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Abstract—Enabling precise forecasting of the remaining useful
life (RUL) for machines can reduce maintenance cost, increase
availability and prevent catastrophic consequences. Data-driven
RUL prediction methods have already achieved acclaimed perfor-
mance. However, they usually assume that the training and testing
data are collected from the same condition (same distribution
or domain), which is generally not valid in real industry. Con-
ventional approaches to address domain shift problems attempt
to derive domain invariant features, but fail to consider target-
specific information, leading to limited performance. To tackle
this issue, we propose a contrastive adversarial domain adap-
tation (CADA) method for cross-domain RUL prediction. The
proposed CADA approach is built upon an adversarial domain
adaptation architecture with a contrastive loss, such that it is
able to take target-specific information into consideration when
learning domain invariant features. To validate the superiority
of the proposed approach, comprehensive experiments have
been conducted to predict the RULs of aero-engines across 12
cross-domain scenarios. The experimental results show that the
proposed method significantly outperforms state-of-the-arts with
over 21% and 38% improvements in terms of two different
evaluation metrics.

Index Terms—Remaining Useful Life, Domain Adaptation,
Transfer Learning, Deep Learning

I. INTRODUCTION

Prognostics and health management (PHM) is a milestone
technology for realizing predictive maintenance of industrial
systems, e.g., manufacturing machines and aerospace engines.
The PHM technology can shorten inspection time, reduce costs
and enable maintenance scheduling in advance [1]. A key task
of the PHM technology is the precise prediction of remaining
useful life (RUL) of an industrial system. Numerous ap-
proaches have been developed for RUL prediction, which can
be divided them into two main categories: model-based and
data-driven. Model-based approaches require domain expertise
to accurately model the dynamics of a system and estimate
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the fault progression [2]. These approaches include physics-
based methods, empirical-based methods and Kalman/particle
filtering techniques [1]. However, they may fail to model the
dynamics of highly complex systems. Recently, data-driven
prognosis is becoming more and more attractive with the
availability of large amount of data and the less requirement
of expert knowledge [3]. Data-driven approaches, including
conventional machine learning methods and deep learning
models, rely on the available data to extract hidden patterns
for accurate RUL prediction.

For conventional machine learning based RUL prediction,
the first step is to extract various features from different
sensor readings such as vibration, temperature and pressure.
Then, traditional learning algorithms, such as support vector
machines, random forest and artificial neural networks, can be
adopted for RUL prediction [4], [5]. These approaches rely
heavily on the features extracted from the sensor readings.
However, the extraction and selection of these important
features require domain knowledge and human intervention.

Deep learning is also popular for RUL prediction [6]. It is
able to automatically learn representative features from raw
sensory data. Moreover, it jointly optimizes feature learn-
ing and RUL prediction in an end-to-end manner, and thus
achieves a better generalization performance. Recently, various
deep learning algorithms have been used for machine RUL
prediction such as convolutional neural network (CNN) [7],
[8], deep belief network (DBN) [9], deep autoencoder (DAE)
[10], and Long Short-Term Memory (LSTM) [11], [12].

Data-driven approaches can only work well under two
main assumptions: (1) training and testing data are collected
under the same operating condition, and (2) rich-labeled
data are available for the RUL prediction task [13], [14].
These assumptions can be impractical for many real world
applications with the following reasons. First, the collection
of labelled data (failures) is expensive. For some complex and
critical machines, running to failure can be costly and cause
catastrophic consequences [14], [15]. Furthermore, machine
deterioration process may prolong up to years, which can also
limit the availability of faulty data [16]. Second, the labelled
data may only be available under a specific working condition,
which can be leveraged to build a model for RUL prediction.
However, when the working condition changes, the previously
trained model often cannot work well, due to the distinct data
distributions for different working conditions [13], [15], [17].

With the aforementioned problems, the RUL prediction
for scarce-labeled machines/working conditions can be very
challenging. Therefore, there is an urgent need for a prognostic
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model that is able to estimate RUL of new working conditions
with no labelled data available. Domain adaptation (DA),
which enables knowledge transfer from rich-labeled domain to
a different but related scarce-labeled domain [17], provides a
good candidate solution for this problem. Most of existing DA
algorithms are designed for image-related tasks [18]. Recently,
some approaches extended DA for fault diagnosis problems
(classification problems) to classify faults among different
machines or working conditions [10], [19]. However, less
attention has been paid to domain adaptation for the RUL
prediction which is a typical time-series regression problem.

