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Problem definition: Treating many blood-related diseases requires transplantation of genetically compatible hematopoi-

etic stem cells (HSCs) extracted from the bone marrow (BM) of live donors or the umbilical cord blood (CB) of babies.

To facilitate the search for HSCs, institutions known as BM registries collect the details of potential donors and CB banks

store units of CB. This paper focuses on the problem of joint optimization of the capacity of these two institutions.

Academic: With over 10 million genetic variants, limited inventory relative to this variety, and random replenishment,

BM registry and CB bank compositions are random, inter-dependent, and change nondeterministically over time. Fur-

thermore, BM and CB differ in their supply, costs, genetic matching criteria, and influences on medical outcomes, giving

rise to important trade-offs such that neither is preferred exclusively to the other. Jointly determining the optimal capacity

of both sources is therefore both technically challenging and has immediate policy implications.

Methodology: We develop a simulation-based approach to estimate the temporal variation in matching probabilities

before incorporating the associated regression parameters into a mathematical model closely matching the research con-

text. Results are contrasted against a simplified mathematical model, highlighting the importance of the dynamic setup.

Results: Inventories of 17.5 million registered BM donors and 335 thousand CB units are estimated as optimal for the

U.S. population under reasonable assumptions. Expanding capacity to these levels would satisfy 33% of the currently

unmet demand, increasing the transplantation rate to 98.7% and delivering $770 million of extra social surplus annually.

Managerial Implications: Rigorous policy analyses are imperative for designing evidence-based, cost-effective policies

that deliver societal benefits. To this end, we provide quantitative evidence in support of calls for further expansion of the

national BM registry and CB banks in the U.S. We also propose annual recruitment targets for BM donors and CB units

to maintain the two institutions at their suggested levels.
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1. Introduction
The UN, in their sustainable development goals (SDG), call for decisive action to promote healthy lives

and wellbeing for all, including a call to cut premature mortality from non-communicable diseases dras-

tically. Providing citizens with cost-effective access to life-saving technology and treatment is essential to

attaining that goal. Yet every year, hundreds of thousands of people worldwide are diagnosed with hemato-
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logical (blood-related) diseases such as leukemia and lymphoma (types of cancer), severe aplastic anemia

(failure of bone marrow functioning), inherited immune system disorders, and inherited metabolic disorders.

For many patients with such diseases, transplanted blood-forming stem cells, known as hematopoietic stem

cells (HSCs), from healthy donors can improve their likelihood of survival. This process requires collecting

HSCs from a donor whose immune system is compatible with that of the recipient and then transplanting

these HSCs into the patient in a procedure known as an allogeneic stem cell transplantation.

Generally, there are three main sources of HSCs for allogeneic transplants: 1) related bone marrow (BM)

donors, i.e., a close relative of the patient, usually a sibling; 2) matched unrelated bone marrow donors

(MUDs), i.e., donors from the general population whose genes match those of the patient; and 3) umbilical

cord blood (UCB), i.e., stem cells extracted from the umbilical cords of newborn babies whose genes have

a close match with the patient’s. Empirically it has been observed that 70% of patients do not find a related

donor and hence their prognosis depends on finding an unrelated BM donor or compatible UCB cells held in

storage (Gragert et al. 2014). Based on 2019 population demographics, nearly 13,000 patients are therefore

estimated to require allogeneic transplants from unrelated donors every year in the U.S. alone (Health

Resources and Services Administration 2020b).

To facilitate the search for unrelated HSCs, different countries have established institutions known as

bone marrow registries (BMRs) and cord blood banks (CBBs). BMRs store the contact and genetic infor-

mation of voluntary BM donors, while CBBs store previously collected cord blood units (CBUs) in cryo-

genic facilities. In the U.S., for example, the National Marrow Donor Program (NMDP) currently maintains

a registry of almost nine million potential BM donors. The contact details of these potential donors are

made available to transplant centers through a program called “Be The Match.” In addition, approximately

265,000 CBUs are stored in public CBBs in the U.S., most of which are listed under Be The Match and

made available on request.1 However, despite the large size of these institutions relative to the total demand,

Be The Match reports that a patient’s likelihood of finding a matching donor in the registry ranges only

from 23% to 77% depending on ethnic background (Be The Match 2020b).

One reason put forward for the low matching probability is that, at present, the BMRs and CBBs con-

tain an insufficient number of donors and CBUs (Health Resources and Services Administration 2020c).

However, increasing the size of these institutions is not a trivial decision as doing so would impose a sig-

nificant cost burden on the healthcare system. Moreover, the benefit of increasing the BMR and CBB size,

in terms of the additional lives saved, is not straightforward to determine due to the complexities associated

with finding a compatible match for a recipient. A significant body of literature in the fields of medicine

and economics (discussed in detail in Section 3) has therefore focused on demonstrating how the matching

1 Current BM donor and CBU numbers correct as of 23 August 2020 (World Marrow Donor Association 2020).
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probabilities differ depending on the size of the BMR or CBB or on estimating target annual recruitment

rates. To date, however, any attempt made at optimizing the size of the two institutions has always con-

sidered each in isolation but never both together. Yet there are important trade-offs between expanding the

BMR and expanding the CBB, making it crucial from a policy and practical perspective to consider the two

alternative sources in unison. This paper looks to fill this gap in the literature.

In particular, the most important practical difference between stem cells from BM and those from UCB is

that successful transplantation requires different levels of donor-recipient genetic compatibility (medically

referred to as histocompatibility). The specific biological details that describe a so-called “match” are given

in Section 2, but essentially this is determined by the number of matches between six alleles that make up

the phenotypes of the patient and donor. For a BM transplant to be successful, a perfect match (i.e., a 6/6

phenotype match) is required. In contrast, one advantage of UCB cells over BM is that matches as low as

4/6 can still lead to a successful transplant (though a perfect match is still preferred to 5/6 and 4/6 matches).

In addition to their matching requirements, these two sources of HSCs also differ in their costs (e.g., of

recruitment, extraction, and storage), availability, and, importantly, medical effectiveness. (More details are

provided in Section 2, Section 4, and Section EC.3 of the e-companion.) It is the latter, in particular, that

usually makes BM cells a physician’s first choice. That said, for patients with rarer phenotypes it may be

impossible to find the required 6/6 match in the BMR despite the large size of the registry. In such cases,

using stem cells from the CBB may be the only viable option. For this reason, there is significant tension

between expanding the size of the BMR to increase the chance of a rare match versus operating an expanded

CBB containing CBUs that are more flexible in catering to these rare cases.

From a public health and policy perspective, then, the optimal sizing of these two institutions, each

different in their operational aspects and medical effectiveness, represents an important and challenging

decision. However, as we discuss later, solving this dual optimization problem is complicated by the fact

that the inventory of CBUs in the CBB changes dynamically over time in ways that are difficult to predict.

The specificity of the problem thus necessitates a practical approach that calls for close alignment between

the context and the research procedure, and which requires viewing the problem through an operations lens

to provide practically relevant findings with immediate implications for public health policy.

The key contribution of this paper therefore lies in finding the optimal size of each institution given a fixed

annual demand for allogeneic transplants. First, we mathematically model the net annual benefits arising

from transplants from the BMR alone and optimize the BMR size for the U.S. population. This builds on

existing work (e.g., by Bergstrom et al. 2009) by incorporating losses due to annual attrition and no-shows

that have been previously overlooked. Thereby, we also identify the annual rate of donor recruitment needed

to compensate for donor loss. Second, we formulate an optimization model that finds the optimal BMR and
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CBB sizes (under an extreme policy in which all CBUs are discarded at the end of each year) when both

sources are used together to cater to HSC demand. Finally, we develop and analyze a simulation model

to study the temporal dynamics of the system with both sources of supply under real-world conditions. A

regression model is then fitted to the output of the simulation and achieves near-perfect predictive accuracy.

The predictive equation is then incorporated into a mathematical model that is optimized to provide long-

term solutions to the problem at hand.

Overall, we find that the optimal BMR in the U.S. will comprise approximately (approx.) 17.5 million

registered donors, who are able to satisfy approx. 92.8% of the total annual demand for HSCs with an annual

operating cost of approx. $73.5 million USD. For the remaining patients who are unable to find a match in

the BMR, we estimate a total public CBB inventory of approx. 335 thousand CBUs to be sufficient. These

CBUs can satisfy approx. 5.9% of the total annual demand (or, equivalently, 82.3% of the spillover from

the BMR) with an annual operating cost of approx. $52 million USD.

From a policy perspective, despite recent suggestions that the number of CBUs currently in storage in

public banks in the U.S. is too high, we find that an approx. 26% expansion in CBB capacity is still required

before the inventory level approaches optimal. Meanwhile, the current total number of registered BM donors

in the U.S. (estimated at approx. 11.5 million donors2) would need to increase by 52% to reach the optimal

value. Our results therefore suggest that approx. $629 million in additional funding should be made available

for recruiting new donors, with a further $141 million allocated for the collection of new CBUs. These

up-front costs, although high, are justified by the increase in the number of transplants per year, with 33.0%

of the previously unmet demand satisfied under the recommended policy. These transplants deliver approx.

$770 million in additional value annually, which, after accounting for all costs, translates to an increase of

approx. $6.9 billion in total social surplus over a 10-year time horizon.

From a practical perspective, our findings can also guide targets for annual donor recruitment and UCB

collection. With a 4% BM donor attrition rate per year and a 20-year expiry for CBUs, we estimate that

approx. 700 thousand new BM donors must be recruited each year and 35 thousand new CBUs collected

to maintain the respective institutions at their recommended sizes. Perhaps more importantly, we contribute

by providing an approach that can be easily adapted so that these targets can be refined over time as new

or more accurate data becomes available (e.g., on the distribution of phenotypes in the population or other

parameters used as inputs). Finally, we note that while our recommendations are specific to the U.S. context,

our estimation routine can be readily applied to healthcare systems outside of the U.S. to guide capacity and

recruitment decisions.

2 Author’s calculations based on the number of registered donors in the U.S. across the four largest BMRs: Gift of Life (≈375,000
– World Marrow Donor Association 2020), NMDP (≈8.95 million – World Marrow Donor Association 2020), Salute to Life (close
to 1 million – Be The Match 2020a), and DKMS (≈1.13 million – DKMS 2020).
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2. Background Information: Biology and Context
In this section, we provide more information on the genetic compatibility behind a patient-donor match,

and we discuss in more detail the different sources of HSCs and their respective limitations, advantages,

costs and benefits. A glossary of acronyms and definitions of medical terms can be found in Section EC.4

of the e-companion.

2.1. Patient-donor histocompatibility

The genetic compatibility (histocompatibility) between a donor and a patient is the basis for a match

and for a successful transplant. Histocompatibility is determined by the body’s immune system, which uses

proteins known as human leukocyte antigens (HLAs) in the cells to distinguish between local and foreign

cells. A stem cell transplant is likely to be successful only if the donor’s HLA type is sufficiently close to

the recipient’s, i.e., if the foreign and local cells are similar enough to one another.

