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1. INTRODUCTION

Nonlinear High-Order/Low-Order (HOLO) acceleration techniques provide substantial performance gains

for several transport-related single and multiphysics problems [1–4]. These scale-bridging algorithms accel-

erate the convergence of slowly converging physics, like scattering source, to reduce the number of iterations

required. They also allow us to isolate the High-Order equation from the coupled system (for multiphysics

problems) by introducing a consistent coarser-scale Low-Order (LO) equation [5]. However, most of these

nonlinear methods cater to isotropic or weakly anisotropic problems [6], with few exceptions addressing

highly anisotropic problems [7].

In this summary, we develop a nonlinear Fokker-Planck acceleration algorithm for highly anisotropic,

forward-peaked transport problems. The Nonlinear Fokker-Planck Acceleration (NFPA), like the Nonlin-

ear Diffusion Acceleration (NDA) [3], introduces a consistent LO equation that can be coupled with other

physics in nonlinear solves while keeping transport sweeps isolated. Our LO equation is based on the

Fokker-Planck equation [8]. The linear version of this method, Fokker-Planck Synthetic acceleration [9],

has shown significant improvement in the convergence rate for certain classes of problems. The nonlinear

method introduced in this work also shows significant improvement in convergence rate for a variety of

problems.

This summary contains the description of the NFPA proposed method and it is organized as follows. In

Section 2, we introduce the idea of NFPA accelerated transport solve. Then, we present a preliminary result

and conclusions in Section 3.

2. NONLINEAR FOKKER-PLANCK ACCELERATION

In this section we present a brief derivation of the nonlinear Fokker-Planck acceleration for anisotropic,

monoenergetic transport in slab geometry. We consider the transport equation

µ
∂

∂x
ψ(x, µ) + σt(x)ψ(x, µ) =

L∑
l=0

(2l + 1)Pl(µ)σs,l(x)φl(x) +Q(x, µ), (1)
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where ψ represents the angular flux, φl is the lth Legendre moment of the angular flux, σt is the total

macroscopic cross-section, σs,l is the lth scattering cross-section moment, Pl is the lth-order Legendre

polynomial, and Q is an internal source. For simplicity, we will drop the notation (x, µ) in the remainder

of this summary. The solution to Eq. (1) converges asymptotically to the solution of the following Fokker-

Planck (FP) equation in the forward-peaked limit [8]:

µ
∂ψ

∂x
+ σaψ =

σtr
2

∂

∂µ
(1− µ2)

∂ψ

∂µ
+Q , (2)

where σtr is the momentum transfer cross-section. In order to make the FP equation consistent with the

transport equation, we introduce an additive term to the FP equation such that the modified FP equation has

the following form:

µ
∂ψ

∂x
+ σaψ =

σtr
2

∂

∂µ
(1− µ2)

∂ψ

∂µ
+ D̂Fψ +Q . (3)

Here, D̂Fψ is the additive term that makes the transport and FP equations consistent. Equation (3) is

called the Fokker-Planck-plus-consistency-term equation. We expect this modified equation to take large-

angle scattering into account through the consistency term, unlike the standard Fokker-Planck equation.

Subtracting Eq. (3) from Eq. (1) and rearranging the terms, we obtain:

D̂F =

∑
l=0(2l + 1)Plσlφl − σtr

2
∂
∂µ(1− µ2)∂ψ∂µ

ψ
− σs,0 . (4)

The NFPA method uses Eqs. (1) and (3) where high order (HO), low order (LO), and closure terms are given

by

HO : µ
∂ψHO
∂x

+ σtψHO =
∑
l=0

(2l + 1)Plσlφl,LO +Q , (5a)

LO : µ
∂ψLO
∂x

+ σaψLO =
σtr
2

∂

∂µ
(1− µ2)

∂ψLO
∂µ

+ D̂FψLO +Q , (5b)

Closure : D̂F =

∑
l=0(2l + 1)Plσlφ

m
l,HO − σtr

2
∂
∂µ(1− µ2)∂ψHO

∂µ

ψHO
− σs,0 . (5c)

The nonlinear HOLO-plus-closure system can be solved using any nonlinear solution technique [10].

3. PRELIMINARY RESULT AND DISCUSSION

We consider a uniform medium with thickness equals to 100 mean-free-paths and anisotropic scattering.

The cross-sections, including the scattering cross-section moments, are presented in Table I [11]. We use

the standard diamond-difference/discrete ordinates scheme for space/angle discretization [12]. The angular

Laplacian in the modified Fokker-Planck equation employs Morel’s weighted finite difference scheme [13].

We use 1000 spatial nodes along with 16 angles for our discretization. An isotropic internal sourceQ = 10.0

is assumed. The tolerance is set to 10−4. A comparison of the solution with stand-alone source iteration and

NLFP accelerated solution is presented in Fig. 1. We observe that, for this specific problem, NLFP improved
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Table I: Cross-sections

Cross-section Value Cross-section Value

σt 13762.62153659 σa 2.0
σs,0 13760.62153659 σs,8 13665.50901853
σs,1 13756.65496695 σs,9 13645.69235018
σs,2 13749.82123209 σs,10 13624.53334647
σs,3 13740.60473474 σs,11 13602.07403769
σs,4 13729.19245164 σs,12 13578.42235004
σs,5 13715.84644502 σs,13 13553.59782372
σs,6 13700.68597485 σs,14 13527.69278088
σs,7 13683.86957645 σs,15 13500.71882667

the iteration count by three orders of magnitude. This is, however, problem dependent; the method’s efficacy

must be tested for a wide range of problems.

In this summary, we have introduced a nonlinear Fokker-Planck acceleration algorithm for highly anisotropic

transport problems. The consistency term for the NFPA algorithm is solved from the subtraction of the HO

and LO equations. To our knowledge, this is the first time a nonlinear Fokker-Planck-based acceleration has

been proposed. This method is expected to improve the convergence of slowly converging forward-peaked

transport problems. Moreover, NFPA is expected to return a modified Fokker-Planck equation that will ac-

count for large angle scattering. In the full version of this work, we will present results for a wide variety of

problems and discuss the method’s stability.

Figure 1: Solver Comparison
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