, getting the demand pattern right but underestimating

demand amplitude will lead to longer waiting times and lower speed of service throughout

the day.

If food-delivery platforms impact errors in both demand pattern and demand amplitude

so that they move in the same direction (e.g., they both increase), then overall forecast

error should also be impacted in that direction. However, if error in demand pattern and

error in demand amplitude do not move in the same direction, it is not clear how overall

forecast error will change. Even if both pattern and amplitude forecast error move in the

same direction, they may have different relative strengths in influencing the overall forecast

error. We therefore pose two more empirical questions:
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Empirical Question 3: How does increasing dependence on third-party food-delivery

platforms impact the error in a QSR’s overall demand forecast?

Empirical Question 4: What is the relative importance of demand pattern and demand

amplitude in mediating the impact of third-party food-delivery platforms on the error in a

QSR’s overall demand forecast?

4. Data Description and Variable Construction
4.1. Empirical Setting

We answer the empirical questions outlined in Section 3 by taking advantage of a propri-

etary Point of Sale (PoS) database. The database was obtained from a chain of QSRs, and

it consists of detailed transaction-level data for approximately 50 million orders placed in

99 QSRs spread across the country in 2018. 4 Each QSR was operational for an average of

331 days in 2018, yielding 32,695 observations at the restaurant-day level.

For each transaction, the database contains information on the quantity and selling price

for each SKU within that transaction. Any bundles or promotions and discounts associated

with each transaction are also recorded, along with a timestamp identifying when the

payment was made. The database also contains information on the mode of delivery to

customer for each order: dine-in, take-away, drive-through, or via a delivery platform.

In 2018, the food-delivery business in the country was dominated by a single homegrown

platform. According to industry experts, this platform commanded a market share of

approximately 85%. This market leader also accounts for 96.1% of all platform-based orders

in our dataset, and 10.7% of all orders filled by the QSR chain. Despite the dominance of

this one platform, there was another smaller platform that also operated at the time our

data was collected, which we also account for when measuring platform dependence.

Overall, then, 11.1% of total orders across all restaurants in our dataset were placed

through a food-delivery platform. We will use these orders to generate our measure of each

QSR’s dependence on third-party food-delivery platforms (cf. Section 4.4). We refer to the

other 88.9% of the orders as non-platform demand. Non-platform demand is distributed

as follows: 51.1% dine-in, 27.8% take-away, and 6.1% drive-through (numbers reported as

percentage of total demand inclusive of platform orders). Furthermore, a small portion of

demand (3.9%) is satisfied by the chain’s own food-delivery service.

4 Location is undisclosed to preserve anonymity.
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4.2. Forecasting Demand

In our setting 486,211 hourly forecasts were made across all restaurants in the QSR chain

over the one-year sample period. Managers of individual QSRs generate these hourly fore-

casts at the start of each working day and base them on a combination of historical sales

data and the manager’s own experience. These hourly forecasts are made for aggregate

demand across all delivery channels since each restaurant has only one kitchen to satisfy

all demand.

In our setting, the QSR managers almost exclusively use revenue generated through

sales before discounts (denoted by Salesid) as the metric for measuring demand. This

makes sense because in this context, the sales price for each SKU is highly correlated with

ingredient cost and the labor costs involved in preparation. Moreover, QSRs do not directly

track the number of diners they serve. QSR managers therefore base their inventory and

staffing decisions on the forecasted sales value in that hour rather than the numbers of

diners they expect to see. Consistent with this, we use sales as the primary metric to

measure demand in this paper.5 (Going forward, unless stated otherwise we will use the

terms “demand” and “sales” interchangeably to represent the value of sales generated

before accounting for any discounts or taxes.)

While the actual demand forecasts made by the managers were not centrally tracked,

preventing us from using them directly, we were given access to every restaurant’s staffing

roster in 2018. By combining this staffing data with the observed sales data in our sample

and augmenting this with other covariates (e.g., seasonal factors, dates of promotional

campaigns), we can recreate the managers’ hourly demand forecasts by using a range of

statistical forecasting methods of varying levels of sophistication. This is a commonly used

technique in the literature when historic demand forecasts are unobserved and must be

estimated from observed data (e.g., Rumyantsev and Netessine 2007, Freeman et al. 2017).

The fitted values from the statistical models become our estimate of expected demand

for each hour of the day at each QSR in our sample. The more that actual demand (i.e.,

sales) deviates from expected demand (i.e., forecasted sales), the more likely it is that the

QSR manager made incorrect staffing allocation and ingredient preparation decisions for

that hour in the day, impacting performance in the ways outlined in Section 1.

5 However, we also replicate our analysis using number of diners served (denoted by Dinersid) as the demand metric
– results can be found in Appendix C.1 and are consistent with those in the main paper.
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In the rest of this section we document the comprehensive range of variables used in

estimating demand (see Section 4.2.1) and describe the model specification that we use as

our baseline approach in the paper (see Section 4.2.2).

4.2.1. Control Variables Here we document and justify the various covariates (sum-

marized in Table 1) used to forecast demand.

Seasonality and trend. As one might expect, demand at any restaurant will vary across

different hours of the day, with demand typically high during traditional mealtimes (e.g.,

lunch, dinner) and lower at other times of the day. Demand can also vary by a wide margin

depending on the day of the week – for instance, a restaurant located in a shopping mall

will typically experience higher demand on weekends. There is also variation in demand

across weeks in the month, with demand tending to pick up during weeks that contain a

payday. Additionally, at different times of the year, demand may vary due to factors such

as the amount of daylight and peaks in tourism/travel.

To account for this variation, we include the following variables in our forecasting models:

(i) hour of the day, (ii) day of the week, (iii) week number within that month6 and (iv)

month of the year. We also include a linear trend variable at the day level in our forecasting

models to account for any systematic trends in demand over time.

Holiday period. To account for a significant anticipated shift in demand that occurs during

a prominent holiday period, we include a binary variable that takes value one while that

holiday is occurring and zero otherwise. We also include a separate binary variable that

takes a value one during public holidays.

Promotional campaigns. In 2018, the QSR chain ran several nationwide promotional cam-

paigns aimed at both online and offline customers. While we do not have detailed infor-

mation regarding these campaigns, we were provided with the dates on which they were

active. We include this information in our forecasting model as a binary input that takes

a value of one when there is an active promotional campaign on that restaurant-day and

zero otherwise. (Including a separate binary for each campaign does not improve out of

sample accuracy of our model.)

6 This is measured as ddate/7e, where d.e represents the ceiling function
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Table 1 Features used in training the demand model.