To promote the intelligent fault prognosis applications with
unlabeled data, we propose a novel contrastive adversarial
domain adaptation (CADA) approach for machine RUL pre-
diction across different working conditions. More specifi-
cally, CADA aims to transfer the knowledge learnt from one
working condition to solve the RUL prediction problem in
another working condition. Generally, adversarial adaptation
approaches aim to find a feature representation of the target
domain that can be invariant from the source domain. Existing
deep feature extractors with its large complexity can find
arbitrary transformation of the target domain that can be
similar to the source. However, only finding domain invariant
features does not guarantee good performance on the target
domain [20], [21]. Specifically, forcing target domain features
to be similar to source domain features with no constrains
can remove the target specific information, i.e., the mutual
information between the target data and the target extracted
features, which could hinder the model performance. To handle
this issue, inspired by the noise contrastive estimation (NCE),
we propose a novel approach that leverages the InfoNCE loss
[22] to preserve the structure of the target domain features
during the domain adaptation process. We jointly optimize the
target feature extractor to minimize both the domain adaptation
loss and the InfoNCE loss. Specifically, the domain adaptation
loss guides the target feature extractor to produce source-like
features, and the InfoNCE loss preserves the target specific
features by maximizing the mutual information between the
target input data and the target features. Maximizing the
mutual information between the input space and the feature
space can preserve intrinsic structure of the target data during
domain alignment process, which can boost the performance of
domain adaptation. We have performed extensive experiments
to verify the performance of the proposed CADA method on
machine RUL prediction across different working conditions.

The main contributions of this work are summarized as
follows:

• We designed a novel adversarial domain adaptation ap-
proach for challenging yet practical machine RUL predic-
tion. This approach successfully transfers knowledge for
RUL prediction from one condition (distribution/domain)
to another.

• We proposed a novel solution based on the InfoNCE loss
to learn the invariant representation and preserve the orig-
inal structure for the target domain. As such, satisfactory
performance for RUL prediction can be achieved.

II. RELATED WORKS

In this section, we highlight the related works in data-driven
RUL prediction and domain adaptation.

A. Deep Learning for RUL prediction

Deep learning approaches for RUL prediction can be cate-
gorized into feed-forward neural networks and recurrent neural
networks [6]. For instance, Zhu et al., used CNN to extract
features in multiple scales for the detection of the fault growth
and the prediction of the machine RUL [8]. Liu et al. proposed
a CNN network with joint loss to detect fault and predict RUL
concurrently [23]. Deutch and He applied a DBN to extract
features and a deep neural network to predict the RUL [9].

Recurrent neural network (RNN) with its sequential model-
ing capability can be more suitable to model dynamic systems.
The LSTM is one of the most popular recurrent approaches
that can model long-term dependencies and tackle vanishing
gradient problems of RNN. In [11], the authors proposed a
bidirectional LSTM (BiLSTM) approach with auxiliary fea-
tures to predict the RUL under multiple operation conditions.
Chen et al. developed an attention based LSTM approach
to adaptively select important features, resulting an accurate
prediction of the RUL [12].

B. Domain Adaptation

Most of RUL prediction methods assume: (1) access to
enough labeled failure information; (2) training data (source)
and testing data (target) are drawn from the same distribution.
In reality, labeled data can be scarce and marginal distribu-
tion of data can vary according to the variation of working
conditions.

A subset of transfer learning named unsupervised domain
adaptation (DA) is developed to address distribution shift
problem of unlabeled domains. Conventional approaches for
DA re-weight source samples according to their similarity with
target samples [24]. While other approaches aim to reduce the
domain shift problem in the feature space by minimizing the
divergence between the source and target features. In [25], the
Maximum Mean Discrepancy (MMD) metric was developed
to mitigate the domain shift problem. Sun et al. aimed to
minimize the covariance shift between the source and target
features to align the two domains [26]. Recently, adversarial
domain adaptation approaches, which intend to find invariant
features in both source and target domains, have achieved
the stat-of-the-art performance. Inspired by Generative Ad-
versarial Networks (GANS), adversarial adaptation entails a
domain classifier to discern between the source and target
features and a deep network to extract features that can fool the
domain classifier. For instance, the authors in [27] proposed a
reverse gradient (RevGrad) strategy to adversarially train the
domain classifier and the feature extraction network. While in
[28], a typical GAN loss was employed with flipped labels
to find domain invariant features. Russo et al. proposed a
generative domain adaptation approach to align the source
and target domains. Specifically, they used a bi-directional
mapping from source to target and from target to source,
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while using self-labeling for the target domain [29]. Satio
et al. aligned distributions of the source and target domains
by designing task-specific decision boundary. To achieve that,
they minimized the maximum discrepancy loss between two
different classifiers for the same sample [30]. Lee et al. pro-
posed a similar approach, which attemps to replace the L1 loss
term with a new sliced Wasserstien distance [31]. In [32], a
teacher model was employed to generate psoudo labels for the
target domain and align the source and target clusters. In [33],
the authors proposed a new adversarial loss that aims to align
the joint distribution explicitly. Particularly, they introduced
a classifier-aware adaptation method, where the classifier has
one additional neuron for the domain classification task.