To determine whether an HLA-type match exists between a donor and a recipient, until recently the

medical standard has been to compare specific gene contents at three locations or loci within chromosome

pair six – HLA-A, HLA-B, and HLA-DRB1 – at a low level of resolution.3 This chromosome pair is made

up of two individual chromosomes, one inherited from each parent, with the combination of alleles for HLA-

A, HLA-B, and HLA-DRB1 on each individual chromosome known as a haplotype. A patient’s phenotype,

meanwhile, is determined by combining the gene content inherited from both parents (i.e., taking both

haplotypes together). The phenotype is typically represented by the string “AaBbDd”, whereAa represents

the two copies of genetic code (i.e., the two alleles, one from each haplotype) at locus HLA-A, and with Bb

and Dd representing the two alleles at HLA-B and HLA-DRB1, respectively. Thus, the histocompatibility

match between a BM donor or CBU and a recipient is determined by the degree of similarity between the

alleles that make up their phenotypes. If the six alleles mentioned above match between the donor and the

recipient, this is referred to as a 6/6 (“six of six”) match. If there is a mismatch in one of the alleles, it is

called a 5/6 match, while a mismatch in two alleles is referred to as a 4/6 match.

The number of distinct alleles known to exist at each locus is increasing over time as scientists continue

testing more individuals in the population. Mori et al. (1997) use a sample of just over 400,000 registered

BM donors in the NMDP in 1995 and identify 20 unique alleles at HLA-A, 39 at HLA-B and 14 at BLA-

DRB1, meaning that in theory there are at least 10,920 (= 20 × 39 × 14) different haplotypes and 59.6

million (= N(N + 1)/2 where N = 10,920 – see Sonnenberg et al. 1989) distinct phenotypes that can

exist. However, not all possible phenotypes show up in the population. Based on historic phenotyping and

subsequent extrapolation, researchers estimate there to be closer to ten million unique phenotypes present

3 More recently it has been found that outcomes are improved by using higher-resolution matching and by considering at least one
additional gene from chromosome pair six. We will discuss the use of more refined matching in Section 7 of this paper.
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in the U.S. population (Bergstrom et al. 2009). An estimate of the relative frequencies of these phenotypes

and their respective matching probabilities is important for our analysis and is derived later in Section 4.

Note that a critical constraint common to both BM donor recruitment and CBU collection is that the

phenotype of a donor or CBU is only discovered after the processing costs are incurred. This means that

selective screening based on phenotype is not possible (though selection based on other dimensions, such

as race or geography, has been considered in the literature and in practice). While a registry or bank may

still decide to reject an incoming BM donor or CBU based on phenotype after screening has occurred, this

is rare in practice since the costs associated with adding donor details to the registry and annual storage

costs of CBU are low relative to the costs of recruitment, extraction and typing. This inability to perform

selective screening therefore makes finding the target annual donor recruitment and CBU collection rates

and the corresponding size of the BMR and CBB a primary concern for researchers and policymakers.

2.2. Sourcing and extracting HSCs from bone marrow

Traditionally, the source of HSCs for treating patients with hematological diseases has been BM tissue

extracted from the matched donors. (The medical and technical details of the genetics, cell biology and

matching process for BM transplants are detailed in Beatty (1994).) As mentioned in Section 1, the search

for compatible BM donors is facilitated by BMRs that operate in different countries and maintain informa-

tion on registered donors. These BMRs are responsible for connecting physicians with potential donors and

for recruiting new donors by way of direct advertising, celebrity campaigns, and recruitment drives.

Following recruitment, donor typing (phenotyping) is a reasonably straightforward process. When a con-

senting potential donor arrives, a simple cheek swab is taken to determine their phenotype. The donor’s

phenotype is then registered in the BMR together with their contact details. The BMR is therefore simply a

database containing the name, demographic information, contact details and phenotype of every registered

donor. Whenever a patient requires a stem cell transplantation, a formal search of the BMR is initiated by the

transplant center in which they are being treated. If a suitable MUD is found in the registry, then the donor

will be contacted to set up a donation. However, on average only approx. 45% of contacts actually result in

a donation due to, e.g., difficulties in contacting the potential donor, scheduling conflicts, and ineligibility

following medical evaluation (Gragert et al. 2014, Dehn et al. 2019).

If a willing and eligible MUD is found, then stem cells are extracted in one of two ways: 1) a surgical

procedure in which liquid bone marrow tissue is extracted from the back of the pelvic bone using a needle

under general or local anesthesia, or 2) a non-surgical procedure in which intravenous methods are used to

induce the formation of excess stem cells in the donor’s bloodstream and those cells are then extracted by

way of a blood draw. It is worth bearing in mind that both of these procedures cause great inconvenience

to the donor, necessitating, e.g., travel to the medical site, time spent in the hospital, and discomfort during

and after the procedure.
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2.3. Cord blood as an alternative source of HSCs

In contrast to bone marrow, the advent of cord blood as an alternative source of HSCs is a relatively

recent innovation that only started approx. 20 years ago (see Navarrete and Contreras (2009) for a historical

overview of CB banking and collection, storage, and release-related factors that are known to impact patient

outcomes). CBUs are formed using blood from the umbilical cord and placenta that is collected shortly after

childbirth and processed before being frozen in liquid nitrogen. This requires prior consent from the parents,

and parents can decide whether to donate the stem cells extracted from the UCB to a public bank, which

stores them for public usage, or a private bank, which is a commercial organization where CBUs are stored

for potential personal future use. Since not all CBUs are considered usable after extraction, historically

approx. 50% of those donated to public banks are discarded for failing to meet minimum standards (Howard

et al. 2008).

There are currently 26 public CB banking services in the U.S. (Parent’s Guide to Cord Blood Foundation

2020). Each is affiliated with local hospitals, with the maternity wards of these hospitals serving as the main

suppliers of CBUs to public banks. This means that CBUs have already been physically collected prior to

demand (i.e., prior to a physician searching for a match). As a consequence, unlike BM – which is not

collected until there is demand and for which the BMR is essentially a database – CBUs must be physically

preserved in cryogenic facilities. Thus, capacity investment and costs associated with collecting, storing and

maintaining CBUs for public use are much higher than they are for BM. Their supply is also accordingly

limited, with approx. 265,000 units currently listed in the NMDP’s Be The Match program (World Marrow

Donor Association 2020).

From a matching perspective, CBUs are a highly flexible resource since the phenotype matching require-

ments are less stringent than they are for BM. In particular, as highlighted in Section 1, while a 6/6 is

always preferred, a UCB transplant can be successful even with lower 5/6 and 4/6 matches.4 (Note that the

preference for higher-level matches is due to faster engraftment rates, rather than evidence of differences in

survival rates – see Section EC.3 of the e-companion). This flexibility comes from the fact that stem cells

from UCB are not fully developed (i.e., the cells are antigen-inexperienced naïve) and hence are more adapt-

able in the recipient’s body. Thus, overall, from an operations perspective, CBUs come at a relatively higher

cost than BM donation, but they are also a more flexible resource that is more immediately retrievable.

However, one important limitation of using CBUs is that they cater more to the younger rather than

the older population. This is because CBUs typically contain a lower number of HSCs (i.e., a lower total

4 Note that it is clinically recommended that the two allele mismatches do not occur on the same locus for a 4/6 match. For example,
a mismatch on alleles “A” of locus HLA-A and “B” of locus HLA-B is permitted, but mismatches of both alleles “a” and “A” on
locus HLA-A is not recommended. In practice, only approx. 5% of UCB transplants have two mismatches at the same locus, so in
this paper we follow Gragert et al. (2014) and exclude such matches from consideration.
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nucleated cell (TNC) content) than is extracted from BM. As the minimum TNC content requirements

increase with patient body weight (and hence indirectly with age – see Section EC.3 of the e-companion

for further details), it has been estimated that while most patients under the age of 20 will be able to find at

least a 4/6 match in public CBBs that exist in the U.S. today, for adults this drops to around 80% (Gragert

et al. 2014). In comparison, an equivalent BM transplantation will provide recipients with approx. ten times

the TNC content of UCB. Partially because of this difference in TNC content, patients receiving CBUs are

also at increased risk of graft failure and slower rates of engraftment (complications that are described in

Section EC.3 of the e-companion). As a result, in most cases, physicians prefer BM over UCB for allogeneic

transplants. However, there is no guarantee that a perfect 6/6 match will always be found in the BMR.

Hence, despite the limitations of CBU transplantation, its greater flexibility can potentially play a major

role in catering to the needs of patients with rare phenotypes who cannot find a match in the BMR.

With a deeper understanding of the biological and operational features of both sources of HSCs, we next

proceed to review the literature relevant to the problem at hand.

3. Literature Review
Our paper primarily builds on three streams of literature: 1) medical papers that discuss the biology

associated with finding a suitable match, 2) economic analyses that focus on improving social welfare by

allocating resources for transplants more efficiently, and 3) operations management (OM) literature relating

to capacity decisions in contexts where alternative resources exist which are partial substitutes.

3.1. Medical literature and economic analyses

An extensive body of medical literature discusses the biology behind finding a match, evaluates the

relative advantages and disadvantages of BM and UCB as sources of HSCs, provides recommendations as to

which source to choose and when, and compares relevant patient outcomes following allogeneic transplants

depending on source and degree of matching (see, e.g., Giralt and Bishop 2009, Kekre and Antin 2014,

Dehn et al. 2019). Much of this is important in modeling the joint optimization problem and is discussed in

detail in Sections 2, 4 and 5.

Also relevant to this paper is medical literature that seeks to derive the probability of finding a patient’s

histocompatible match. Sonnenberg et al. (1989) were the first to formally calculate the probability of find-

ing a MUD for a given BMR size. Using updated data, Mori et al. (1997) study the haplotype frequencies

of the North American population and provide guidance for matching and suggest donor recruitment strate-

gies. These works are extended by Beatty et al. (2000), who mathematically calculate the probability of a

5/6 match, and by Kollman et al. (2004), who assess how increasing donor recruitment (especially targeted

recruitment by race) affects matching probabilities. More recently, Gragert et al. (2014) estimated that with
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the existing BMR and public CBB supply, the likelihood of a patient finding a suitable match ranges from

91 to 99% depending on patient age and ethnicity.

Building on the medical literature and using the biological underpinnings as inputs, a separate stream of

literature analyses the problem of finding the optimal BMR or CBB size from a cost-benefit perspective to

inform policy. Bergstrom et al. (2009), for example, model and optimize the size of the BMR and estimate

the altruistic benefit associated with being a BM donor depending on donor race. Meanwhile, Howard

et al. (2008) build a mathematical model to show how, given a fixed demand for CBUs, cost-effectiveness

reduces as the size of the CBB increases. Meanwhile, in an unpublished manuscript, Fève and Florens

(2010) develop separate mathematical models for the BMR and CBB to find the matching probabilities

associated with each institution when used in isolation. Specifically, after simulating over the phenotype

distribution in France, the authors assess how the matching probabilities change when using either a BMR

or a CBB of varying size (with size incremented in fixed intervals). However, the analysis is primarily

descriptive; it does not optimize over the respective sizes of the two institutions and does not optimize

jointly.

A major limitation common to these existing studies is that when the size of the BMR or CBB is var-

ied, the presence of the other source is ignored. Since this approach will clearly lead to sub-optimal policy

recommendations, in this paper we instead consider the problem of jointly optimizing the size of the BMR

and CBB, recognizing that these two sources of HSCs are not perfect substitutes (e.g., they differ in their

matching criteria, costs, and medical effectiveness). However, considering the two institutions jointly intro-

duces a technical challenge: As the size of one institution changes, it changes the distribution of demand

that spills over to the other; consequently, the distribution of supply also changes. Over time, the distri-

bution of demand and supply therefore become increasingly misaligned, resulting in fewer matches. The

existing literature does not capture these dynamics. In contrast, our study finds these dynamics to have

important policy implications, as we show by explicitly accounting for temporal-variation in the matching

probabilities in a simulation study and comparing it to a static model (under restrictive conditions).