Variable Type Description

Hour∗ Categorical(24) Hour of the day
Day of the week Categorical(7) Day of the week on which the restaurant-day falls
Week number Categorical(5) ddate/7e, where de represents the ceiling function
Month Categorical(12) Month on which the restaurant-day falls
Public holiday Binary Takes a value of 1 if the restaurant-day falls on a public holiday
Holiday period Binary Takes a value of 1 if the restaurant-day falls during the prominent holiday season
Time trend Continuous Takes a value of 1 for the first day within a restaurant and increments by 1 for

each subsequent day
Promo campaign Binary Takes a value of 1 if the restaurant-day falls during an active promotional campaign
Staffing data∗ Continuous Time-series of the number of staff that were on duty for each restaurant-hour
Restaurant ID Categorical(99) Unique ID to represent each QSR in our setting

Notes: Some of these features are also used as control variables in our econometric specification (cf. Section 5.1). Variables marked with an asterisk (*) are
used only in constructing the demand model and are not included as controls in the regression models.
If a variable is categorical, the number in (·) in the ‘Type’ column indicates the number of levels.

Staffing data. As noted before, QSR managers in our setting staff their restaurants based

on their hourly sales forecasts. They use a mix of permanent and temporary employees in

four- or eight-hour shifts to manage their hourly staffing levels. We use this staffing data

(i.e., the number of staff scheduled to work during each hour of each day at each restaurant)

as a proxy for on-ground information about the demand at a particular QSR, which the

manager is privy to but we the econometricians are not. Such on-ground information might

include, for instance, information about conferences or sporting events in the vicinity,

public holidays, local issues such as elections, and various other factors that might affect

demand at a QSR.

Restaurant-specific factors. Finally, a wide range of restaurant-level factors could affect

demand. These include location, competitive landscape, and neighborhood demographics.

To account for variation in demand across restaurants, we include the restaurant ID as a

categorical variable in our model.

Not only do all of these control variables influence demand, but their effects may not be

uniform across all restaurants. For example, some restaurants may cater more to evening

crowds, others more to lunchtime crowds. Or promotional campaigns may be more effective

for some restaurants than others. To account for heterogeneity in the effect of each control

variable across restaurants, our models also include two-way interactions between restau-

rant ID and all other variables discussed above. This is consistent with the bottom-up

nature of demand forecasts, which are made by individual restaurant managers in response

to local, restaurant-specific trends.

4.2.2. Demand Model Specification Here we outline the baseline empirical model that

we use to estimate hourly demand at each of the QSR sites in our dataset.
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First, we note that a linear model encompassing all the variables described above along

with their two-way interactions with restaurant ID would contain over 6500 features. To

avoid over-fitting, we thus use a lasso (Tibshirani 1996) model for variable selection and

regularization. We use the cv.glmnet function from the glmnetUtils package in R for

model training and selection. The objective of lasso regression is to solve

min
β

{
N∑
i=1

(
yi−xTi β

)2}
subject to

p∑
j=1

|βj| ≤ t (1)

where yi is each observed instance of hourly demand, xi is the covariate vector for the ith

observation, and β = (β1, . . . , βp) is the set of coefficients to be estimated in the model. The

regularization parameter for the lasso regression is given by t and is a free parameter that

determines the amount of regularization.

In our models, we select the regularization parameter through five-fold cross validation

such that the mean absolute error (MAE) of the model is minimized. This shrinks the total

number of active features in our linear model by one-third – from 6643 to 4381. When

trained on a randomly selected partition containing 70% of the data and tested on the

remaining 30% of the data, such a model achieves an out-of-sample R-square of 69.5%.

The fitted values from the lasso model, denoted DemandFidh, give us our estimates of

demand at each restaurant i on each day d and each hour h.7 In this paper we will report

results where demand is estimated using the lasso approach described here. However, in

the appendix we also explore a range of alternative models for building demand forecasts.

These models include:

1. A simpler model including only staffing data and restaurant-specific factors as features

and ignoring the other variables listed in Table 1. This model provides an out-of-sample R-

square of 42.6%, and it captures a scenario where QSR managers are less sophisticated and

rely primarily on intuition and experience to estimate demand rather than using statistical

models. Analysis with this model is described in Appendix C.2.

2. A more sophisticated model using machine learning and ensemble methods to combine

the forecasts of several algorithms (e.g., gradient boosting and random forests) into a single

aggregate forecast. This is clearly a more advanced method than is used by restaurant

managers in our QSR sites, and it is able to increase out-of-sample R-square to 78.8%. A full

discussion of this approach and replication of the analysis are described in Appendix C.3.

7 We use the superscript F to denoted fitted or forecasted values as opposed to observed values.
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Results using these alternative approaches are entirely consistent with those reported in

the rest of this paper.

4.3. Measures of Forecast Accuracy

Now that we have constructed our measure of expected demand, DemandFidh, we are ready

to define three key variables for our analysis: measures of forecast accuracy. Recall that

we are interested in three primary measures: (1) overall forecast accuracy on a particular

day, which we then break down into (2) accuracy in forecasting the demand amplitude on

a day and (2) accuracy in forecasting the demand pattern within a day. In the rest of this

section we outline the calculation of these variables, with histograms provided in Figure 1.

4.3.1. Overall Forecast Error We define hourly errors, δidh, as the discrepancy between

observed and forecasted demand for each hour h on each day d at each restaurant i:

δidh =Demandidh−DemandFidh (2)

We aggregate from the hourly level to the daily level to arrive at our overall measure of

forecast error for each restaurant-day by taking the root mean squared error (RMSE) of

these hourly errors, i.e.:

OverallErrid =

√∑m
h=1 δ

2
idh

m
(3)

where m is the number of hours for which restaurant i was operational on day d.8 RMSE

is a common metric used to measure forecast accuracy and it is regularly used in the

management literature (e.g., Harrison and Klein 2007, Ahuja et al. 2019).

4.3.2. Relative Error in Demand Amplitude Amplitude error captures the extent to

which we under- or over-predict total demand on a particular day when aggregating over

our hourly demand forecasts. This is equal to the relative deviation of observed demand

amplitude from forecasted demand amplitude, i.e.,

AmpErrid =
|AmpFid−Ampid|

AmpFid
. (4)

In this equation, observed demand amplitude on a given day is simply the sum of observed

hourly demand on that day, i.e., Ampid =
∑

h∈hidDemandidh; forecasted demand amplitude

8 Mean absolute error (MAE),
∑m

h=1 |δidh|/m, is an alternative technique to aggregate hourly errors to measure overall
forecast error – see Appendix D for analysis with this alternative technique, which produces nearly identical results.
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is the sum of forecasted hourly demand on that day, i.e., AmpFid =
∑

h∈hidDemand
F
idh; and

hid is the set of hours h over which restaurant i was open on day d. (Note that by converting

from an absolute measure to a relative measure, we adjust for the fact that larger QSRs are

more likely on average to experience larger absolute forecast errors than smaller QSRs.)

The greater the value of AmpErrid the more inaccurate the total demand forecast on that

day (i.e., the more actual demand deviates from expected demand).

4.3.3. Relative Error in Demand Pattern To measure the relative error in forecasting

demand pattern, PattErrid, we compute the Spearman rank-order correlation (Myers et al.