Li et al. developed a heterogeneous adaption approach,
where the source and target have different feature space. They
considered both the sample space and feature space for domain
alignment with the MMD. Then, a graph-based sample re-
weighting method was used to transfer knowledge on the
sample space [34]. In [35], a progressive domain alignment
approach has been developed to adapt two heterogeneous
domains. Specifically, a shared codebook was employed to
align the feature discrepancy while progressively minimizing
the domains discrepancies. In [36], the feature space and
the sample space were jointly adapted to preserve the local
consistency among samples. In [37], the authors designed the
maximum density divergence to enforce clustering assumption
while adversarially adapting the two domains.

In RUL domain, very few works have tried to address
knowledge transfer problem among different domains. Zhang
et al. proposed a transfer learning approach for the RUL
problem, where they trained the model on the source dataset
and fine-tuned the model on target working condition [25].
Yet, they assumed accessibility to labeled data for the target
domain, which cannot hold for real-world scenarios. Very re-
cently, Costa et al. proposed a deep domain adaptation (DDA)
method for the RUL prediction problem using unlabeled target
domain data. The DDA applied the LSTM network to extract
features and the reverse gradient approach to alleviate the
domain shift problem [26]. Most of these approaches aim
to find a domain invariant features between the source and
target domains. Yet, simply enforcing the target features to
be similar to the source with no constrains may remove
useful target-specific information in target domain, i.e., the
mutual information between the target data and the target
extracted feature. This would limit the performance of domain
adaptation for the RUL prediction task.

Differently, in our method, we develop a robust adver-
sarial domain adaptation approach that can find domain in-
variant features while preserving the target-specific features.
To achieve that, we propose a novel contrastive loss based
approach to maximize the mutual information between the
input space and the latent space of the target domain data
during domain alignment. To the best of our knowledge, the
proposed CADA is the first approach that realizes adversarial
domain adaptation while preserving the target-specific features
for RUL prediction. Specifically, the CADA can find new
feature representation of the target domain data that can be
similar to the source and have maximum mutual information

with the target where no labelled data are available.

III. METHODOLOGY

A. Problem Formulation and Notations

To clearly formulate the problem, we introduce the basic
standard notations of domain adaptation [17]. Let a domain
D = {X , P (X)}, where X is the feature space, X ∈ X ,
and P (X) is the marginal distribution of data in this feature
space. Given a labeled source domainDS = {XS , PS(X)} and
unlabeled target domain DT = {XT , PT (X)}, the unsuper-
vised domain adaptation problem aims to transfer knowledge
from the labeled source to improve the performance on the
unlabeled target. In our problem, DS and DT are both mul-
tivariate time-series data of aircraft engines under different
working/fault conditions. Particularly, we have labeled data
from aircraft engines with a specific working/fault condition,
and we aim to improve the RUL prediction of unlabeled data
with different working/fault conditions. We denote the source
domain DS = {Xi

S , y
i
S}

nS
i=1, with nS the total number of sam-

ples, where Xi
S ∈ RM×K is the input source sample with M

sensors and K time steps, yiS ∈ R is the corresponding RUL
label. Similarly, the unlabeled target domain DT = {Xj

T }
nT
j=1,

where Xj
T ∈ RM×K and nT is the number of target domain

samples. Table I summarizes the notations used in this paper.

TABLE I: Notations

Notation Definition

DS /DT source/target domain

XS /XT source/target input space

nS /nT number of source/target samples

PS /PT source/target marginal distribution

fS /fT source/target latent features

ES /ET source/target encoder

D domain discriminator

R RUL regressor

M number of sensors

K sequence length

B. Overview

Domain adaptation for multivariate time-series regression
can be a very challenging task. Therefore, only few works have
been presented for RUL estimation problems across domains
[14]. In this paper, we develop a novel contrastive adversar-
ial domain adaptation (CADA) approach for machine RUL
prediction. Specifically, it is able to transfer the knowledge
learned from the data under one condition (labeled source
domain) to the data from another condition (unlabeled target
domain). The proposed CADA can find domain invariant
representations of the target domain data while preserving
their intrinsic structure which is crucial to achieve satisfactory
performance in the target domain.

Fig. 1 shows the overall framework that presents the detailed
steps of learning procedure of the CADA model. The first stage
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Fig. 1: Flowchart of the proposed approach

involves data preparation for both source and target domains.
In the second stage, the source and target features are extracted
by the source and target encoders respectively. Given the target
features, the target encoder ET is updated to optimize both the
adversarial loss and the InfoNCE loss. In the last stage, the
trained target feature extractor and the trained source RUL
predictor are combined to predict the RULs for the target
domain data. We will provide a detailed explanation of each
module in the following subsections.