3.2. Operations management

As noted earlier, CBUs can be viewed as both a flexible resource and as an (imperfect) substitute for BM.

Our paper therefore touches on three important streams of literature drawn from the OM domain: 1) capacity

decisions with flexible resources, 2) inventory management with substitute products, and 3) matching and

resource allocation in the kidney exchange market. We discuss our work in relation to these streams below.

The recent review article by Song et al. (2020) provides a thorough survey of OM literature relating to

capacity and inventory management in general, and so our focus here is on discussing those papers most

related to our work. In terms of capacity planning, Van Mieghem (1998) provides guidance for optimal
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investment in dedicated and/or flexible capacity given two different products that differ in aspects such as

cost, price and demand uncertainty. This is extended to multiple products and multiple resources in the

work of Harrison and Van Mieghem (1999). A more detailed literature review on the early work relating

to strategic capacity management and hedging under demand uncertainty can be found in Van Mieghem

(2003). In the body of literature concerning inventory management with substitute products, Bassok et al.

(1999) focuses on single period multi-products with substitutability, proving that a greedy policy of inven-

tory replenishment is optimal in this case. Lee et al. (2016) demonstrate the value of utility-based choice

models in planning inventory for new and used textbooks with stockout-based substitution. Meanwhile,

Schlapp and Fleischmann (2018) derive optimal inventory policy for a capacity-constrained firm selling

multiple partially substitutable products over a finite season.

Also closely related to our paper is literature discussing the problem of matching and resource allocation

in the kidney exchange market. Prior to the seminal work of Roth et al. (2004, 2005), Zenios (2002) modeled

the kidney exchange program as a double-sided queue matching problem and sought to find policies to

maximize the expected total discounted quality-adjusted life years (QALYs). Building on this work, Su and

Zenios (2006) studied the efficiency-equity trade-off in kidney transplantation and designed a mechanism

to elicit truthful private information from patients. Glorie et al. (2014), meanwhile, focused on the market

clearance problem and on finding a donor-to-patient allocation that is optimal with respect to multiple

criteria. Many other contributions of the OM community to improving the kidney exchange process are

summarized in Anderson et al. (2015). Progress on this problem has continued, with recent work, e.g., Ding

et al. (2018), Dickerson et al. (2019), Blum et al. (2020), taking an algorithmic approach to improving the

efficiency of the kidney exchange market.

To the best of our awareness, Gökalp et al. (2020) is the first paper in the operations management literature

related to the broad theme of HSC transplants. The paper focuses on reducing delays in transplantation

after matching by building advanced testing capacity and coordinating rapid donor mobility. Their work

highlights some of the structural issues that prevent the actual transplant rate from reaching the theoretical

match rate suggested in the literature. We complement this work by establishing the first-best solution from

a system design perspective, which acts for a benchmark for literature focusing on operational efficiencies.

While at a high level there are similarities between our problem and those discussed in these related

streams of OM literature, our problem has several features that have not previously been studied. First, as

the capacity of one resource (e.g., the BMR) changes, it affects not only the total demand spilling over to

the other resource (e.g., the CBB) but also the distribution of that demand. This introduces an additional

inter-dependency that must be accounted for when making capacity decisions. Second, as previously noted,

the composition of inventory changes dynamically over time due to the spillover effect. Therefore, a static
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single-period model is insufficient to capture this dynamic, and a simulation-based approach is required to

identify the optimal allocation decision. Third, the inventory management problem described in our paper

is unique in the sense that we have more than 10 million different possible SKUs for BM and CB. The

small inventory size relative to the wide variety of SKUs implies that the supply (i.e., the composition of the

SKUs held in inventory) at any point in time is a random sample. Moreover, the composition of this random

sample changes dynamically with time and cannot be deterministically controlled (since replenishment also

occurs randomly), making sample composition highly dependent on the capacity decisions made by the

policymaker. These factors distinguish the problem analyzed in this paper from those studied in the extant

OM literature (see Song et al. 2020).

4. Data Preparation
The data used in our study contains the population frequency distribution of phenotypes compiled by

Mori et al. (1997), which is based on a sample of about 400,000 individuals who were registered with the

NMDP in 1995 and whose HLA-A, -B, -DR phenotypes were recorded. To obtain the probability of every

phenotype in the population, the phenotypes (i.e., “AaBbDd”) are split into their constituent haplotypes

(i.e., “ABD” and “abd”). Mori et al. (1997) then calculated the frequency of every haplotype hABD using

the Expectation-Maximization (EM) algorithm prescribed by Dempster et al. (1977). Based on these hap-

lotype frequencies, we construct an exhaustive list of all phenotypes and their frequencies in the population

according to the laws of genetics. Specifically, according to the Hardy-Weinberg equilibrium, the population

frequency for phenotype AaBbDd is given by5

pAaBbDd = 2[hABDhabd +hABdhabD +hAbDhaBd +haBDhAbd] (1)

This equation reflects the fact that any of the individual terms on the right side of Equation (1) can give

rise to the same phenotype, and the multiplicative factor 2 is to account for the equiprobable mirror image

haplotype combinations, which can be inherited in two ways, i.e., hABD ∗habd = habd ∗hABD. We iterate the

above equation for all possible phenotype combinations and obtain 10,804,408 possible distinct phenotypes

for the U.S. population. Thus, p is a vector of size 10,804,408. The probabilities of the phenotypes vary

from 10−3 to 10−13.

Next, we calculate the probabilities of “6 of 6” (6/6), “5 of 6” (5/6), and “4 of 6” (4/6) matches for

each of the phenotypes in the vector p. These are required to calculate the likelihood of a patient with a

particular phenotype finding a match in the BMR or CBB. Let mAaBbDd
k be defined as the probability that

5 Note that the Hardy-Weinberg equilibrium maintains the assumptions that individuals mate with others of their own race and that
mating within each race is random with respect to HLA type.
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a randomly chosen member of the population is at least a k/6 match for phenotype AaBbDd. Clearly,

mAaBbDd
6 = pAaBbDd. For a 5/6 match we find

mAaBbDd
5 = p.aBbDd + pA.BbDd + pAa.bDd + pAaB.Dd + pAaBb.d + pAaBbD.− 5pAaBbDd, (2)

where the “.” symbol in any phenotype subscript denotes summation over all possible values in the corre-

sponding position. It is easy to see that mAaBbDd
5 is nothing but the sum of probabilities of phenotypes that

have a mismatch with AaBbDd in only one of the six places, with a final subtraction term that accounts for

double-counting of AaBbDd.

The mathematical expression for calculating a mAaBbDd
4 is not as straightforward and, to the best of our

knowledge, has not previously been derived in the literature. The additional complexity is due to the added

constraint that for a 4/6 match to succeed, there must be at least one matching antigen for each of the three

pairs Aa, Bb and Dd (see Footnote 4). Combinatorics gives us (62)− 3 = 12 such possible sequences.

Proposition 1 The probability of at least a 4/6 match for phenotype AaBbDd is given by

mAaBbDd
4 = p.a.bDd + p.aB.Dd + p.aBb.d + p.aBbD. + pA..bDd + pA.B.Dd

+ pA.Bb.d + pA.BbD. + pAa.b.d + pAa.bD. + pAaB..d + pAaB.D.

− 3mAaBbDd
5 − 8pAaBbDd (3)

where again the “.” symbol in any phenotype subscript denotes summation over all possible values in the

corresponding position.

The detailed derivation of Equation (3) is provided in Section EC.1 of the e-companion.

In Figure 1 we plot histograms for the mAaBbDd
6 (bottom), mAaBbDd

5 (middle) and mAaBbDd
4 (top) match-

ing probabilities. Specifically, the x-axis gives the probability that a randomly chosen member of the popu-

lation will be at least a 6/6 (bottom), 5/6 (middle) or 4/6 (top) match for phenotype AaBbDd, while the

height of each bin specifies the number of phenotypes (out of the 10,804,408 possible) that fall into each

probability range. From Figure 1, it is evident that the median probability of matching with a randomly cho-

sen member of the population improves as the matching criteria is relaxed (from 6/6 to 4/6). Furthermore,

the dispersion of probabilities narrows and concentrates around the median. This figure thus demonstrates

the value that CBUs can bring to the system by enabling lower-level (i.e., 5/6 and 4/6) matches.

5. Mathematical Model
In this section, we first develop a model to predict the performance of the BMR and then use this model to

address the question of the optimal registry size. Next, we consider the performance of a system consisting

of both a BMR and a CBB and discuss the challenges of mathematically modeling this joint system.
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Figure 1 Distribution of mAaBbDd
4 (top), mAaBbDd

5 (middle), and mAaBbDd
6 (bottom) matching probabilities

across phenotypes.

5.1. Bone marrow registry model

As discussed in Section 2.3, donated BM is generally preferred to CBUs as a way to satisfy the demand for

allogeneic transplants due to the lower odds of graft rejection and higher TNC content as compared to CBUs.

Moreover, maintaining a public CBB requires cryogenic storage facilities and is expensive. Consequently,

many emerging economies do not have CBBs and instead rely on BMRs to find healthy donors. We therefore

start by assessing the performance of a stand-alone BMR. The model we develop here will later also be

used to analyze the joint BMR/CBB system.

We start by setting B as the number of registrants in the BMR, which is assumed to be held constant.

We also assume that the composition of the registry always reflects the population phenotype distribution

p, i.e., that recruitment of potential donors and attrition are independent of the registrant’s phenotype.6 This

means that at any time, the probability that a randomly chosen registrant has phenotype i is equal to pi (as

defined in Equation (1)). Meanwhile, the probability that a random patient will arrive and place a request

for phenotype i is also given by pi.

Although there areB registrants in the BMR, this number is effectively reduced by the fact that registrants

may not be willing or able to donate when called upon to do so, for reasons discussed in Section 2.2.

Therefore, we assume that a registrant will “show up” when requested with probability δ, independent of all

6 It is simple to relax this assumption and allow the phenotype distribution in the BMR to follow some other stable distribution.



14 Panchanatham et al.: Be the Match

other requests made to this or any other registrant and independent of their phenotype. (Note that following

a donation request, this registrant will remain on the registry regardless of whether they show up or not.)

Now, let M be the event that an arbitrary request for a donation cannot be met from the registry, and let

T be the phenotype associated with the request. Then

Pr{M |T = i}= (1− δpi)B, (4)

reflecting the fact that for every registrant in the registry, the joint probability of having type i and showing

up equals δpi. This means that

ϕ(B) = Pr{M}=
∑
i

Pr{T = i}Pr{M |T = i}=
∑
i

pi(1− δpi)B (5)

is the fraction of donation requests that remain unsatisfied in a BMR of size B.

The primary objective of the model is to maximize the net benefits derived in the process of matching

patients with donors in the BMR.7 It must therefore account for the total value of lives saved, the cost

incurred in establishing the registry, and the cost of replenishing the registry to compensate for attrition.

The key parameters for this model and estimates of their values are:

• The annual demand for unrelated HSC transplants, which is reported to be close to λ=13,000 patients

per year in the U.S. (Besse et al. 2015, Health Resources and Services Administration 2020b).

• The probability distribution of the different phenotypes in the population, p, which was estimated in

Section 4.