2013) between forecasted and observed demand. In effect, this serves to rank order the

forecasted and actual sales within a day, and then determines the degree of correlation

between the rank-orders.

By defining relative error in forecasting demand pattern as a function of the rank, we

are abstracting away from the amplitude aspect of the forecast error. This enables us to

separate the amplitude effect from the pattern effect, and it captures the extent to which

the demand model is able to accurately identify peaks and troughs in demand within a

day. This distinction can be seen in Table 2, which shows that the correlation between

these two error measures is small, taking value −0.082

4.4. Dependence on Platforms

Our primary independent variable of interest is the QSR’s dependence on third-party

food-delivery platforms. Measuring a QSR’s dependence on platforms is akin to asking

its manager, “If today were a typical day, what proportion of today’s demand would you

expect to come from food-delivery platforms?” It is important to note that the answer to

this question should not be affected by unpredictable factors that impact daily demand at

a restaurant.

In order to generate our measure of dependence, we start by calculating the proportion

of total sales that come through third-party food-delivery platforms at each restaurant i

on each day d, denoting this PlatformShareid = PlatformDemandid/Demandid, where

PlatformDemandid and Demandid give the total sales made through the platform and

total sales through all channels, respectively.

Note that PlatformShareid is not a good measure of platform dependence since it

is likely to be highly correlated with the aforementioned idiosyncratic and unobservable
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Figure 1 Histograms of standardized measures of forecast error

factors that affect forecast accuracy. For example, if the weather is particularly bad on a

given day or if traffic congestion is worse than normal, then overall demand might drop

(i.e., forecast accuracy will be worse) and simultaneously the share of demand coming

through the platform may increase (as customers may opt for the convenience of delivery

over take-away or dining out). This would therefore lead to endogeneity issues and bias

our estimate of the impact of platform demand on forecast accuracy.

We address these endogeneity concerns by eliminating the noise so that we can tease out

each restaurant’s latent dependence on platforms, Depid. To do this, we compute a moving

average of PlatformShareid over a sufficiently large window, i.e.,

Depid =

∑
d∈Td PlatformShareid

|Td|
. (5)

Here, Td is the set of dates that lie within the specified window surrounding day d (i.e.,

Td = {d−w, . . . , d− 1, d+ 1, . . . , d+w}, with w giving the number of days before and after

day d that defines the length of the window) and |Td| = 2w − 1 denotes the cardinality

of set Td. Importantly, the window defined in Eq. (5) excludes day d in order to remove

the impact of any idiosyncratic factors that might simultaneously affect dependence and
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demand forecast accuracy on a particular day.9

In essence, Depid is a moving average of daily share of demand from platforms, and it

serves as our measure for the underlying third-party food-delivery platform dependence of

a particular restaurant i on that day d. When the window used is sufficiently long, this

measure is stable (i.e., no large swings in dependence from one day to the next) but also

follows the underlying trend in dependence at a particular restaurant (e.g., if dependence

on the platform increases over our time horizon, then so too will this measure).

In this paper we use a wide time window, w = 14, when calculating Depid. This is

equivalent to using a one-month window around day d and is chosen to reduce the impact

of any residual unobserved factors on the days surrounding day d, as these factors might

simultaneously affect dependence and demand forecast accuracy. What residual effects do

exist will be accounted for in our control structure (specifically with seasonal factors).

Estimations using other time windows (e.g., w= 10 and w= 21) are given in Appendix E,

with results consistent with those reported when w= 14.

4.5. Summary Statistics

Summary statistics and correlations between the key variables outlined in Sections 4.3–4.4

are given in Table 2. In order to maintain anonymity for the QSR chain, all summary

statistics are reported on standardized variables – i.e., after subtracting the mean and

dividing by the standard deviation. However, statistical analysis is performed and results

reported for the variables on their original scales.

Note that Salesid, Dinersid and PlatformShareid do not enter any of the statistical

models, but are provided for reference in Table 2. Of the remaining variables of inter-

est, the descriptive statistics show that all variables appear to be well-behaved except for

OverallErrid, for which the maximum takes a value 9.65σ above the mean. This suggests

that this variable is right skewed or contains one or more outliers. To reduce the influ-

ence of values in this right tail, we therefore take the natural logarithm transformation of

OverallErrid prior to modeling.

9 Note that the QSR chain in our study ran a number of promotional campaigns in the time window when our
data was gathered. Since these campaigns ran for multiple days, they may have had a non-random impact on
PlatformShareid, while also potentially impacting the accuracy of our demand forecasts on day d. While we already
control for promotional campaigns in the demand forecast model, we are also careful to account for the impact of such
campaigns when computing the moving averages to tease out Depid. Full details of the moving average specification
are in Appendix A.
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Table 2 Descriptive statistics and correlations for key variables.

Panel A: Descriptive Statistics – Standardized Variables

St.Dev

Mean Median Max Min Overall Between Within

Salesid 0 -0.22 15.37 -1.66 1 0.86 0.60
Dinersid 0 -0.22 12.06 -1.64 1 0.83 0.64
OverallErrid 0 -0.21 9.65 -1.85 1 0.85 0.88
AmpErrid 0 -0.24 4.52 -1.23 1 0.86 0.97
PattErrid 0 0.20 1.71 -3.71 1 0.98 0.89
PlatformShareid 0 -0.17 5.43 -1.26 1 0.79 0.66
Depid 0 -0.08 3.67 -1.48 1 0.87 0.50

Panel B: Correlations

Salesid Dinersid OverallErrid AmpErrid PattErrid PlatformShareid

Dinersid 0.957∗∗∗ –
OverallErrid 0.603∗∗∗ 0.619∗∗∗ –
AmpErrid -0.123∗∗∗ -0.099∗∗∗ 0.293∗∗∗ –
PattErrid 0.283∗∗∗ 0.273∗∗∗ -0.059∗∗∗ -0.082∗∗∗ –
PlatformShareid -0.048∗∗∗ 0.03∗∗∗ -0.033∗∗∗ 0.006 0.002 –
Depid -0.029∗∗∗ 0.052∗∗∗ 0.004 -0.011∗ 0.01∗ 0.821∗∗∗

Notes: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01; Salesid and Dinersid refer, respectively, to the total observed daily sales and

number of diners at each restaurant-site.

Also note that Table 2 reports only a small correlation between Depid (our key inde-

pendent variable) and forecast errors. However, this is misleading as these correlations

do not account for confounding variables such as seasonality, trend and unobserved site-

specific effects (cf. Table 1). Therefore, to isolate the effects of interest, we next outline the

statistical modeling approach taken in this paper.

5. Models and Results

In this section we describe the estimation approach used to answer Empirical Questions

1–4, then present results and robustness.

5.1. Econometric Specification

Our empirical strategy takes advantage of the variation in platform dependence within

(rather than between) each restaurant over the period of observation. We use this variation

to estimate the impact of platform dependence on errors in forecasting demand amplitude,

demand pattern, and overall demand at each restaurant. We then perform mediation anal-

ysis to investigate the relative importance of errors in amplitude and pattern in mediating

the relationship between dependence and overall forecast error.