C. Supervised Pre-training on the Source Domain

In this section, we will present our approach that models the
dynamics of multivariate time series and automatically extracts
salient features. In addition, we will provide details about the
RUL prediction network that maps from the latent features to
the RUL.

1) Recurrent Multivariate Modeling: Recurrent based ap-
proaches are widely adopted for modeling temporal depen-
dencies of time-series data. But RNNs often suffer from the
problem of vanishing gradient with long-term sequences [38].
Alternatively, the LSTM which is a strong variant of RNN can
handle long-term dependencies and tackle vanishing gradient
problem. In this work, we design a very deep bi-directional
LSTM network with 5 successive layers for automatic and
representative feature extraction. The LSTM feature extractor
represents the multivariate time series to a single-vector hidden
representation as shown in Fig. 2. Specifically, the LSTM net-
work can be represented as multiple sequential feed-forward
layers. The transition function between these layers is a key
function to model the temporal dependency along the data,
which can be formulated as follows:

hk, ck = Hcell(xk,hk−1, ck−1) (1)

where Hcell receives the current input xk, the previous hidden
hk−1, and the previous memory cell ck−1. The output will
be the updated hidden hk and cell ck at the current time
step as show in Fig. 3. The following equations formalize the
transition function of the LSTM cell at time step k:

ik = σ(Vixk +Wihk−1 + bi), (2)
ek = σ(Vexk +Wehk−1 + be), (3)
fk = σ(Vfxk +Wfhk−1 + bf ), (4)
gk = δ(Vgxk +Wghk−1 + bg), (5)

ck = ek � ck−1 + ik � gk, (6)
hk = fk � δ(ck), (7)

where σ and δ represent nonlinear activation functions of lo-
gistic sigmoid and hyperbolic tangent respectively, xk ∈ RM ,
the V∗ ∈ RM×d and W∗ ∈ Rd×d are shared model weights.
The operator � represents the element-wise multiplication.
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2) RUL Prediction Network: Given the extracted features
from the LSTM feature extractor fS = ES(XS). The RUL
predictor is a multi-layer network R : Rd → R that maps the
latent features into the corresponding RUL value. The RUL
predictor R and the feature extractor ES are trained in an end-
to-end manner using the mean square error loss between the
predicted RULs and the true RULs, which can be formalized
as follows:
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Lmse =
1

nS

nS∑
i=1

(ŷ
(i)
S − y

(i)
S )2 (8)

where ŷS = R(ES(XS) is the predicted RUL label, yS is
the ground-truth RUL values, and nS is the number of source
samples.
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Fig. 4: Proposed CADA Approach

D. Contrastive Adversarial Domain Alignment

The contrastive adversarial adaption module consists of a
domain discriminator D and the InfoNCE module as shown
in Fig. 4. Firstly, the weights of the trained source feature
extractor are adopted to initialize the target feature extractor.
The output features from both the source and target domains
are fed into an adversarial discriminator network to minimize
the discrepancy. Concurrently, the target features are fed into
the InfoNCE loss module to preserve the target specific fea-
tures during the alignment process. In particular, the InfoNCE
loss will maximize the mutual information between the target
domain inputs and the target domain features to preserve task-
specific information. Algorithm 1 shows the formal procedure
of our contrastive adversarial domain adaptation approach.
The domain discriminator network that encourages the source
and target features to be domain invariant. While the con-
trastive estimation module maximizes the mutual information
between the learned target domain features and the input target
domain data to preserve the task specific features during ad-
versarial alignment process. Detailed procedures are presented
in the following paragraphs.

1) Adversarial Adaptation Module: Let ES and RS be the
source-trained LSTM feature extractor and the RUL predictor
respectively. To predict the RUL labels of the unlabeled
target domain data, we can naively initialize our target model
(i.e., ET and RT ) with pre-trained source models. However,
due to the large discrepancy among the data from differ-
ent working/fault conditions, the model can fail to predict
RUL accurately. To tackle this domain discrepancy problem,
we adversarially train the LSTM feature extractor against a
domain discriminator network to minimize the distribution
differences between the source features and the target features.
Specifically, the domain discriminator network D is trained to

Algorithm 1: Contrastive Adversarial Domain Adap-
tation

Input: Source domain: DS = {Xi
S , y

i
S}

nS
i=1

Target domain:DT = {Xi
T }

nT
i=1

Output: Trained target encoder ET

ES ← Trained source encoder
ET ← Initialize with Es parameters
D ← Domain Discriminator
for number of iterations do