• The time horizon over which to optimize, which we set equal to ten years. In particular, stem cells are

currently being tested for application in treating a wide variety of diseases and disorders (Aly 2020)

and the technology associated with extracting, storing, and administering them is rapidly evolving

(Brown et al. 2019). These, and other as yet unforeseeable changes, may drastically affect future

demand for HSCs and, consequently, the recommended size of the BMR/CBB. Our choice to present

the results for a 10-year horizon is thus a conservative one (see also Section 6.4 of the paper where

sensitivity analyses are performed using different levels of demand).

7 As mentioned earlier, our analysis aims to achieve the first-best solution from a system design perspective, hence we follow the
convention in the literature and assume that an eligible and willing match always leads to a transplant (e.g., Bergstrom et al. 2009).
However, aside from no-shows, which we account for, there may be various other reasons why a transplant does not occur despite
there existing an available match in the BMR or CBB. For example, the patient may die before the donor or CBU arrives, the patient
may be unable to afford the cost of treatment, or the patient may not be willing or able to wait, and so may opt for a haploidentically
mismatched related donor (i.e., a 3/6 match) instead. Consequently, the number of allogeneic transplants performed in the U.S.
annually (at least 5,000 (Health Resources and Services Administration 2020d)) will not tally with the number expected when using
the theoretical match rate. Our analysis therefore serves as a benchmark for future research focusing on addressing these operational
inefficiencies.
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• The annual attrition rate, α. This is estimated by comparing the average age at which a potential donor

joins the BMR – given by Bergstrom et al. (2009) as 35 – with the age at which they “age out” of

the registry – taken to be 61, the age at which patients are officially removed from the Be The Match

registry because donation poses increasing risks to their health. Thus, on account of age censoring, the

annual rate of attrition is set at α= 0.04 (donors spend on average 25 years on the registry).

• The no-show rate, δ, which was discussed in Section 2.2 and reported to be approx. δ= 0.45.

• The value of a match through the BMR, vb. We follow Bergstrom et al. (2009) and assume a value of

$1.2 million. This estimate is based on the concept of the “value of a statistical life” (VSL), which is

the marginal rate of substitution between survival probability and wealth. Bergstrom et al. (2009) use

a VSL of $6.5 million and estimate a 21% increase in the likelihood of long-term survival following

a successful transplant (relative to a patient who does not receive a transplant). After subtracting the

median hospital cost of the transplant, $166,000, the value of a match is thus estimated as vb = ($6.5×

0.21− $0.166)× 106 ≈ $1.2× 106.

• The cost associated with recruiting a donor, cb, which, following Bergstrom et al. (2009), is equivalent

to the cost of phenotyping and equal to cb = $105 per registrant.

• The annual costs of replenishing the registry to compensate for attrition so as to maintain it at a constant

size of B, which is equal to αBcb.

• The cost of establishing the BMR, which we assume to be equal to the total typing costs Bcb. This

cost is amortized over ten years, i.e., the time horizon chosen for this study, as noted above.8

Incorporating these parameters, our objective is to solve the problem max{f(B)|B ≥ 0} where

f(B) = λ(1−ϕ(B))vb− (α+ 0.1)Bcb. (6)

Equivalently, we solve the problem min{g(B)|B ≥ 0} where

g(B) = λvb− f(B) = λϕ(B)vb + (α+ 0.1)Bcb. (7)

In Section EC.1 of the e-companion, we show

Proposition 2 g(B) is convex in B.

Note that our formulation does not include discounting. This is because, first, discounting the value of

a life saved is questionable. Second, it is not unreasonable to assume that inflation and discounting for the

out-of-pocket costs cancel each other out. Third, discounting merely complicates the presentation and does

not change the insights and conclusions. However, in Section EC.5 of the e-companion we show the impact

of incorporating discounting into the joint optimization model.

8 We could, alternatively, only consider the typing costs associated with increasing the size of the registry toB from its current level
(8 million potential donors in the U.S. – see Footnote 2). Doing so produces identical results.
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5.2. Numerical investigation of the BM registry model

First, note that an analytical solution is not available. Fortunately, the function g(B) is convex in B, so

numerical optimization is straightforward, even though the size of the vector p is vast (10,804,408×1) and

the decision variable is in the exponent of each of the terms. In Figure 2a we plot the region around the

optimal value of B, which clearly depicts the convex structure of the function g(B).

We find that the optimal value of the registry size B∗ for an annual attrition rate of α= 0.04 and show-up

rate of δ = 0.45 is 34× 106, meaning that the registry should have ±34 million potential donors. With the

optimal registry size suggested by our model, on average 12,405 out of the 13,000 patients in a year find

a match, leading to an expected fill rate of 95.42% and saving 2,605 lives in expectation (12,405×0.21).

Donor recruitment must be sufficient to maintain the registry at 34 million donors. With a 4% attrition rate,

this means that approx 1.36 million new donors must be recruited annually in the U.S. alone. This is close to

the total number of donors added every year to the Be The Match registry globally between 2017 and 2019

(Health Resources and Services Administration 2020a). Moreover, the registry is currently estimated to have

only 11.5 million donors i.e., only ≈ 34% of the recommended level. This gap highlights the magnitude of

the efforts needed to expand the registry size and maintain it at 34 million donors. Further, the annual cost

to recruit new donors to compensate for attrition is estimated at $143 million, while the amortized fixed cost

for expanding the registry beyond its 11.5 million current registrants is $238 million. Thus, in this model

in which the BMR is the sole source to address the needs of 13,000 patients per year, the total annual cost

amounts to $381 million.

Our recommendation of 34 million BM registrants is approx. 13 million more than the 21 million pre-

scribed by Bergstrom et al. (2009). This is primarily due to a difference in how we account for attrition as

well as the addition of no-show rates in our model. Specifically on the first point, Bergstrom et al. (2009)

arbitrarily assume that the match rate (i.e., % of patients who find a match in the BMR) declines by 2% per

year after the first year. This can be explained by the fact that recurring donor recruitment does not occur in

their model. Consequently, over time, the size of their BMR effectively reduces due to donor attrition, and

hence the match rate also decreases. However, a 2% decline in matches per year leads to a large number of

additional lives lost, dampening the benefits of the BMR in Bergstrom et al. (2009) and resulting in a sig-

nificant underestimate the optimal BMR size. By comparison, we assume (more realistically and consistent

with practice) that if there is donor loss then new donors will be recruited to replace them (at a cost), and

therefore that the match rate instead remains stable over time.

Note that the values of the attrition rate (α) and show-up rate (δ) may vary over time (e.g., if younger

and healthier donors are recruited). Therefore, it is helpful to understand how sensitive the optimal BMR

size, B∗, is to changes in these parameters. First, we investigate the impact of the attrition rate α for a given
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Figure 2 (a) Structure of g(B).

Sensitivity of the optimal registry size (B∗) against (b) attrition rate α and (c) show-up rate δ

(a) (b) (c)

value of the show-up rate (45%). Figure 2b shows the steep decrease in the optimal BMR size, B∗, as the

annual attrition rate α is increased. The decrease is due to the higher annual recruitment cost incurred with

higher attrition rates. In turn, this also impacts the number of matches, which decreases when there are

fewer BM donors in the registry. Figure 2c, meanwhile, shows that the optimal BMR size (B∗) decreases

as the show-up rate δ increases. The decreasing optimal size is a consequence of more registrants showing

up to donate when called upon, which means that fewer registrants are required in the BMR. In this case,

although the registry size decreases, the number of lives saved remains almost constant (as the increased

show-up rate compensates for the decrease in registry size).

As mentioned at the beginning of Section 5.1, our model provides a robust framework for use in emerg-

ing economies where public CBBs are tough to establish. After the population’s phenotype distribution is

estimated, the framework above can be utilized to prescribe an optimal BMR size in these locations. Next,

we turn our attention to CBUs and explore how much value they bring to the system.

5.3. A joint model

CBUs as an alternate source of HSCs have significant potential value for patients requiring allogeneic

transplants, primarily due to greater flexibility in their matching requirements (see Section 2.3). However,

despite this advantage, the probability of graft rejection is higher for UCB than for BM transplants, as men-

tioned earlier. Therefore, BM donation is almost always the doctor-preferred option, and when a transplant

request comes in, the standard procedure usually involves searching for a BM donor first. If none are avail-

able, a match is sought in the CBB in the preference order of 6/6, 5/6 and 4/6. When a match is found in

the CBB, the TNC level in the CBU must be evaluated to assess whether it is sufficient for transplantation.

As noted in Section 2.3, this depends primarily on a patient’s weight (and so it also depends, indirectly, on

their age). A request for a CBU is thus associated with a minimum TNC count requirement, so not every

matching unit can be used to fulfill a given request.
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It is essential to understand what happens to the compositions of the BMR and CBB if this search process

is repeated over time. In particular, to obtain a computationally tractable joint optimization problem, we

need a tractable model to predict CBB performance. This turns out to be problematic for several reasons.

First, the composition of even a “new” CBB, freshly sampled from the population distribution, does not

reflect the demand placed on it, because the CBB only caters to the overflow from the BMR. For a CBU

with a given phenotype pi, there can be demand from patients with several other phenotypes (i.e., 5/6 and

4/6 matches). The TNC content requirement complicates things further: As we will shortly show, there are

16×10,804,408 distinct possible combinations of phenotype-TNC content.

Second, the composition of the CBB changes over time: CBUs with an “easy to match” phenotype will

be consumed faster and will tend to disappear from the CBB, while units with “hard to match” phenotypes

(stale inventory) will accumulate. A similar effect will tend to cause low TNC content units to remain in

the CBB, while high TNC content units will be consumed and disappear. Hence if the CBB’s size is held

constant, its performance will deteriorate over time. However, since in our model part of the CBB is replaced

each year with new units from the population (in reality this is a continuous process), this will cause the

deterioration in performance to stabilize after a number of years.

Hence, a direct analytical approach appears to be a dead end. We therefore take two different routes

around this difficulty. To begin, we analyze an “extreme policy” where we assume that the (probabilistic)

composition of the CBB always reflects the population distribution p and does not change over time. This

policy could be approximated in practice by replacing the entire CBB each year.9 Then, in Section 6, we

use a simulation study of CBB performance over time to develop a predictive regression equation. This

regression model is then combined with the BM performance model to predict the performance of a joint

BMR/CBB system, and we use this to find the optimal registry and bank sizes for such a joint system.

5.4. Extreme policy

To analyze the performance of the CBB under the extreme policy, we first note that the expected annual

demand for CBUs is λϕ(B) where, following Section 5.1, λ is the annual demand for unrelated HSC

transplants and ϕ(B) as defined in Equation (5) is the probability that an arbitrary patient’s demand cannot

be met by a BMR of size B. Let qi be the probability that a demand for a CBU is for phenotype i. Note that

generally qi 6= pi, since it is only phenotypes that are not present in the BMR that will be demanded from

the CBB. As in Section 5.1, we again define T as the phenotype of an arbitrary patient and M to be the

event that an arbitrary patient’s demand is not met by the BMR. Hence

qi = Pr{T = i|M}=
Pr{T = i∧M}

Pr{M}
=
pi(1− δpi)B

ϕ(B)
. (8)

9 The choice of one year is arbitrary and any other time interval could have been chosen. The goal of analysing the extreme policy,
however, is simply to demonstrate the additional value of a CBB and to introduce features that will help us in Section 6 to model a
system that more closely resembles reality. This is not a policy that we would recommend or expect to be implemented in practice.
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Turning to the composition of the CBB, let C be the number of CBUs in the bank and η be the TNC

content of an arbitrary CBU. Gragert et al. (2014) estimates the distribution of adequate TNC content

proportions available in public banks for adults and children based on weight deciles. Using this, we model

the TNC content requirements by distinguishing 16 different levels of TNC content for CBUs (i.e., η ∈

{1, · · · ,16}). We then let ζ ∈ {1, · · · ,16} specify the minimum TNC content required by a random request

for a CBU and assume that η and ζ are independent of each other and of the phenotype needed. The

probability distributions of η and ζ are given in Table 1.