More formally, we answer Empirical Questions 1–3 by estimating the following set of

independent regression equations:
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AmpErrid = αi +α1Depid +αT
2Xid + εαid (6)

PattErrid = βi +β1Depid +βT
2 Xid + εβid (7)

ln(OverallErrid) = γi + γ1Depid +γT
2 Xid + εγid (8)

In the above set of equations, the primary effects of interest are given by α1, β1 and

γ1, which correspond to the effect of an increase in platform dependence on a QSR’s

error in forecasting demand amplitude, demand pattern and overall demand, respectively.

Meanwhile, αi, βi and γi represent the unobserved site-specific effects (i.e., the site-specific

fixed effects) that account for unobserved differences between restaurant-sites that may

impact the relationship between dependence and forecast errors. The error terms εαid, ε
β
id,

and εγid are normally distributed with a conditional mean value of zero.

The vector containing the control variables in Equations (6)–(8) is given by Xid. This

vector includes the controls listed in Table 1 and is also expanded to include an additional

covariate to adjust for the impact of the scale of demand. In particular, note that as daily

demand increases, so too might the errors in our forecasts (i.e., δidh in Equation (2) may

increase). As a result, the overall error rates may be higher on days with higher expected

demand or in restaurants with larger overall demand. To account for this, the scale of

demand at the restaurant-day level is included as a control in the model as the natural loga-

rithm of the hourly forecasts aggregated across each day, i.e., Scaleid = ln(
∑

hDemand
F
idh).

Turning to Empirical Question 4, we answer this by following the mediation approach

outlined in the classic works of Judd and Kenny (1981a,b), Baron and Kenny (1986) and

Kenny et al. (1998) (also see MacKinnon et al. (2007) for a lucid discussion). This requires

us to estimate the following regression equations:

ln(OverallErrid) = θi + θ1Depid + θ2AmpErrid +θT
3 Xid + εθid (9)

ln(OverallErrid) = ηi + η1Depid + η2PattErrid +ηT
3 Xid + εηid . (10)

Equation (9) estimates the mediating effect of amplitude error on the relationship between

dependence on platforms and overall forecast error. Here, θ1 is an estimate of the average

direct effect (ADE) of dependence on overall forecast error, after controlling for the medi-

ating effect of amplitude error. The average causal mediation effect (ACME) – which is

an estimate of the effect that is mediated by amplitude error – is equal to θ2×α1, where

α1 is estimated in Equation (6). Meanwhile, the proportion of the total effect that can be
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attributed to mediation by amplitude error is given by (θ2×α1)/γ1, where γ1 is estimated

in Equation (8).

Similarly, Equation (10) estimates the mediating effect of pattern error on the rela-

tionship between dependence on platforms and overall forecast error. In this case, η1 is

an estimate of the ADE and η2 × β1 is an estimate of ACME, while (η2 × β1)/γ1 is the

proportion of the total effect that can be attributed to mediation by pattern error.

5.2. Results

Table 3 reports the estimates of coefficients from the regression equations outlined in

Section 5.1. Standard errors reported are heteroskedasticity and autocorrelation consistent.

The first, second and third columns in Table 3 answer Empirical Questions 1, 2 and 3,

respectively (cf. Section 3). We find that an increasing dependence on platforms has only

a small effect on the error in forecasting demand amplitude (denoted by α1 in Eq. (6)).

Specifically, for every 10 percentage point (p.p.) increase in dependence on platforms, error

in forecasting demand amplitude increases by 0.88 p.p. (p-value< 0.001). However, we find

that increasing platform dependence has a significant impact on the error in forecasting

demand pattern (denoted by β1 in Eq. (7)): for every 10 p.p. increase in dependence on

platforms, pattern correlation decreases by 2.6 p.p. (p-value < 0.001). Increasing depen-

dence on platforms also has a significant impact on the overall error in forecasting demand

(denoted by γ1 in Eq. (8)). For every 10 p.p. increase in platform dependence, overall error

in forecasting demand increases by 2.83% (p-value < 0.01).

Turning to the mediating effects, in Table 3, note that once AmpErr is introduced as a

mediating variable in the control structure (column four), the marginal effect of dependence

on overall forecasting error falls from 28.3% to 15.9%, remaining significant only at the

10% level (p-value = 0.065). In the case of PattErr (column five) this change is even

more pronounced and the direct effect no longer remains statistically significant – falling

from 28.3% to 10.8% (p-value = 0.262). And finally, when both the mediating variables

are introduced simultaneously (column six), the marginal effect of dependence on overall

forecasting error is negligibly small and statistically insignificant. This indicates that the

increase in platform dependence on forecast errors can, essentially, be entirely explained

by an increase in errors associated with forecasting the daily amplitude and within-day

pattern of demand.
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To explore this further, we follow the mediation approach described in Section 5.1. To

understand mediation by AmpErr we combine the coefficient estimates from columns

(1), (3) and (4) in Table 3. Using this, we estimate the ACME (θ2 × α1) to be 0.124

and the proportion of effect mediated by AmpErr to be 43.9% ((θ2 × α1)/γ1). Using

columns (2), (3) and (5) from Table 3 to explore mediation by PattErr gives an ACME

(η2× β1) of 0.175, while the proportion of effect mediated by PattErr is estimated to be

61.8% (η2×β1/γ1). However, strictly speaking, additional analysis is required to rigorously

establish the statistical significance of these mediation effects (Singh and Fleming 2010).

To that end, we use a bootstrapping approach developed by Preacher and Hayes (2004)

to corroborate these mediated effect sizes and confirm their statistical significance (see

Appendix B for results from the bootstrapping analysis).

Overall, these results demonstrate that increasing dependence on platform demand

results in poorer demand forecasting performance across the board, with this especially

negatively affecting a restaurants ability to forecast at what time demand will materialize

within a day. The unpredictable nature of the timing of these arrivals is further worsened

by the fact that total daily demand is also harder to forecast as restaurants increase their

dependence on these platforms.

5.3. Alternative Explanations

It is seldom straightforward to establish causality through analysis of secondary data.

Nevertheless, we try to eliminate several other possible explanations for the effects we

observe in our data using a variety of approaches described below.

First, by taking advantage of only the within-restaurant variation in dependence and

forecast error to estimate our models, we control for a wide variety of unobserved site-

specific effects, such as restaurant size, neighborhood demographics, intensity of competitor

activity, etc.