1. Sample mini-batch of m source samples XS ∼ PS

2. Sample mini-batch of m target samples XT ∼ PT

3. Extract source features: fS = ES(XS)
4. Extract target features: fT = ET (XT )
5. Feed fS and fT to D
6. Compute adversarial loss Ladv by Eq. 9
7. Update D by Ladv

8. Compute InfoNCE loss LInfoNCE based on Algorithm 2
9. Update ET by L = LE + λLInfoNCE

end

discern between the source and target features. Concurrently,
we train the target feature extractor ET to produce target
features such that the domain discriminator network cannot
distinguish them from the source features. The adversarial
training between the discriminator network D and the target
ET can be expressed as follows:

min
ET

max
D
Ladv =EXs∼PS

[
logD(ES(XS))

]
+EXT∼PT

[
log(1−D(ET (XT )))

]
. (9)

where XS and XT are the source and target samples respec-
tively. The target feature extractor ET is updated to minimize
Ladv , and the discriminator network D is adversarially trained
to maximize Ladv . Eventually, the trained target feature extrac-
tor ET will be able to extract features fT that have minimum
discrepancy from the source features.

Algorithm 2: Contrastive Loss
Input: XT = {x1, . . . , xK}, fT = ET (XT )
Output: Contrastive Loss LInfoNCE

Θk ← Linear layer at timestep k
for K timesteps do

1. qk ← ΘkfT
2. Apply φk(xk, qᵀ

k ) as in Eq. 11
3. Compute LInfoNCE using Eq. 12

end
return LInfoNCE

2) Contrastive Estimation Module: Adversarial domain
adaptation can successfully find target domain features that
are invariant from the source features. However, it can remove
task-specific information from the target features to minimize
the adversarial loss, which can deteriorate the performance
on the target domain – even with perfect domain alignment.
Hence, it is required to preserve target-specific features during
the domain alignment task. To achieve that, we rely on In-
foNCE loss [22] to maximize the mutual information between
the encoded representations of the target domain and the
original inputs, as shown in Algorithm 2. Given a sample
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XT ∼ XT , where XT ∈ RM×K , we apply the target encoder
ET on XT to obtain its corresponding feature representation
fT = ET (XT ). To model the mutual information between
xk, and fT , following the previous studies [39], we define a
density ratio function φk at each time step, which formalized
as follows.

φk(xk; fT ) ∝ p(xk|fT )

p(xk)
(10)

By maximizing the mutual between the latent target features
fT and the input xk, we can preserve the common latent
variables between the target features fT and the input xk. To
compute φk, the latent features fT and the input xk should
be mapped to the same dimension. To achieve that, we use
a fully connected network Θ : Rd → RM that maps feature
dimension d to input dimension M . Thereafter, the density
ratio φk is estimated by a dot product between the transformed
features qk = Θk(fT ) and the the original input xk, which can
be compactly represented as follows:

φk(xk, fT ) = xᵀkqk (11)

where Θk = {θ1, ..., θM} are the weights of a fully connected
layer at time step k. Note that Θk is different among the time
steps. To maximize the density ratio function, we jointly op-
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Fig. 5: Computation of InfoNCE loss at time step k=1

timize the target feature extractor ET and the fully connected
layers Θ using the contrastive estimation loss. The InfoNCE
loss maximizes the mutual information by contrasting between
the positive and negative samples. Fig. 5 illustrates the positive
and negative samples for time step k = 1. The overall InfoNCE
loss can be formulated as

min
ET ,Θ

LInfoNCE = − E
XT

[
log

eφk(xk,fT )∑
xj∈XT

eφk(xj ,fT )

]
(12)

The optimal probability of the NCE loss p(d = k|XT , fT )
can be formulated as:

p (d = k|XT , fT ) =
p (xk|fT )

∏
l 6=k p (xl)∑K

j=1 p (xj |fT )
∏
l 6=j p (xl)

(13)

=

p(xk| fT )
p(xk)∑K

j=1
p(xj | fT )
p(xj)

(14)

By substituting Eq. 12 into the above equations, we can
formalize the mutual information in terms of the InfoNCE
loss LInfoNCE, detailed derivation can be found in [39]. The
resulting formula can be written as:

I(xk, fT ) = log(K)− LInfoNCE (15)

where I(·) represents the mutual information between xk and
fT . It can be seen that minimizing InfoNCE loss is maximizing
the lower bound of I(xk, fT ), which in turn maximizing the
mutual information.