TNC level (k) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Sum

Pr{ζ = k} .06 .02 .02 .02 .08 .02 .02 .08 .08 .10 .08 .08 .08 .10 .08 .08 1.00
Pr{η= k} .17 .17 .29 .09 .10 .04 .01 .04 .02 .02 .01 .01 .01 .01 0.005 0.005 1.00

Table 1: Probability distributions of TNC content requested (ζ) and available in CBUs (η).

If the CBB composition reflects the population distribution, the probability that an arbitrary CBU can

satisfy a demand for phenotype i is given by Pr{η ≥ ζ}m4
i , where m4

i is the probablity of at least a 4/6

match for phenotype i (see Equation (3)), and Pr{η ≥ ζ} is the probability that a CBU has sufficient TNC

content to satisfy the demand. Hence the probability that a demand for phenotype i and a TNC content of

at least k cannot be satisfied by any unit in the CBB is given by (1−Pr{η ≥ k}m4
i )

C . So the probability

that an arbitrary demand for phenotype i cannot be satisfied by any unit in the CBB equals

ψi =
16∑
k=1

Pr{ζ = k}(1−Pr{η≥ k}m4
i )

C . (9)

This means that the probability that an arbitrary demand on the CBB cannot be satisfied equals
∑

i qiψi,

and so the probability that a random patient cannot find a match in either the BMR or the CBB thus equals

ψ(B,C) =ϕ(B)
∑
i

qiψi =
∑
i

pi(1− δpi)B
[

16∑
k=1

Pr{ζ = k}(1−Pr{η≥ k}m4
i )

C

]
. (10)

For the joint BMR and CBB system, the expected annual benefit of matches made is therefore equal to

λ(1−ϕ(B))vb + λ(ϕ(B)−ψ(B,C))vc. Note that vc is calculated in a similar way as vb, except that due

to graft failure the post-transplant long-term survival probability decreases from 21% to 16%. Additionally,

the median hospitalization cost for a UCB transplant is estimated to be lower at $137,000 (Majhail et al.

2009), while the value of statistical life saved remains $6.5 million. Therefore, the value of a UCB transplant

is estimated as vc = ($6.5× 0.16− $0.137)× 106 = $903,000.

In terms of costs, in addition to the annual operating cost of the BMR, which remains equal to (α +

0.1)cbB, we must also account for the costs of operating the CBB. In particular, two additional costs must
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be included: the cost of adding a unit of CB to the bank, cc, and annual holding costs per unit, h. After

accounting for the fact that 50% of CBU collected are deemed unfit during processing and are discarded,

the effective cost of adding a single CBU to the CBB is given by cc = $2000, while the annual storage cost

is $50 (Howard et al. 2008). Thus, the annual operating cost of the CBB equals (cc + h)C, reflecting the

fact that the entire CBB is renewed each year and storage costs are incurred over the entire bank.

Hence, our objective is to maximize the function

F (B,C) =−0.1Bcb +

[
λ(1−ϕ(B))vb +λ(ϕ(B)−ψ(B,C))vc

−αBcb−Ccc−Ch

]
(11)

This is of course equivalent to minimizing the function

G(B,C) = λvb−F (B,C) =

[
λϕ(B))(vb− vc) +λψ(B,C)vc

+αBcb +Ccc +Ch

]
+ 0.1Bcb (12)

In Section EC.1 of the e-companion, we show

Proposition 3 G(B,C) is jointly convex in B and C.

5.5. Analysis of the extreme policy

Since a closed-form solution cannot be obtained, we numerically minimize G(B,C). The global mini-

mum of the cost function is attained atB∗ ≈ 19,680,000 andC∗ ≈ 66,300. Given demand of 13,000 patients,

this policy, at its optimum, fulfills the needs of 12,134 patients via the BMR and 579 via the CBB. In other

words, the BMR serves 271 fewer patients than it does under the BM only system, but the extreme policy

serves 308 more patients overall, increasing the fill rate from 95.4% to 97.8%. Recall, however, that the

value of matching via the CBB is lower than the value of matching via the BMR due to the lower survival

rates following UCB transplantation. Regardless, this extreme policy still saves 35 more expected lives than

with BMR only.

Not only are more lives saved under the extreme policy, but it is also worth noting that the optimal size

of the BMR has almost halved in the presence of the CBB. As a consequence, annual operating costs are

also lower. The estimated costs of running the BMR and CBB per year are $83 million and $136 million,

respectively. The 10-year amortized cost of expanding the BMR to reach the optimum (not required for the

CBB, which is renewed entirely each year) adds a further $86 million per year. This results in a total annual

operating cost of $305 million, i.e., 80% of the cost of operating the BMR only system.

6. Simulation Study and a Predictive Model to Analyze the Temporal Variation
The results of the mathematical models developed in the previous section provide a strong case for the

use of CBUs as a secondary source of HSCs. However, the extreme assumption that all unused CBUs will
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be discarded at the end of each year is made purely for tractability reasons. In reality, CBUs often have a

shelf-life of approx. 20 years. This introduces a modeling challenge. Even when a CBB initially reflects

the population distributions of phenotypes and TNC content, the ongoing consumption of CBUs and their

random replacement from the donor population means that the CBB composition will gradually change and

become less effective in supplying matches over time. This would be the case even if the demand for CBUs

were according to the population distribution, only 6/6 matches were allowed, and the TNC content were not

a factor. The effect is exacerbated further, though, by the common occurrence of 5/6 and 4/6 matches, the

need for sufficient TNC content in CBUs, and the fact that the demand on the CBB is for those phenotypes

that could not be matched by the BMR. Since we are not able to calculate the performance of the CBB with

these effects in play, we instead introduce a simulation-based modeling approach.

6.1. Simulation routine

Since an analytical model is available for the BMR, the simulation model focuses on the CBB.10 The

main objective of the simulation is to predict the number of matches that the CBB can make over ten years

given a constant CBB size.

At the start of the simulation, the CBB is populated withC independent CBUs drawn from the population

distribution p, supplemented with random TNC levels distributed as η. Every year, the CBB receives D

requests that could not be filled by the BMR. We assume that for a given BMR size B and no-show rate δ,

the probability distribution of the phenotypes of these D requests is given by q (see Equation (8)), while the

minimum TNC levels required are distributed as ζ. Since the CBUs are cryogenically preserved in the public

banks for a period of 20 years (Howard et al. 2008), they therefore expire at a rate of 5% per year. Hence

at the end of each simulated year, 0.05C randomly chosen units are removed from the CBB, and sufficient

randomly generated CBUs are added to restore the bank to size C. After ten simulated years, the simulation

ends and reports the total number of matches, N , and the quantity of unmatched demand. A pseudo-code

version of the simulation algorithm is given in Algorithm 1, in Section EC.2 of the e-companion.

The main parameters that are varied in the simulation study are B, δ, C and D. Further inputs are

the vectors p, q (which is a function of B, δ and p) and the distributions of η and ζ given in Table

1. The parameter values used in the simulation study were as follows: B ∈ {8,10, . . . ,20} × 106, C ∈

{0.5,1,1.5,2,2.5,3,4,5,6,7}× 105, D ∈ {500,1000, . . . ,3000}, and δ ∈ {0.25,0.35, . . . ,0.75}. All com-

binations were simulated once, yielding a total of 2,520 cases.

It is evident from the simulation output that, as expected, the number of matches decreases over time.

On average over a 10-year period, the number of CBB matches is 11.2% less than what would be expected

10 This considerably streamlines the simulation; an alternative would be to simulate the composition of the BMR in detail.
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from a CBB of the same size that always reflects the population distribution in phenotype and TNC content,

with a minimum loss of 2.2% and a maximum of 32.2%. A large CBB size C and a low value of demand

D result in the smallest performance degradation, a small CBB and high demand in the largest.

6.2. Predictive model

We now use the output from the simulation to develop a predictive regression model to capture the effect

of the decline in the number of matches. We start by defining the key variables in the regression.

First, we note that by using Equations (5) and (10), we can calculate τ = 1−ψ(B,C)/ϕ(B) from known

quantities. As defined, τ is the fraction of demand on the CBB that can be met by the CBB when it is

fresh (i.e., when it reflects the population distribution). In other words, τ is approx. equal to the expected

proportion of demand that finds a match in the CBB in the first year of the simulation, with the corresponding

expected number of CBB matches τD. The parameter τ is therefore helpful in anchoring the regression

to a starting value and in predicting the number of matches over the 10-year period. Furthermore, 10τD

approximates the total matches over a 10-year period when using a CBB that is refreshed entirely each

year. Thus, 10τD can be thought of as an upper bound on the total number of matches in a CBB that loses

efficiency over time (i.e., N ), while Y = N/(10τD) captures the average CBB efficiency over ten years,

where starting efficiency (with a fresh CBB) is 100%. In particular, Y can be interpreted as the simulated

number of matches into the expected number of matches that would be achieved if an “always fresh” CBB

were available. This means that the more the composition of CBB falls out of alignment with the demand

placed on it, the lower the value of Y will become. Figure 3a visually portrays the annual maximum, average

and minimum fraction of demand matched from the CBB in the 2,520 simulated cases.

In selecting the main variables in the regression, we experimented extensively with various transforma-

tions of the simulation inputs (i.e.,B, δ, C andD) as regressors. Moreover, we tried several transformations

of N , the total simulated number of CBB matches, for the dependent variable. We finally decided to use

Y =N/(10τD) as the dependent variable and τ , ln(C), ln(δB), D and D/C as explanatory variables. The

final model had an R-squared value of 0.98905 (adj. R-squared = 0.98903), all coefficients were extremely

significant (all p-values < 10−50), with the predictive equation

Ŷ = 0.7060− 0.2443τ + 0.0657 ln(C)− 0.02336 ln(δB)− 0.00001589D− 6.671D/C (13)

implying a final prediction for the total number of matches over a 10-year period of

N̂ = 10DτŶ = 10λ(ϕ(B)−ψ(B,C))Ŷ , (14)

where we use the fact that D = λϕ(B) (i.e., the number of patients who are unable to find a match in the

BMR, using Equation (5)) and that τ = 1−ψ(B,C)/ϕ(B), as given above. A plot of N against N̂ is given

in Figure 3b, which shows the accuracy of the fit across the full range of N .
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Figure 3 (a) Declining CB matching probability over time and (b) Predicted vs. simulated UCB matches for

regression model

(a) (b)

In the next subsection, we will formulate and solve an approximate optimization model for the joint

BMR/CBB design problem.

6.3. Joint optimization based on the predictive regression model

Now that we have the necessary parameters in hand and the issue of the changing CBB composition has

been resolved, we can perform joint optimization of the BMR and the CBB. In particular, the modeling

framework developed in Section 5.4 can be modified by making the following changes to Equation (11):

1. The expected number of CBB matches λ(ϕ(B)− ψ(B,C)) is replaced with λ(ϕ(B)− ψ(B,C))Ŷ ,

the average annual predicted CBB matches (using Equation (14)).