Second, our findings are based on the underlying degree of dependence each restaurant

has on demand that comes through food-delivery platforms (cf. Section 4.4 and Appendix A

for definitions of Depid and PlatformShareid). In order to eliminate the impact of such

confounding factors as sudden changes in weather or traffic or local events such as sporting

events, the calculation for this measure does not include day d, and the measure is cal-

culated over a wide time window to further reduce potential confounding by factors that

persist for multiple days. To further account for confounding by such multi-day factors, we
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Table 3 Main regression results

Amplitude error Pattern correlation Overall forecast error

(1) (2) (3) (4) (5) (6)

Dependence 0.088∗∗∗ −0.259∗∗∗ 0.283∗∗∗ 0.159∗ 0.108 −0.005

(0.023) (0.051) (0.096) (0.086) (0.096) (0.088)

Amplitude error 1.412∗∗∗ 1.377∗∗∗

(0.035) (0.034)

Pattern correlation −0.675∗∗∗ −0.645∗∗∗

(0.026) (0.023)

Seasonality Yes Yes Yes Yes Yes Yes
Holiday period Yes Yes Yes Yes Yes Yes
Day aggregate forecast Yes Yes Yes Yes Yes Yes
Time Trend Yes Yes Yes Yes Yes Yes
Promo campaign Yes Yes Yes Yes Yes Yes

Observations 32,695 32,695 32,695 32,695 32,695 32,695

R2 0.076 0.049 0.350 0.506 0.440 0.588

Adjusted R2 0.072 0.045 0.348 0.504 0.438 0.586

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
Robust standard errors in parantheses below each coefficient.

also (i) perform robustness checks by excluding additional days around the focal day when

calculating dependence and (ii) estimate a model that includes the lag of the dependent

variable on the right hand side (see Section 5.4 for more details).

Third, we use a comprehensive range of control variables (cf. Table 1) to account for

confounding factors. These factors, such as promotional campaigns and extended holiday

periods, can have an impact on both dependence and forecast error. By explicitly including

them in the control structure of our linear regressions, we partial out their impact on the

relationship between dependence and forecast error.

Finally, it is possible that the increase in forecast error is due to an increase in the total

demand – which could be due to either an increasing dependence on platforms or some

other unknown variable that is increasing over time. We control for this in two ways: we

include trend as a control for any omitted variables that are increasing with time, and we

include aggregated day-level forecasts as a control to account for the scale of the demand

for which forecasts are made.

5.4. Robustness Tests

We perform a wide variety of robustness checks to ensure that our results and insights are

not confined to the specifications presented in the main manuscript.
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First, we use alternative specifications for the demand model from which we extracted

the fits for computing forecast error (see the end of Section 4.2.2 for more details); we

present these results in Appendix C. More specifically, in Appendix C.2, we use a simpler

model that includes only staffing data and restaurant-specific factors as features, ignoring

other features listed in Table 1. Additionally, in Appendix C.3, we re-run our analysis with

a more sophisticated model that uses an ensemble of machine learning methods.

We also perform additional checks on the results discussed in Table 3, where we use

RMSE to measure overall forecast error. We repeat our analysis using Mean Absolute Error

(MAE) to measure overall forecast error; see Appendix D for results of this re-estimation,

which are similar to our original findings. We also repeat our analysis employing a range

of window sizes to measure dependence on platforms and report results for 10- and 20-day

windows in Appendix E.1 and Appendix E.2, respectively.

When computing the moving average of PlatformShare to measure Depid, we elimi-

nate confounding factors by disregarding the focal day d (cf. Appendix A for full details

of the moving average specification). However, eliminating the focal day itself does not

account for any potential confounding factors that can have an influence beyond the

focal day. To ascertain the robustness of our results, we compute variants of Depid that

also disregard PlatformShare from a few days surrounding (and including) the focal

day d. We discuss the details of this modified moving average specification for Depid in

Appendix F. In Appendix F.1, we discuss results with Depid measured as a moving average

of PlatformShare, but disregarding the focal day and ±1 day surrounding the focal day.

In Appendices F.2 and F.3, we disregard the focal day and, respectively, ±2 and ±3 days

surrounding it.

Another technique that can eliminate, or at least mitigate, the impact of confounding

factors is to use a proxy variable that can account for the unobserved variable. Woolridge

et al. (2002) note that “often the outcome of the dependent variable from an earlier time

period can be a useful proxy variable” (p. 66) to deal with the bias that arises from an

omitted variable. This technique has been used in previous empirical studies – for instance,

see Heckman and Borjas (1980), Nerkar and Paruchuri (2005), Gokpinar et al. (2010). In

Appendix G, we present results from regressions that include the first lag of forecast error

as a covariate (in addition to those features presented in Table 1).
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Overall, regardless of the demand model specified or the way we measure dependence and

forecast error, we consistently find that as the QSR increases its dependence on third-party

platforms, its overall error in forecasting demand increases. We also find that increasing

dependence has only a small and positive impact on error in forecasting demand amplitude,

or sometimes an insignificant impact (at 10% p-value level). Whatever the case, accuracy

in forecasting demand patterns consistently deteriorates as QSRs become more dependent

on platforms.10 And finally, models that account for changes in both demand amplitude

and demand patterns consistently have a statistically insignificant residual relationship

between dependence and overall error in demand forecasts.

6. Conclusions and Discussion

The food delivery market is expected to reach a total value significantly over US$100 billion

in the next two to three years, and the COVID-19 pandemic is, if anything, only acceler-

ating its growth. Powered by app-based platforms that connect restaurants, drivers/riders

and consumers in real time, it is changing the food and beverage industry landscape. The

high popularity of these delivery platforms among consumers has driven restaurants to

increasingly depend on them to drive their sales growth. However, restaurant managers

need to be aware of the potential adverse effects of this dependence.

In this paper, we conduct a rigorous analysis to establish, first, that as QSRs’ dependence

on third-party food-delivery platforms increases, their ability to accurately forecast their

demand decreases. This ability is critical for efficient planning in restaurant operations. It

is especially important in the context of QSRs, where speed of service is a key competitive

advantage and cooked food has a short shelf-life, leading to high potential for food waste.

Second, we show that the increase in forecast error can be primarily attributed to errors

in forecasting demand pattern, as opposed to forecasting demand amplitude.

Our work has important implications for the nascent literature examining the relation-

ship between new, app-based marketplaces and traditional businesses (e.g., Feldman et al.

2018, Chen, Hu and Wang 2019). We empirically establish that demand coming from

food-delivery platforms changes the characteristics of the overall demand at a restaurant.

Going forward, this dynamic needs to be properly accounted for in models that study the

relationship between delivery platforms and restaurants.

10 This result is confirmed by a survey-based study of anecdotal evidence from restaurateurs in the UK. (Smithers
2020)
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From a managerial perspective, our work adds several rigorously-tested insights to the

conversation among restaurateurs on the unintended consequences of third-party food-

delivery platforms on their businesses. Since an increase in forecast error leads to an

increase in a restaurant’s operational costs, managers must account for this when consid-

ering a relationship with third-party delivery platforms and offset that against any antici-

pated increase in their revenues. The overall impact will be context specific and our paper

provides a methodology that restaurant managers can follow to measure these trade-offs

and to, at regular intervals, re-assess their engagement with their platform partners.