3) Overall Loss Function: In this work, the adversarial
adaptation loss and contrastive estimation loss are jointly op-
timized in an end-to-end manner. The total domain alignment
loss can be summarized as follows:

min
ET ,Θ

max
D

V (D,ET ,Θ)

= Ladv + λLInfoNCE

= EXS∼pS [logD (fS)] +

EXT∼pT

[
log (1−D (fT ))− λ log

eφk (xk, fT )∑
xj∈XT

eφk(xj ,fT )

]
(16)

where Ladv is the adversarial loss, LNCE is the contrastive
estimation loss, and λ is a weight parameter that controls the
proportion of learning domain invariant features and preserv-
ing task-specific information.

IV. EXPERIMENTS AND RESULTS

A. Preparation of Data

To evaluate the performance of our approach, we employ the
popular C-MAPSS [40] benchmark dataset which describes
the run-to-fail experiments of aero-engines. It contains four
different subsets, namely FD001, FD002, FD003 and FD004,
which differ in terms of working conditions, fault modes,
life spans, and number of engines, as shown in Table II.
Particularly, “# Training engines” represents the number of
available engines to train the model, while “# Testing en-
gines” represents the number engines available for testing. “#
Training samples” is the total number of training samples per
data subset. “# Testing samples” is the total number of testing
samples per data subset. “# Max life span” is the maximal
number of cycles that an engine takes to go from healthy
to the failure condition. “# Operating conditions” represents
the number of operating conditions. “# Fault types” represents
the number of failure modes occurblue. Particularly, we take
the scenario FD001→FD002 as an example. We use both the
training samples of FD001 (17731 samples with labels) and
FD002 (48558 samples without labels) to train our CADA
model.

Different types of sensors have been used to monitor ro-
tating components of each engine. Here, we briefly introduce
our procedure for data processing. First, we select sensors that
are informative for RUL prediction, following the previous
studies [11], [12]. The informative sensors are those sensors
which can show clear degradation trend from run to failure.
Here, we visualize the sensor readings of randomly selected
engines. Fig. 6 and Fig. 7 show the sensor readings from
FD001 and FD002 subsets respectively. Clearly, some sensors
are almost constant during the whole degradation, which can
hinder the model from correctly modeling the deterioration
process. In the cross-domain problem, we intend to transfer the
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knowledge from a source data subset (e.g., FD001) to a target
data subset (e.g., FD002). Thus, we only select the common
sensors among source and target domains which are the most
informative ones. Following this strategy, we have selected the
following sensors, i.e., S2, S3, S4, S7, S8, S9, S11, S12, S13,
S14, S15, S17, S20 and S21.
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Fig. 6: The readings of 21 sensors for a randomly selected
engine in FD001 dataset
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Fig. 7: The readings of 21 sensors for a randomly selected
engine in FD002 dataset

Second, the same type of sensors may have quite different
readings under different working conditions. To reduce the
effect of working conditions, we apply the Min-Max nor-
malization with respect to each working condition. As such,
the data under different working conditions is normalized
into the range of [0, 1]. Third, we apply sliding windows
to generate data samples from run-to-fail cycles. Following
previous studies [11], [12], we set the window size and the
step size as 30 and 1, respectively. Moreover, a piece-wise
linear RUL [2] is adopted instead of the true RUL, i.e., if the
true RUL is larger than the maximal RUL, then it is set to the
maximal RUL.

TABLE II: Properties of C-MAPSS Dataset

Dataset FD001 FD002 FD003 FD004

# Training engines 100 260 100 249

# Testing engines 100 259 100 248

# Training samples 17731 48558 21220 56815

# Testing samples 100 259 100 248

# Max life spans (cycles) 362 378 512 128

# Operating conditions 1 6 1 6

# Fault types 1 1 2 2

Fig. 8: Diagram of the engines in C-MAPSS dataset [40]

B. Experimental Settings

Our CADA approach consists of five main models: Source
feature extractor (ES), target feature extractor (ET ), RUL pre-
dictor (R), domain discriminator (D), and InfoNCE module.
Detailed structure of each model has been shown in Fig.
4. Specifically, the source and target feature extractors are
deep BiLSTM networks with 5 layers, where each layer has
32 neurons. The Discriminator is composed of three fully
connected (FC) layers with 64, 32 and 1 hidden neurons. The
RUL predictor also consists of three FC layers, i.e., hidden
layer 1 with 32 neurons, hidden layer 2 with 16 neurons,
and output layer with a single neuron. Each layer is followed
by nonlinear activation function called rectified linear unit
(ReLU) and the dropout regularization technique to relieve
the over-fitting problem. The detailed architecture of the RUL
predictor is shown in Fig. 9.
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Fig. 9: Detailed architecture of the RUL predictor network.