2. The value of a CBB match is reduced to vc− cc, since any CBU used must be replaced at a cost of cc.

3. The annual cost of replacing the entire CBB (i.e., Ccc) is replaced by the sum of the cost of replacing

5% of the CBB (the expired units) at the start of each year (i.e., 0.05Ccc), together with the annualized

cost of establishing a CBB of size C and a BMR of size B in year one (i.e., 0.1(Ccc +Bcb)).

Hence, the objective now is to maximize the function

H(B,C) =−0.1(Ccc +Bcb) +

[
λ(1−ϕ(B))vb +λ(ϕ(B)−ψ(B,C))Ŷ (vc− cc)

−0.05Ccc−αBcb−Ch

]
(15)

or alternatively, to minimize

J(B,C) = λvb−H(B,C) =

[
λϕ(B)(vb− Ŷ (vc− cc)) +λψ(B,C)Ŷ (vc− cc)

+0.05Ccc +αBcb +Ch

]
+ 0.1(Ccc +Bcb)

(16)
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Figure 4 3-D plot of J(B,C)

Since the convexity of J(B,C) depends on the regression parameters, we were not able to prove that

the function is jointly convex in general. However, over the range of values considered, we find that joint

convexity always holds (see Figure 4). Since a closed form solution cannot be obtained, we numerically

minimize J(B,C). The global minimum of the function J(B,C) is attained at B∗ ≈ 17,490,000 and C∗ ≈

335,000. In comparison to the extreme policy, the optimal size of the BMR has decreased by approx. two

million registered donors, while the optimal size of CBB has increased by a factor of five. The significantly

larger optimal CBB size is expected because compared to the extreme policy in which all CBUs are dis-

carded annually, the cost of maintaining a bank of size C where only 5% of CBUs are discarded annually

is significantly less.

Under this optimal scenario, 12,065 of 13,000 patients find a match in the BMR, and 769 (i.e., 82.2%

of the residual demand that spills over from the BMR) find a match in the CBB. This makes for a total

of 12,834 matches, or a fill rate of 98.7%. The estimated annual costs for running the BMR and the CBB

are $73.5 million and $51.8 million, respectively. Adding to this the 10-year amortized cost of expanding

both institutions from their current sizes to the optimal ($62.9 million for the BMR and $14.1 million for

the CBB), the total annual operating cost across the 10-year horizon of our study is therefore estimated

at $202 million. This cost is 66% of that of the extreme policy, resulting in savings of more than $100

million per year, while an additional 16 lives are also saved annually. These numbers clearly demonstrate

the advantages of operating an optimized joint BMR and CBB.

While these findings cannot be directly compared to those from other mathematical models, as ours is

the first to assess both the BMR and CBB jointly, it is possible to compare with estimates using actual

BMR/CBB composition data from the U.S. In particular, using composition data from the end of 2012,



Panchanatham et al.: Be the Match 25

Gragert et al. (2014) estimated the probability of finding a match to be 97% for white Europeans (who

represent 75% of the demand for allogeneic HSCs (Health Resources and Services Administration 2020b))

and 95% for African Americans (15% of the demand). This was based on a BMR size of 10.5 million

donors and a CBB size of 200,000 CBUs. Inputting into Equation (16) values of 10.5 million and 200,000

for the BMR and CBB sizes, respectively, we obtain a predicted matching rate of 97.6%, reassuringly close

to Gragert et al. (2014).11

6.4. Sensitivity analysis

This study assumes 13,000 as the demand for allogeneic transplants. However, medical researchers pre-

dict that a wider variety of diseases may be treatable by HSC transplantation in the future (Liras 2010).

Therefore, it is interesting to consider the impact of an increase in annual demand on system performance.

To this end, in Table 2 we compare results when the BMR and CBB sizes are jointly optimized for λ ∈

{13000,25000,50000}. This shows that there are clear performance gains to be had as demand increases.

First, the percentage of patients who find a match and the percentage of lives saved relative to the theoreti-

cal maximum increase. Second, after the optimum inventory levels have been reached, we can see that the

average cost per life saved reduces significantly as demand increases, indicating economies of scale.

λ B∗ C∗ # Matches Fill % Possible Operating Cost Cost per Life
(×106) (×105) BMR CBB Rate (%) Lives Saved† (×$106)‡ Saved (×$103)§

13,000 17.5 3.35 12,065 769 98.7 97.3 125 47
25,000 26.6 4.71 23,639 1,141 99.1 98.0 184 36
50,000 41.3 6.66 48,001 1,700 99.4 98.6 277 27
† Predicted lives saved divided by total potentially savable lives, calculated by assuming all λ patients receive a BM dona-
tion; ‡ Operating cost is the annual operating cost, excluding the amortized costs of expanding the BMR and CBB to their
recommended levels; § Calculated by dividing the annual operating cost by the expected number of lives saved.

Table 2: Sensitivity Analysis on Demand

Another significant parameter that can influence policy recommendation is the VSL. We use a VSL

of $6.5 million, as suggested by Bergstrom et al. (2009). However, the same authors acknowledge that

estimates for a VSL can range from $4 million to $9 million. Therefore, we also investigate the sensitivity

of our model to a change in the VSL. We find that with a VSL of $4 million, the optimal BMR and CBB

11 In the same paper, the authors also report the probability of a match when excluding the CBB as a source (i.e., using only BM
donors). Specifically, they report a 97% probability that a white European will find a match in the BMR and a 77% for African
Americans. The average across other racial and ethnic groups is between 70 and 90%. Taking a weighted average of these proba-
bilities, and using the midpoint of 80% for other groups, suggests that ±92% (= [(97 ∗ 0.75)+ (77 ∗ 0.15)+ (80 ∗ 0.1)]/100) of
patients should find a match in the BMR. With a BMR size of 10.5 million and a CBB size of 200k, our model reports that the
expected number of patients who will find a match in the BMR is 11,711 (see Table 3). Similar to Gragert et al. (2014), our model
predicts that 11,711/13,000 = 90.1% of patients would find a match in the BMR.
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sizes reduce to 12.8 million and 250,000, respectively, with a corresponding fill rate of 98.1%. Interesting,

this is very close to the current sizes of the BMR and CBB, meaning that a policy of maintaining current

inventory levels is equivalent to valuing a life at approx. $4 million. Meanwhile, when using a VSL of $9

million, we find that 20.7 million registered donors in the BMR and 408,000 units of CB in the CBB is

optimal, resulting in a fill rate of 99.0%. This follows intuitively from the fact that it is worth investing in

more capacity to save additional lives when a life is valued more highly.

7. Conclusions, Implications and Future Scope
Public health services exist to provide citizens with access to life-saving and health-improving treat-

ments and technologies. Supported by national and local governments, providers are tasked with allocating

resources and services equitably and cost-effectively to improve quality of life and prevent unnecessary

morbidity and mortality. That said, while many providers aim to be effective and efficient in order to meet

this goal, more can always be done. It is estimated, for example, that one-third of medical spending in the

U.S. is wasted due to excessive prices, unnecessary services, failures of care delivery and care coordination,

administrative costs, and fraud and abuse (Berwick and Hackbarth 2012). In this paper, we focus on a spe-

cific health concern – the treatment of patients with hematological diseases such as leukemia via stem cell

transplantation – to demonstrate how operations management tools combined with detailed context-specific

knowledge can be applied to drive improvements in healthcare efficiency and, more importantly, save lives.

Specifically, we focus on the problem of allocating capacity between two alternative sources of HSCs,

BMRs and CBBs, that have different operational and medical characteristics such that neither is preferred

exclusively to the other. While this problem has been considered in the past, until now these two sources

have been considered only in isolation, with the presence of the other source entirely ignored. Yet, we find

that policy implications differ drastically when both sources are properly accounted for. For example, we

find that if the U.S. were to rely only on the BMR as a source of HSCs, approx. 34 million registered donors

would be required to ensure a sufficient supply of stem cells to minimize total annual costs. By comparison,

when we account for UCB using an extreme policy under which all unused CBUs are discarded or donated

at the end of each year, the recommended size of the BMR falls by 57% to just 19.7 million registered

donors and nearly 308 additional patients can find a match each year. This finding highlights the significant

value that CBUs offer as a flexible alternative source of HSCs.

While the extreme policy demonstrates the value of UCB, providing recommendations for the size of

the BMR and CBB requires a mathematical model more closely matching the research context. As we

discussed, this task is complicated by the fact that the quantity and distribution of demand spilling over to the

CBB are highly contingent on the size of the BMR. Further, the distribution of supply in the CBB changes
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over time and becomes increasingly misaligned with demand, resulting in fewer matches. Therefore, in

tackling this problem, we first developed a simulation routine to capture these features. The results were

then used to build a prediction model (achieving a fit of 99% as measured by the R2 value) to identify

the total number of lives saved over a 10-year period. Substituting the regression parameters into a more

sophisticated mathematical model, we found approx. 17.5 million registered donors and 335 thousand CBUs

in the BMR and CBB, respectively, to be the optimal policy. This allocation would cost $202 million per

year while enabling 98.7% of patients to find a match. In comparing these numbers with an annual operating

cost of $305 million (resp., $381 million) and a 97.8% (resp., 95.4%) match rate under the extreme policy

(resp., BMR only policy), we can see the importance of accounting for inter-dependencies and temporal

dynamics when jointly optimizing the sizes of the two institutions.

We can also use the joint optimization model specified in Equation (16) to estimate the number of

matches, lives saved, and annualized costs under the status quo, i.e., by setting B = 11.5 million and

C = 265,000 and leaving all other parameters unchanged. Doing so, we estimate the current potential for

11,780 BMR and 973 CBB matches per year, leaving 247 patients unmatched. In other words, under the

optimal policy we are able to find matches for 33% (= 1− (13,000− 12,834)/247) of the currently unmet

demand. Moreover, since in the status quo more matches are found in the CBB and survival rates are lower

with UCB HSCs than BM HSCs, 27 fewer lives are saved per year in the status quo than would be saved

Meanwhile, the optimal policy results in 825 additional BMR matches (= 12,605− 11,780), each valued

at $1.2 million, and 204 fewer CBB matches (= 769− 973), each valued at $903,000, resulting in an addi-

tional $806 million of value generated via matches each year. Subtracting the additional annual operating

costs for the expanded BMR and CBB, the optimal policy provides nearly $770 million of additional value

annually. After accounting for the costs of expanding the existing BMR and CBB to reach the optimal, over

ten years we thus estimate a total increase in social surplus of approx. $6.9 billion following the adoption

of the optimal policy.

A comparison of the findings under the different scenarios discussed above and in Section 6.3, using

different values for the size of the BMR and CBB, is summarized in Table 3.