To improve adoption, the platform itself may be able to help restaurants by offering

value-added services that help their client restaurants to anticipate demand patterns and

lower the costs of adoption. Since the platform has access to real-time data on platform

demand for all of the restaurants that are part of their network, such forecasts will likely

be more accurate than those that the restaurant can produce using only their own data.

For example, restaurants and platforms might negotiate information sharing agreements

that can help restaurants improve their forecasting and, in general, operational efficiency.

Advantages of information sharing in supply chains are well understood (for instance, cf.

Lee and Whang 2000), and undertaken by companies such as Amazon (Levy 2019) and

Airbnb (Novet 2015).

Extrapolating from our results, we also hypothesize that demand at so-called “virtual

kitchens”11 will be much harder to forecast than demand at a traditional restaurant. This

implies that margins on cloud kitchens will be lower than expected due to the additional

costs of decreased forecast accuracy. This implication is highly relevant for managers and

shareholders of such businesses. In fact, recent news reports indicate that firms that have

invested in cloud kitchens are now realizing the “high volatility” associated with those

businesses and are scaling down their investments (Singh 2020).

Finally, our results suggest that changes in forecast accuracy in demand amplitude and

demand patterns explain almost all the deterioration in overall forecast accuracy. This sug-

gests that restaurants, in responding to this, can focus their attention on just two strategies:

one, improving forecast accuracy for total daily demand; two, improving forecast accuracy

for distribution of demand within the day. Further analysis suggest that restaurants should

11 Also known as cloud, ghost or dark kitchens, these kitchens only serve delivery customers and do not have any
seating or direct customer-facing component.
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rather focus their attention on the latter. To do this, they could take advantage of mod-

ern IS-enabled capabilities to offer personalized, geolocation-based and time-of-day-based

recommendations and incentives to customers. There are some indications that customers

may be amenable to this; for instance, Susskind et al. (2004) show that consumers are

willing to change their dining times when proper incentives are offered. In this day and

age, restaurants cannot avoid depending on third-party food-delivery platforms, but our

results suggest that they should endeavor to regulate their demand patterns in order to

take full advantage of this growing phenomenon.
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Appendix A: Measuring Dependence on Platforms

We define the share of demand coming from third-party food-delivery platforms for each restaurant-day as

PlatformShareid =
PlatformDemandid

Demandid

.

As we noted in Section 4.4, PlatformShareid is not a good measure of platform dependence since it is

likely to be impacted by idiosyncratic and unobservable factors. For example, if the weather or traffic is

particularly bad on a given day, the share of demand coming through the platform may increase (as customers

may opt for the convenience of delivery rather than having to collect their meal themselves).

PlatformShareid =Depid +noiseid (11)

We tease out the latent variable, Depid, by eliminating the noise around it. We compute Depid as a

moving average of PlatformShareid over a sufficiently large window. However, note that the QSR chain ran

a number of promotional campaigns in the time window to which our data belongs. Since these campaigns

ran for multiple days, they may have had a non-random impact on PlatformShareid.

Since the impact of these promotional campaigns may be non-random, a simple moving average of

PlatformShareid would not lead us to Depid. We therefore carefully account for the impact of promotional

campaigns when computing the moving averages to tease out Depid. We do this by estimating the following

regression equation for every day d, at every restaurant i, in our sample:

PlatformShareit = λid + γid× banner.binaryit + ∆it (12)

where t∈ [d−w,d+w]∧ t 6= d and w is the size of the window.

We use λit as our measure of dependence for restaurant i on day d. Note that if we do not control for

the banner activities, then the intercept λit is equivalent to a sample average of PlatformShareit over that

window. In the main paper, we present results with w = 14 days (cf. Table 3). In Appendix E we present

results with alternate window sizes.

Appendix B: Mediation Analysis with Bootstrapped Samples

We test the statistical significance of the mediation effects of forecasting error in demand pattern and demand

amplitude via non-parametric bootstrapping analysis as outlined in Preacher and Hayes (2004). We generate

confidence intervals for this analysis from 1500 simulations, using the mediation package in R statistical

software developed by Tingley et al. (2014). Table 4 and Table 5 report non-parametric bootstrap confidence

intervals for the mediation effects we present in Section 5.2.



36 Karamshetty, Freeman and Hasija: Unintended Consequence of Food-Delivery Platforms

Table 4 Nonparametric Bootstrap Confidence Intervals for Mediation by Demand Amplitude

Estimate 95% CI Lower 95% CI Upper p-value

ACME 0.122 0.058 0.187 0 ∗∗∗

ADE 0.158 0.039 0.269 0.012 ∗

Total Effect 0.280 0.142 0.407 0 ∗∗∗

Prop. Mediated 0.436 0.247 0.753 0 ∗∗∗

Table 5 Nonparametric Bootstrap Confidence Intervals for Mediation by Demand Pattern

Estimate 95% CI Lower 95% CI Upper p-value

ACME 0.175 0.122 0.221 0 ∗∗∗

ADE 0.105 -0.016 0.228 0.088 .

Total Effect 0.280 0.148 0.407 0 ∗∗∗

Prop. Mediated 0.624 0.401 1.104 0 ∗∗∗
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Appendix C: Alternative Demand Models

C.1. Number of diners served as the measure of demand

In Section 4.2 we mention that restaurant demand can also be measured by number of diners served. In this

section, we repeat the analysis from our main manuscript using number of diners served as the measure of

demand, and our results and insights still hold.

Since the number of diners served by the QSR was not directly available to us, we compute this metric

for each check by counting the number of core menu items that were sold as part of that check. Core menu

items include all items except for desserts, beverages and sides. For instance, a check showing one meal – one

burger, one side of fries and one beverage – would be considered as serving one diner. An a-la-carte check

with two burgers, one side of fries and two beverages would be considered as serving two diners.

Table 6 Results with no. of diners served as measure of demand

Amplitude error Pattern correlation Overall forecast error

(1) (2) (3) (4) (5) (6)

Dependence 0.045 −0.283∗∗∗ 0.228∗∗ 0.163∗∗ 0.037 −0.018

(0.030) (0.052) (0.095) (0.078) (0.101) (0.086)

Amplitude error 1.474∗∗∗ 1.439∗∗∗

(0.038) (0.035)

Pattern correlation −0.676∗∗∗ −0.642∗∗∗

(0.027) (0.024)

Seasonality Yes Yes Yes Yes Yes Yes
Holiday period Yes Yes Yes Yes Yes Yes
Day aggregate forecast Yes Yes Yes Yes Yes Yes
Time Trend Yes Yes Yes Yes Yes Yes
Promo campaign Yes Yes Yes Yes Yes Yes

Observations 32,699 32,699 32,699 32,699 32,699 32,699

R2 0.086 0.050 0.390 0.547 0.466 0.616

Adjusted R2 0.083 0.047 0.387 0.545 0.464 0.614

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
Robust standard errors in parantheses below each coefficient.
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C.2. Man-hours only model

In this section, we present results when we recreate our analysis using forecasts from a simpler model

including only staffing data and restaurant-specific factors as features and ignoring the other variables listed

in Table 1. This model provides an out-of-sample R-square of 42.6%, and it captures a scenario where QSR

managers are less sophisticated and rely primarily on intuition and experience to estimate demand rather

than using statistical models.