To train our model, we adopt the mini-batch training with a
batch size of 256. To reduce overfitting, dropout regularization
is adopted across the whole structure and the dropout ratio is
set to be 0.5. We use Adam optimizer to minimize the joint loss
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with the learning rate of 0.5e-4 for the feature extractor and the
domain discriminator. As the InfoNCE module is trained from
scratch during the alignment process, we apply larger learning
rate of 1e-2. The training epochs range from 20 to 150 epochs.
The weight of the InfoNCE loss λ can vary across different
cross-domain scenarios and later we will show its effect on
the prediction performance through a sensitivity analysis.

To quantify the performance of models, we adopt two
evaluation metrics, i.e., root mean square error (RMSE) and
score metric, as in [11], [14]. The RMSE metric is defined as
follows:

RMSE =

√√√√ 1

N

N∑
i=1

(ŷi − yi), (17)

where ŷi and yi represent the predicted RUL and ground-truth
RUL respectively.

The RMSE metric treats the early and late RUL predictions
equally. For prognostics applications, late RUL prediction can
be more harmful to the systems. To handle this issue, the
score metric is used to impose bitter penalty for late RUL
predictions. It can be formalized as follows:

Score =


1
N

∑N
i=1(e

ŷi−yi
13 −1), if (ŷi < yi)

1
N

∑N
i=1(e

ŷi−yi
10 −1), if (ŷi > yi)

(18)

C. Comparison with State-of-the-art Methods

To evaluate our approach in cross-domain scenarios, we
train the model using a labeled source domain (e.g,, FD001)
and evaluate on an unlabeled target domain (e.g., FD002,
FD003, or FD004). As we have 4 sub-datasets (i.e., domains),
we thus have 12 cross-domain scenarios. In this paper, we
implement five state-of-the-art approaches as follows. In ad-
dition, we report the average performance (i.e., RMSE and
Score) over 5 consecutive runs with different random seeds.
• Correlation alignment (CORAL) [26]: CORAL mini-

mizes the covariance shift between the source and target
features to align the distribution.

• Deep domain confusion (DDC) [25]: DDC employs a
distance metric called MMD to confuse the source and
target features.

• Wasserstein distance guided representation learning (WD-
GRL) [41]: WDGRL employs a neural network to mea-
sure the empirical Wasserstein distance, while utilizing
the feature extractor network to minimize this distance
between the source and target domain.

• Adversarial discriminative domain adaption (ADDA)
[28]: ADDA uses a typical GAN loss to find target
domain features that can be similar to the source features.

• Deep domain adaptation (DDARUL) [14]: In DDARUL,
an LSTM feature extractor is trained to confuse the source
and target domains, while a domain classifier network is
trained to classify between the source and target features.

Table III shows the experimental results. the CADA out-
performs all the competing approaches across the 12 cross-
domain scenarios in terms of both RMSE and Score. In

addition, we observe that knowledge transfer between simple
and complex datasets is challenging due to the large domain
shift, yet our CADA can successfully align the two distant
domains. For example, FD001 and FD004 are the simplest
and most complex data subsets respectively. As shown in Table
III, simply forcing the features to be similar among these two
datasets can significantly harm the performance. Overall, we
achieve significant improvement over the second best approach
(underlined) in each scenario with an average of more than
21% and 38% for RMSE and Score respectively. Our domain
adaptation strategy can preserve task-specific information and
our proposed deep feature extractor has large generalization
capability, leading to the superior performance of our proposed
CADA.

D. Model Ablation Study
Here, we perform our ablation study to verify the con-

tribution of individual components in our CADA approach.
We derive two variants of CADA, namely, “Source-Only”
and “w/o InfoNCE”. In particular, “Source-Only” refers to
the non-adapted version of our model, whereas the “w/o
InfoNCE” is our adversarial adaptation approach without using
the contrastive estimation loss.

Table IV shows the comparison between the CADA and its
two variants. We observe that the “Source-Only” has the worst
performance, indicating that the big gap between the source
and target domain data distributions. The proposed CADA
method outperforms the one without the InfoNCE loss in most
of cases, which signifies the effectiveness of the InfoNCE loss
on domain adaptation based RUL prediction.

E. Sensitivity Analysis
1) Coefficient of the InfoNCE loss λ: In this section, we

investigate the sensitivity of the proposed CADA with respect
to the coefficient of the InfoNCE loss λ. We have conducted
experiments with λ varying from 0.001 to 1.0 for the 12 cross-
domain scenarios. The results are shown in Fig. 10. It can be
found that different scenarios may require different λ to boost
the performance. Table V summarizes the selected λ values
for the 12 cross-domain scenarios in experiments.