7.1. Policy implications

This paper assumes the existence of a central decision maker who makes capacity decisions. In reality,

however, the organizational structure for unrelated stem cell transplants in the U.S. is highly decentralized,

with BM donors and CBUs sourced from various NGOs and NPOs that separately maintain BMRs and

operate public CBBs. The C.W. Bill Young Cell Transplantation Program (CWBYCTP), authorized by the

U.S. Congress, motivates the relevance of the coordinated approach adopted in this paper (Resources and

Administration 2018). In particular, the CWBYCTP is a program focused on increasing the number of BM
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Setup B C # Matches Fill % Possible Op. Cost Annu. Cost
(×106) (×105) BMR CBB Rate (%) Lives Saved† (×$106)‡ (×$106)§

BM only 34 - 12,405 - 95.4 95.4 143 381
BM + CB (Extreme Policy) 19.7 0.66 12,134 579 97.8 96.7 219 305
BM + CB (Joint Model) 17.5 3.35 12,605 769 98.7 97.3 125 202

Bergstrom et al. (2009) 21 - 12,170 - 93.6 93.6 88 188
Gragert et al. (2014) 10.5 2 11,711 974 97.6 95.8 76 76
Current Status 11.5 2.65 11,780 973 98.1 96.3 90 90
† Predicted lives saved divided by total potentially savable lives, calculated by assuming all 13,000 patients receive a BM
donation; ‡ Operating (Op.) cost is the annual operating cost, excluding the amortized costs of expanding the BMR and CBB
to their recommended levels; § Annualized (Annu.) cost is the operating cost plus the 10-year amortized cost of expanding the
BMR and CBB to their recommended levels.

Table 3: Summary of Results

and CB transplants for recipients matched to biologically unrelated donors. To achieve this, one of the

primary objectives for the CWBYCTP is to develop a coordinated system for stem cell transplants from

unrelated donors. Specifically, a single point of access, BM coordinating center, and CB coordinating center

are combined to form a Single Point of Access-Coordinating Center (SPA-CC) contract.

In order to establish a center that effectively coordinates the functions described above, it is necessary

from a policy perspective for a benchmark to exist towards which the SPA-CC can aspire and against which

the contracted out party can be held accountable. Our model provides precisely this benchmark for a plan-

ning horizon of 10 years. Furthermore, the benchmark can also be used in order to devise incentives (e.g.,

subsidies) in order to encourage the different entities involved to move towards the first-best/coordinated

solution. For example, the CWBYCTP funds a grant program for public CBBs, called the National Cord

Blood Inventory (NCBI), which helps to fund the collection and maintenance of CBUs used in transplants.

Meanwhile, the NMDP, the largest BMR with approx. 80% of the total registered donors in the U.S. (see

Footnote 2), is federally funded. The results from our model can thus be directly applied for setting targets,

devising incentives, and determining grants for these organizations.

It is important to also point out that although BM donor recruitment organizations operate as separate

entities, the majority report directly to the Be The Match program. By setting targets for donor recruitment,

Be The Match can therefore directly influence the number of donors on the BMR. Furthermore, although

most public CBBs exist as separate not-for-profit entities, the majority of the demand for these banks arrives

domestically via NMDP Cord or internationally via the Center for International Blood and Marrow Trans-

plant Research (CIBMTR), both of which are managed by the Be The Match program. Furthermore, all

public CBBs are regulated by the Health Resources and Services Administration (HRSA), who contract out

the creation of the BMR and UCB registry to Be The Match. Given the importance of the HRSA and Be

The Match in regulating public CBBs and driving demand to these institutions, they may be able to exert

influence over the capacity of the individual banks.
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7.2. Future research scope

Although this paper incorporates many of the key features of the setting in this policy recommendation,

we also point to several possible extensions that might be productively considered in future research. First,

an increase in microscope resolution has shifted the focus from three loci on chromosome pair six to four or

even five loci. Hence, although phenotype information for most individuals in the BMR is only recorded for

the six main alleles, the medical standard for BM (but not UCB) is shifting. Specifically, after a 6/6 match

is found, further investigation will typically seek to determine whether the patients and donors match on

additional alleles in other loci. Conditional on an initial 6/6 match, a 7/8 or 8/8 match is identified following

further investigation in approx. 82% of cases, and the match will then typically be considered sufficient for

transplantation (Howard et al. 2008, Gragert et al. 2014). While this advance is unlikely to have a major

impact on our findings, as additional higher-resolution data is made available to researchers it could be

incorporated into the model to refine the recommendations further.

Another recent medical development is progress towards transplanting two CBUs instead of one. With

one limitation of UCB – especially for use in adults – being the low availability of units with a sufficiently

high TNC content, double CBU transplants may remove a major barrier to their use. To date, outcomes of

double CBU transplants have been found to be no better than those of standard CBU transplants (Wagner Jr

et al. 2014); however, should outcomes improve, this feature could also be incorporated into our model.

In addition to such medical advances, the registries and banks are also becoming increasingly interna-

tional and facilitating more cross-border matches. If rarer phenotype matches can be found by drawing from

a larger, global pool of resources, this may reduce the need for local capacity. Evidence of scale economies

in Section 6.4 also suggests that this trend may help in lowering costs. However, this shift may also give

rise to incentive issues, e.g., countries may free ride on their partners’ investments in capacity, especially if

the phenotype distributions within the populations are similar. Investigating the mechanics and implications

of these collaborations thus may provide further research opportunities.

7.3. Conclusion

Overall, our paper provides a dispassionate and rigorous model that can be used to inform policy. We

present quantitative evidence to support ongoing calls – e.g., from the Be The Match program and the U.S.

Department of Health and Human Services (Health Resources and Services Administration 2020b) – for

more BM donors and CBUs in order to meet the demand for allogeneic transplants in the U.S. However,

substantial resources and time are needed to ramp up capacity for both HSC sources. Therefore, beyond

identifying the need for more capacity, establishing specific BMR and CBB capacity targets can help ensure

that resources and time are allocated effectively to “get it right the first time.” A rigorous analysis is thus vital

for informing strategic planning and investment in these two institutions. As the first paper to describe and



30 Panchanatham et al.: Be the Match

solve this challenge as a joint optimization problem, our work thus allows for better informed, data-driven

decision making and planning that can help to save lives while delivering significant social value.
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E-companion to:
“Be the Match: Optimizing Capacity Allocation for Allogeneic Stem Cell

Transplantation”

EC.1. Proofs
Proof of Proposition 1: First we will find the probability of exactly a 4/6 match. Note that for phenotypeAaBbDd

the probability of exactly a 4/6 match with mismatches in A and B is given by

p.a.bDd− p.aBbDd− pAa.bDd + pAaBbDd.

Similar expressions apply to the probabilities of exactly a 4/6 match with mismatches in A and b, A and D, A and

d, a and B, · · · , b and d. The sum over all 12 pairs then gives us the probability of exactly a 4/6 match for AaBbDd.

Hence we have

mAaBbDd
4 =mAaBbDd

5 + p.a.bDd− p.aBbDd− pAa.bDd + pAaBbDd

+ p.aB.Dd− p.aBbDd− pAaB.Dd + pAaBbDd + · · ·

+ pAaB.D.− pAaB.Dd− pAaBbD. + pAaBbDd

=mAaBbDd
5 + 12pAaBbDd

+ p.a.bDd + p.aB.Dd + p.aBb.d + p.aBbD. + pA..bDd + pA.B.Dd

+ pA.Bb.d + pA.BbD. + pAa.b.d + pAa.bD. + pAaB..d + pAaB.D.

− 4(p.aBbDd + pA.BbDd + pAa.bDd + pAaB.Dd + pAaBb.d + pAaBbD.)

Using Equation (2) and some more rearranging of terms then gives Equation (3).

Proof of Proposition 2: It is sufficient to show that ϕ(B) as defined in Equation (5) is convex. But this is imme-

diate since xB = eB lnx is convex in B for every x> 0, so all the terms pi(1− δpi)B = pie
B ln(1−δpi) in the summation

in the right-hand side of Equation (5) are convex in B.

Proof of Proposition 3: The first term inside the square braces on the right hand side in Equation (12) is jointly

convex in B and C since ϕ(B) is convex in B (as shown in the proof of Proposition 2) and vb − vc > 0. All the

terms except ψ(B,C) are linear in B and C. So it is sufficient to show that ψ(B,C) is jointly convex in B and

C. But ψ(B,C) is a sum of functions of the form exB+yC+z, each of which are jointly convex in B and C as the

composition of an increasing convex function and a convex function. So ψ(B,C) is the sum of jointly convex functions

and therefore jointly convex itself.

EC.2. Procedure for Simulation
The simulation algorithm described in Section 6.1 of the main paper is documented here in Algorithm 1.

Two important features of the simulation algorithm require further elaboration. First, we implement a priority rule

in which 6/6 matches are always chosen first (if available), followed by 5/6 and 4/6 matches. This is due to faster
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patient recovery times when matching on more alleles, as noted in Section 2.3. Second, in the case of multiple matches,

one might prefer to allocate the CBU with a higher TNC content to the patient, since lower TNC content has been

associated with higher mortality (Dehn et al. 2019). However, there are several factors aside from the TNC content

that determines whether a physician will choose a particular CBU. One major factor is the time to access the CBU. As

compromises will need to be made in reality, we instead allocate randomly.

Algorithm 1: Procedure for Simulation
Inputs: Scalars B, C, δ, D and vectors p, q, distributions of η and ζ;

Initialize:

Draw CBU sample of size C (phenotypes from p and TNC content levels ∼ η);

Counters: nmatches = 0;

Repeat 10 times:

Draw patient sample of size D (phenotypes from q and minimum TNC content level ∼ ζ);

For Each patient In patient sample Do

1. Find all 6/6 matches with sufficient TNC content in CBB. If none exist, go to 2, else randomly select one,

remove it from the CBB, nmatches++; break;

2. Find all 5/6 matches in CBB. If no 5/6 match with sufficient TNC content exists, go to 3, else randomly

select one matching unit with sufficient TNC content from the phenotype with the most 5/6 matches and at

least one match with sufficient TNC content, remove it from the CBB; nmatches++; break;

3. Find all 4/6 matches in CBB. If no 4/6 match exists with sufficient TNC content, go to Next, else randomly

select one matching unit with sufficient TNC content from the phenotype with the most 4/6 matches and at

least one match with sufficient TNC content, remove it from the CBB; nmatches++; break;

Next

Randomly remove 0.05C units from the CB registry (expiry) and replace from the population distribution p to fill

up to size C;

End Repeat

Report Results: Output nmatches

EC.3. Medical comparison of stem cells from bone marrow versus stem cells from
cord blood

As noted in Section 2.3, in addition to differences in their operational characteristics, the two sources of HSCs differ

along certain medical dimensions that are important for our analysis. We describe these in more detail below.

Total nucleated cell count. As discussed in Section 2.3, the total nucleated cell (TNC) content content of CBUs

is typically much lower than that of BM. In particular, the TNC content of most CBUs ranges from 50 × 107 to

400× 107, while a dose of at least 2.5× 107 per kilogram of body weight is required for successful transplantation.

A TNC content in the range of 180-230×107 cells is therefore typically needed for an average-sized adult in the U.S.,

yet only 15% of CBUs in public CBBs have counts above 175×107 (Kapinos et al. 2017).
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Graft-versus-host disease. The most frequent complication that occurs after an allogeneic transplant is called

graft-versus-host disease (GvHD), a complication of transplantation in which the donor cells attack the cells of the

recipient. Between 30% and 70% of patients with a donor stem cell transplant get some form of GvHD, which can

vary in severity from mild to life-threatening. GvHD can be either acute, typically coming on 10 to 90 days after

the transplant and lasting on average for 25 days, or chronic, starting and lasting for anywhere between 90 and 600

days after surgery (American Cancer Society 2020). Overall, lower rates of GvHD and fewer complications have

been found in UCB transplantation patients than in BM transplantation patients (Chen et al. 2013). However, while

GvHD can have serious and unpleasant symptoms, in most cases it is not lethal and symptoms can be managed with

immunosuppressive drugs and steroids. Therefore, this condition does not often provide a sufficiently compelling

reason to prefer UCB over BM as a source of HSCs.