Table 7 Results with forecasts from a simpler model

Amplitude error Pattern correlation Overall forecast error

(1) (2) (3) (4) (5) (6)

Dependence 0.101 −0.267∗ 0.251∗ 0.211 0.177 0.134

(0.094) (0.138) (0.132) (0.128) (0.124) (0.123)

Amplitude error 0.401∗∗∗ 0.403∗∗∗

(0.098) (0.097)

Pattern correlation −0.279∗∗∗ −0.286∗∗∗

(0.016) (0.013)

Day of the week Yes Yes Yes Yes Yes Yes
Month Yes Yes Yes Yes Yes Yes
Week of the month Yes Yes Yes Yes Yes Yes
Public holiday Yes Yes Yes Yes Yes Yes
Religious holiday period Yes Yes Yes Yes Yes Yes
Day aggregate forecast Yes Yes Yes Yes Yes Yes
Time Trend Yes Yes Yes Yes Yes Yes
Promo campaign Yes Yes Yes Yes Yes Yes

Observations 33,302 33,302 33,302 33,302 33,302 33,302

R2 0.120 0.123 0.182 0.351 0.231 0.402

Adjusted R2 0.116 0.120 0.179 0.349 0.228 0.400

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
Robust standard errors in parantheses below each coefficient.
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C.3. Forecasts from a stacked demand model

In this section, we present results when we recreate our analysis using forecasts from a more sophisticated

model using machine learning and ensemble methods to combine the forecasts of several algorithms (e.g.,

gradient boosting and random forests) into a single aggregate forecast.

We use the h2o.automl function from the h2o package in R for model training and selection. h2o.automl

can be used for automatically training and tuning machine learning models with minimal input from the user

(H2O.docs 2020). The best model, chosen through five-fold cross validation such that the mean absolute error

(MAE) of the model is minimized, was a stacked ensemble of several models. The stacked ensemble model

generated forecasts by aggregating forecasts from constituent individual models such as gradient boosting

machines (Friedman 2001), XGBoost models (Chen and Guestrin 2016), fully-connected multi-layer artificial

neural networks, random forests (Liaw et al. 2002), and extremely randomized trees (Geurts et al. 2006).

Each of these constituent models was automatically tuned by h2o to minimize MAE.

This is clearly a more advanced method than is used by restaurant managers in our QSR sites, and it is

able to increase out-of-sample R-square to 78.8%.

Table 8 Results with forecasts from a more sophisticated model

Amplitude error Pattern correlation Overall forecast error

(1) (2) (3) (4) (5) (6)

Dependence 0.016 −0.265∗∗∗ 0.326∗∗∗ 0.294∗∗∗ 0.110 0.100

(0.019) (0.051) (0.089) (0.069) (0.082) (0.070)

Amplitude error 2.022∗∗∗ 1.894∗∗∗

(0.064) (0.057)

Pattern correlation −0.815∗∗∗ −0.740∗∗∗

(0.035) (0.030)

Seasonality Yes Yes Yes Yes Yes Yes
Holiday period Yes Yes Yes Yes Yes Yes
Day aggregate forecast Yes Yes Yes Yes Yes Yes
Time Trend Yes Yes Yes Yes Yes Yes
Promo campaign Yes Yes Yes Yes Yes Yes

Observations 33,308 33,308 33,308 33,308 33,308 33,308

R2 0.028 0.080 0.240 0.398 0.352 0.489

Adjusted R2 0.025 0.077 0.237 0.395 0.350 0.487

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
Robust standard errors in parantheses below each coefficient.
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Appendix D: Regressions with MAE

As we discuss in Section 4.3.1, Mean Absolute Error (MAE) is another metric commonly used to measure

the accuracy of forecasts. We find that our results are robust to specifications with this measure.

Table 9 Results with MAE as measure of forecast error

Amplitude error Pattern correlation Overall forecast error

(1) (2) (3) (4) (5) (6)

Dependence 0.088∗∗∗ −0.259∗∗∗ 0.273∗∗∗ 0.148∗ 0.106 −0.009

(0.023) (0.051) (0.099) (0.089) (0.102) (0.092)

Amplitude error 1.430∗∗∗ 1.396∗∗∗

(0.038) (0.036)

Pattern correlation −0.648∗∗∗ −0.618∗∗∗

(0.024) (0.021)

Seasonality Yes Yes Yes Yes Yes Yes
Holiday period Yes Yes Yes Yes Yes Yes
Day aggregate forecast Yes Yes Yes Yes Yes Yes
Time Trend Yes Yes Yes Yes Yes Yes
Promo campaign Yes Yes Yes Yes Yes Yes

Observations 32,695 32,695 32,695 32,695 32,695 32,695

R2 0.076 0.049 0.369 0.537 0.456 0.615

Adjusted R2 0.072 0.045 0.367 0.535 0.454 0.614

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
Robust standard errors in parantheses below each coefficient.
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Appendix E: Alternative Window Sizes for Computing Depid

E.1. 10 days

In our main results, we chose a 28-day window to run the regressions. In this section, we show that our

results are robust to other window size specifications. For instance, we re-run the regressions using a ±10-day

window, which is approximately equivalent to averaging over 1.5 weeks in both directions: past and future.

Table 10 Results with Dependence defined over a three weeks moving window

Amplitude error Pattern correlation Overall forecast error

(1) (2) (3) (4) (5) (6)

Dependence 0.038∗∗ −0.201∗∗∗ 0.228∗∗∗ 0.174∗∗ 0.092 0.045

(0.018) (0.047) (0.084) (0.076) (0.088) (0.080)

Amplitude error 1.414∗∗∗ 1.380∗∗∗

(0.036) (0.034)

Pattern correlation −0.675∗∗∗ −0.645∗∗∗

(0.027) (0.023)

Seasonality Yes Yes Yes Yes Yes Yes
Holiday period Yes Yes Yes Yes Yes Yes
Day aggregate forecast Yes Yes Yes Yes Yes Yes
Time Trend Yes Yes Yes Yes Yes Yes
Promo campaign Yes Yes Yes Yes Yes Yes

Observations 32,874 32,874 32,874 32,874 32,874 32,874

R2 0.075 0.048 0.349 0.506 0.439 0.588

Adjusted R2 0.071 0.044 0.347 0.504 0.437 0.586

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
Robust standard errors in parantheses below each coefficient.
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E.2. 20 days

Similar to the previous table, table Table 11 showcases results from a re-run of our analysis, this time using

a ±20 day moving window to measure Depid. This is approximately equivalent to averaging over three weeks

in both directions: past and future.