2) The number of LSTM Layers: Another important hyper-
parameter for the proposed method is the number of LSTM
layers. We have investigated the model performance with
different number of LSTM layers, i.e., 1, 3, 5 and 7, in order to
find a balance between the model performance and the training
time. Fig. 11 shows the experimental results. We can find that
the proposed method with 5 layers can achieve the best perfor-
mance in most of scenarios. However, some scenarios require
fewer layers to obtain a better or comparable performance. For
example, for the scenario FD004–>FD003, the method with
7 LSTM layers performs the best. However, the performance
of the method with 1 LSTM layer is comparable to the best
performance, but much more efficient. In this case, using a
single LSTM layer is more reasonable when considering the
balance between the performance and the efficiency of the
algorithm. Table V shows the selected number of LSTM layers
for each cross-domain scenario.
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TABLE III: Comparison of the proposed method against state-of-the-art approaches

Metric RMSE Score

Method CORAL [26] WDGRL [41] DDC [25] ADDA [28] RULDDA [14] CADA CORAL [26] WDGRL [41] DDC [25] ADDA [28] RULDDA [14] CADA

FD001–>FD002 22.85 21.46 44.05 31.26 24.08 19.52 2798 33160 5958 4865 2684 2122

FD001–>FD003 44.21 71.7 39.62 57.09 43.08 39.58 56991 15936 288061 32472 10259 8415

FD001–>FD004 50.03 57.24 44.35 56.66 45.7 31.23 52053 86139 156224 68859 26981 11577

FD002–>FD001 24.43 15.24 46.96 19.73 23.91 13.88 3590 157672 640 689 2430 351

FD002–>FD003 42.66 41.45 39.87 37.22 47.26 33.53 23071 19053 62823 11029 12756 5213

FD002–>FD004 52.12 37.62 43.99 37.64 45.17 33.71 62852 52372 44872 16856 25738 15106

FD003–>FD001 40.33 36.05 39.95 40.41 27.15 19.54 4581 18307 25826 32451 2931 1451

FD003–>FD002 56.67 40.11 44.07 42.53 30.42 19.33 73026 32112 1012978 459911 6754 5257

FD003–>FD004 38.16 29.98 47.46 31.88 31.82 20.61 11407 296061 275665 82520 5775 3219

FD004–>FD001 51.44 42.01 41.55 37.81 32.37 20.10 154842 45394 162100 43794 13377 1840

FD004–>FD002 31.61 35.88 43.99 36.67 27.54 18.5 38095 38221 179243 23822 4937 4460

FD004–>FD003 30.44 18.18 44.47 23.59 23.31 14.49 6919 77977 1623 1117 1679 682

TABLE IV: Ablation study of the proposed approach

Metric RMSE Score

Method Source-Only w/o InfoNCE CADA Source-Only w/o InfoNCE CADA

FD001–>FD002 20.62 20.48 19.52 5448 4600 2122

FD001–>FD003 55.09 39.33 39.58 31062 11866 8415

FD001–>FD004 36.81 31.19 31.23 20786 11713 11577

FD002–>FD001 15.29 13.82 13.88 543 342 351

FD002–>FD003 35.46 33.65 33.53 5339 5350 5213

FD002–>FD004 37.66 33.82 33.71 19807 15070 15106

FD003–>FD001 39.03 24.66 19.54 5700 6469 1451

FD003–>FD002 46.11 24.84 19.33 72405 35036 5257

FD003–>FD004 31.44 21.94 20.61 40772 8873 3219

FD004–>FD001 37.90 26.34 20.10 99597 14985 1840

FD004–>FD002 32.98 28.73 18.50 62345 48726 4460

FD004–>FD003 19.47 14.38 14.49 2470 793 682

TABLE V: The values of λ and the number of LSTM layers
for different scenarios.

Scenario λ Number of Layers

FD001–>FD002 0.2 5

FD001–>FD003 0.2 3

FD001–>FD004 0.001 5

FD002–>FD001 0.001 5

FD002–>FD003 0.001 5

FD002–>FD004 0.001 5

FD003–>FD001 0.5 5

FD003–>FD002 0.5 5

FD003–>FD004 0.2 3

FD004–>FD001 0.2 3

FD004–>FD002 0.2 5

FD004–>FD003 0.001 1

V. CONCLUSION

In this paper, we proposed a novel contrastive adversarial
domain adaptation (CADA) approach that can automatically
find domain invariant features while preserving domain spe-
cific information for machine RUL prediction. The proposed
CADA method was built upon adversarial domain adaptation
architecture with the novel InfoNCE loss. We have performed

Fig. 10: The experimental results with different λ values for
12 cross-domain scenarios

extensive experiments to verify the effectiveness of the CADA
method. More specifically, a detailed comparison has been
made with five state-of-the-art approaches for domain adap-
tation in RUL prediction. Our experimental results show that
the proposed CADA method significantly outperforms all the
state-of-the-arts. Moreover, we also conduct ablation study to
show the effectiveness of the InfoNCE loss when performing
domain adaptation.
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