Graft failure. A more serious complication that can occur following stem cell transplantation is known as graft

failure, which occurs when engraftment does not succeed and donor cells then fail to integrate properly into the

recipient’s cell population. This can either be due to a lack of initial engraftment of donor cells (primary graft failure)

or due to the loss of donor cells after initial engraftment (secondary graft failure). Although graft failure is not a

major concern in BM transplants, the additional incidence rate of graft failure among UCB recipients relative to BM

recipients is estimated at approximately five percentage points (Brunstein et al. 2010). As compared to GvHD, graft

failure can be more lethal. Consequently, CBUs tend to work best when administered to children and young adults

since these patients are still in their formative years and their bodies can better adapt to and accommodate the CBUs,

rendering the issue of graft failure a lesser concern (Sanz and Sanz 2002).

Slow engraftment. Another risk factor associated with HSC transplant in general is slow engraftment. The

engraftment rate measures the time taken for the BM/CB cells to proliferate into the patient’s bone marrow. This prob-

lem is especially a concern when it comes to mismatched HLA (i.e., 5/6 and 4/6) CB transplants. Although there is no

evidence of a difference in overall mortality rates for HLA mismatched CB transplants, the engraftment rate is slower

when there is a HLA mismatch, which can increase the recovery time (Ruggeri et al. 2014).

EC.4. Glossary of Terms and Definitions
EC.4.1. Acronyms

BM Bone marrow
BMR Bone marrow registry
CB Cord blood (cells)
CBB Cord blood bank
CBU Cord blood unit
CIBMTR Center for International Blood and Marrow Transplant Research
CWBYCTP C.W. Bill Young Cell Transplantation Program
HLA Human leukocyte antigens
HRSA Health Resources and Services Administration
HSC Hematopoietic stem cell
MUD Matched unrelated (bone marrow) donor
NCBI National Cord Blood Inventory (Program)
NMDP National marrow donor program
TNC Total nucleated cell
UCB Umbilical cord blood
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EC.4.2. Medical Terms and Definitions
The medical definitions provided in the section are referenced from Kenyon and Babic (2018) and the Anthony

Nolan Foundation (2021).

Alleles (gene): A gene essentially is a part (locus) of the DNA structure and specific genes in the DNA decide

specific traits of an individuals. Usually, the genes occur in pairs. Alleles are the different variations of the same gene

found in a species. In the context of our study, HLA-A, HLA-B, and HLA-DRB1 are the three genes (basically protein

structure) responsible for the immunity of an individual. Human beings can have different proteins (variation) on these

three genes and each variation is an allele.

Allogeneic transplants: The stem cells in allogeneic transplants are from a source other than (outside) the

patient. This may be a BM donor or a CBU. The transplant can either be matched or mismatched with the source.

Autologous transplants: The stem cells in an autologous transplants come from the same person who will get

the transplant. In other words, the patient is their own donor.

Cord Blood Units (CBUs): CBUs are a source of HSCs extracted from the umbilical cord blood (UCB) (pla-

centa) that is collected shortly after childbirth and processed to be stored in cryogenic facilities at cord blood banks

for future use.

Engraftment: Engraftment is the process by which the transplanted hematopoietic stem cells (HSC) from the

source make their way (homing) to the free bone marrow of the host where they can find optimal conditions to survive

and proliferate.

Graft Failure: Graft failure is defined as the lack of hematopoietic cell engraftment (i.e., lack of survival and

adequate proliferation) following autologous or allogeneic stem cell transplant.

Graft Rejection: The term graft rejection refers to the immune-mediated rejection of the donor cells by the

residual host cells because of genetic disparity between the recipient and the donor. Therefore, this term is only relevant

to allogeneic transplants.

Graft versus Host Disease (GvHD): GvHD is the condition in which the graft (the transplanted bone marrow

cells accepted by the host) attacks and injures specific tissues of the recipient (i.e., the opposite of graft rejection). This

can lead to localized medical conditions that are mild to life-threatening in severity.

Haplotype: The HLA in each chromosome is inherited as a "set" of the three HLA groups: A, B, DR from each

parent. This set is known as a haplotype. Thus, the combination of alleles for HLA-A, HLA-B, and HLA-DRB1 on

each individual chromosome is known as a haplotype.

Hematopoietic stem cell (HSC): Stem cells, in general, are undifferentiated or partially differentiated cells

that can differentiate into various types of cells and proliferate indefinitely to produce more of the same stem cell.

Hematopoietic stem cells (HSCs) are the stem cells that are found in the bone marrow and give rise to other blood

cells through a process called haematopoiesis. Several medical conditions and treatments can destroy the HSCs and

may necessitate replacement in the form of transplant from either an internal or external source.
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Histocompatibility: Histocompatibility is the state in which a donor and recipient share antigens (i.e., HLAs)

so that a graft is accepted and remains functional. In the context of our study, a histocompatibility match between a

BM donor or CBU and a recipient is determined by the degree of similarity between the alleles that make up their

phenotypes. The (histocompatible) match is classified as a 6/6 or 5/6 or 4/6 match based on the number matches in the

allele of the phenotype between the recipient and the donor/CBU.

Human Leukocyte Antigens (HLAs): In general, antigens are proteins on the surface of the cells in the body.

Specifically, Human Leukocyte Antigens (HLAs) are antigens found in chromosome pair 6 (one of the 23 pairs of

chromosomes). A chromosome pair is made up of two individual chromosomes, one inherited from each parent. There

are many different HLAs in the chromosome pair 6, but the ones that are most relevant for the transplantation are

HLA-A, HLA-B, and HLA-DRB1.

Matched Unrelated Donor (MUD): These are individual voluntary bone marrow donors with a 6/6 phenotype

match with the patient. The HSCs required for transplant are extracted from the bone marrow tissue/blood stream of

the BM donors.

Matched transplant: For a BM donor/CBU and a receiver pair, if the genetic codes at all six alleles

(“AaBbDd”) of the phenotype perfectly matches one-to-one, then it is a (fully) matched transplant. It is also referred

to as a 6/6 match. It should be noted that only 6/6 matches are feasible for BM transplant to proceed successfully.

Mismatched transplant: For a BM donor/CBU and a receiver pair, if there is a mismatch in the genetic code in

at least one of the six alleles, then it is referred to as a mismatched transplant. In the context of our study, mismatched

transplants are feasible only for CB transplants where up to 2 mismatches are permissible. This leads to usage of the

terms 5/6 match (1 mismatched) and 4/6 match (2 mismatched) in the context of CB transplants.

Phenotype: A phenotype is the combined array of HLAs found in the pair of chromosomes (i.e., taking both hap-

lotypes together). The phenotype is typically represented by a string of length six, “AaBbDd”, where Aa represents

the two copies of genetic code (i.e., the two alleles, one from each haplotype) at locus HLA-A, and with Bb and Dd

representing the two alleles at HLA-B and HLA-DRB1, respectively.

Total nucleated cell (TNC) content: The Total Nucleated Cell (TNC) count is the numerical measure of the

hematopoietic stem cell (HSC) count after umbilical cord blood (UCB) is processed to extract the HSCs. It is a direct

measure of the quality of the extracted/isolated stem cell from the UCB. The TNC content of most CBUs ranges from

50 × 107 to 400 × 107, while a dose of at least 2.5 × 107 per kilogram of recipient’s body weight is required for

successful transplantation.

EC.5. Discounted Model
In this section, we investigate how discounting can be incorporated and how it impacts the optimal registry and cord

blood bank size we found in Section 6.3. In the health economics literature, it is commonly assumed that both the the

costs and the health benefits have the same discount rate. Accordingly, we discount the total value of matches every
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year and the annual operating cost while the cost of expanding the BMR and the CBB are kept as upfront costs. So we

can modify Equation (15) to reflect the above mentioned changes. Specifically, we want to maximize

H̃(B,C) =−0.1(Ccc +Bcb) + 0.1

10∑
t=1

βt

[
λ(1−ϕ(B))vb +λ(ϕ(B)−ψ(B,C))Ŷt(vc− cc)

−0.05Ccc−αBcb−Ch

]
, (EC.1)

where (ϕ(B)−ψ(B,C))Ŷt is the estimated probability that a demand in year t is filled from the CBB. It remains to

specify how the estimates for Ŷt are obtained.

From the simulation in Section 6.1, we have the number of matches ntj in each year of the simulation (t= 1, . . . ,10)

and for each simulation run (j = 1, . . .2520). Define stj =
ntj∑10

u=1 nuj
and Stj =

∑t

u=1 suj . Thus stj is the fraction of

all CBB matches in simulation run j that occurred in year t, and Sjt is the fraction of all CBB matches in simulation

run j that occurred in years 1 through t. We use a regression model to predict the cumulative shares of matches. Hence

we want to minimize

min
β

2520∑
j=1

10∑
t=1

(L(β, t)−Stj)2 (EC.2)

for some suitably chosen function L(β, t). We use the function L(β, t) = t + β1t(1 − t) + β2t(1 − t)(1 + t) Note

that L(β,0) = 0 and L(β,1) = 1, which are the known points in the data. The least squares fit is obtained when

β̂1 = 0.11790097 and β̂2 =−0.0271953. Hence our estimate for Ŷt is as follows:

Ŷt = 10Ŷ (L(β̂, t)−L(β̂, t− 1)) (EC.3)

where Ŷ is the average efficiency of CBB over 10 years (see Section 6.3).

Figure EC.1 shows side by side box-and-whisker plots of the distributions of {sjt : j = 1, . . . ,2520} as well as the

estimates `t = L(β̂, t)−L(β̂, t− 1) for t= 1, . . . ,10. The predicted values virtually coincide with the averages. The

plot clearly shows the declining efficiency of the CBB over time.

Figure EC.1 Average and estimated efficiencies over time.
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In Table EC.1 we show the results of jointly maximizing Equation (EC.1) over BMR size (B) and CBB size (C)

for discount rates ranging from 0% to 10%. The optimal BMR and CBB sizes for 0% give the optimal sizes reported

in Section 6.3. To isolate the impact of the declining values of Ŷt from the impact of discounting, we compared the

optimal BMR and CBB sizes in Table EC.1 with those obtained by maximizing

H̄(B,C) =−0.1Ccc− 0.1Bcb + 0.1β̄

[
−0.05Ccc−αBcb +λ(1−ϕ(B))vb

+λ(ϕ(B)−ψ(B,C))Ŷ (vc− cc)−Ch

]
(EC.4)

where β̄ = 0.1
∑10

t=1 β
t, which corresponds to multiplying all of the cost parameters in the square brackets of Equation

(EC.4) by β̄. We don’t report the results, but in no case is the difference more than 1000 in BMR size or 250 in CBB

size. We conclude that the impact of discounting on optimal BMR ad CBB sizes can be adequately assessed by simple

adjustments to the parameters cc, cb, vb, vc and h in the term within square brackets in H(B,C) (see (15)), if desired.

Discount Rate (%) 0 1 2 3 4 5 6 7 8 9 10

Optimal BM Size (B∗) ×106 17.5 17.1 16.6 16.2 15.8 15.4 15.1 14.7 14.4 14.1 13.8
Optimal CB Size (C∗) ×103 335 331 328 324 321 317 314 311 307 304 300

.

Table EC.1: Optimal BM registry (B∗) and CB bank size (C∗) at different discount rates
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