Table 11 Results with Dependence defined over a six weeks moving window

Amplitude error Pattern correlation Overall forecast error

(1) (2) (3) (4) (5) (6)

Dependence 0.068∗∗ −0.273∗∗∗ 0.288∗∗ 0.192∗ 0.104 0.018

(0.030) (0.056) (0.119) (0.099) (0.115) (0.099)

Amplitude error 1.411∗∗∗ 1.375∗∗∗

(0.036) (0.034)

Pattern correlation −0.676∗∗∗ −0.645∗∗∗

(0.026) (0.023)

Seasonality Yes Yes Yes Yes Yes Yes
Holiday period Yes Yes Yes Yes Yes Yes
Day aggregate forecast Yes Yes Yes Yes Yes Yes
Time Trend Yes Yes Yes Yes Yes Yes
Promo campaign Yes Yes Yes Yes Yes Yes

Observations 32,296 32,296 32,296 32,296 32,296 32,296

R2 0.076 0.049 0.352 0.507 0.441 0.589

Adjusted R2 0.072 0.045 0.349 0.506 0.439 0.587

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
Robust standard errors in parantheses below each coefficient.
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Appendix F: Alternative Definitions of Dependence

In Appendix A we discuss the moving average specification employed to measure Depid. Specifically, we

note that the moving average is defined over a window t ∈ [d−w,d+w]∧ t 6= d and w = 14 for the results

presented in the main paper (cf. Table 3).

In the above definition, we disregard only the focal day d to eliminate the impact of confounding factors.

To test the robustness of our results, we compute variants of dependence that also disregard PlatformShare

from a few days surrounding the focal day d.

More formally, we estimate the regression specified in Eq. 12 over t∈ [d−w,d+w]∧ t /∈ [d− l, d+ l], where

w= 14 and l ∈ {1,2,3}.

F.1. Moving average with w= 14 and l= 1

Table 12 Results with an alternative definition of Dependence

Amplitude error Pattern correlation Overall forecast error

(1) (2) (3) (4) (5) (6)

Dependence 0.095∗∗∗ −0.251∗∗∗ 0.298∗∗∗ 0.165∗ 0.129 0.006

(0.025) (0.050) (0.098) (0.087) (0.097) (0.088)

Amplitude error 1.410∗∗∗ 1.375∗∗∗

(0.036) (0.034)

Pattern correlation −0.674∗∗∗ −0.645∗∗∗

(0.026) (0.023)

Seasonality Yes Yes Yes Yes Yes Yes
Holiday period Yes Yes Yes Yes Yes Yes
Day aggregate forecast Yes Yes Yes Yes Yes Yes
Time Trend Yes Yes Yes Yes Yes Yes
Promo campaign Yes Yes Yes Yes Yes Yes

Observations 32,486 32,486 32,486 32,486 32,486 32,486

R2 0.076 0.049 0.351 0.506 0.440 0.588

Adjusted R2 0.072 0.045 0.349 0.504 0.438 0.586

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
Robust standard errors in parantheses below each coefficient.
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F.2. Moving average with w= 14 and l= 2

Table 13 Results with an alternative definition of Dependence

Amplitude error Pattern correlation Overall forecast error

(1) (2) (3) (4) (5) (6)

Dependence 0.106∗∗∗ −0.247∗∗∗ 0.321∗∗∗ 0.172∗∗ 0.155 0.017

(0.027) (0.049) (0.096) (0.084) (0.095) (0.085)

Amplitude error 1.410∗∗∗ 1.375∗∗∗

(0.036) (0.034)

Pattern correlation −0.674∗∗∗ −0.645∗∗∗

(0.026) (0.023)

Seasonality Yes Yes Yes Yes Yes Yes
Holiday period Yes Yes Yes Yes Yes Yes
Day aggregate forecast Yes Yes Yes Yes Yes Yes
Time Trend Yes Yes Yes Yes Yes Yes
Promo campaign Yes Yes Yes Yes Yes Yes

Observations 32,488 32,488 32,488 32,488 32,488 32,488

R2 0.076 0.049 0.351 0.506 0.440 0.588

Adjusted R2 0.073 0.045 0.349 0.504 0.438 0.586

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
Robust standard errors in parantheses below each coefficient.



Karamshetty, Freeman and Hasija: Unintended Consequence of Food-Delivery Platforms 45

F.3. Moving Average with w= 14 and l= 3

Table 14 Results with an alternative definition of Dependence

Amplitude error Pattern correlation Overall forecast error

(1) (2) (3) (4) (5) (6)

Dependence 0.104∗∗∗ −0.253∗∗∗ 0.338∗∗∗ 0.191∗∗ 0.167∗ 0.031

(0.028) (0.047) (0.097) (0.085) (0.094) (0.084)

Amplitude error 1.411∗∗∗ 1.375∗∗∗

(0.036) (0.034)

Pattern correlation −0.675∗∗∗ −0.645∗∗∗

(0.026) (0.023)

Seasonality Yes Yes Yes Yes Yes Yes
Holiday period Yes Yes Yes Yes Yes Yes
Day aggregate forecast Yes Yes Yes Yes Yes Yes
Time Trend Yes Yes Yes Yes Yes Yes
Promo campaign Yes Yes Yes Yes Yes Yes

Observations 32,278 32,278 32,278 32,278 32,278 32,278

R2 0.076 0.049 0.352 0.507 0.441 0.589

Adjusted R2 0.073 0.045 0.349 0.506 0.439 0.587

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
Robust standard errors in parantheses below each coefficient.
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Appendix G: Regression with Lagged Dependent Variable

In this section, we present results from regressions that include the first lag of forecast error as an additional

covariate, along with those presented in Table 1).

Table 15 Results from models that include first lag of DV a control

Amplitude error Pattern correlation Overall forecast error

(1) (2) (3) (4) (5) (6)

Dependence 0.074∗∗∗ −0.248∗∗∗ 0.224∗∗ 0.118 0.052 −0.045

(0.020) (0.048) (0.088) (0.084) (0.091) (0.087)

Amplitude error 1.399∗∗∗ 1.364∗∗∗

(0.034) (0.033)

Pattern correlation −0.679∗∗∗ −0.650∗∗∗

(0.024) (0.022)

Seasonality Yes Yes Yes Yes Yes Yes
Holiday period Yes Yes Yes Yes Yes Yes
Day aggregate forecast Yes Yes Yes Yes Yes Yes
Time Trend Yes Yes Yes Yes Yes Yes
Promo campaign Yes Yes Yes Yes Yes Yes

First lag Amplitude Error Yes No No No No No
First lag Pattern Correlation No Yes No No No No
First lag Overall Forecast Error No No Yes Yes Yes Yes

Observations 32,170 32,170 32,170 32,170 32,170 32,170

R2 0.093 0.049 0.355 0.506 0.446 0.590

Adjusted R2 0.090 0.045 0.353 0.504 0.444 0.588

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
Robust standard errors in parantheses below each coefficient.
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