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1. INTRODUCTION

The theory of nonclassical particle transport was introduced by Larsen [1] to describe measurements of pho-

ton path-length in the Earth’s cloudy atmosphere where distance-to-collision for photons is not exponentially

distributed [2]. This nonclassical theory has since been extended and applied to different problems, such

as neutron transport [3], computer graphics [4], and anomalous diffusion [5]. The nonclassical transport

equation extends the phase-space to include an extra independent variable, the free-path s, that represents

the distance traveled by a particle since its last interaction.

The slab geometry, one-speed nonclassical transport equation with isotropic scattering in its initial value

form is [6]:

∂

∂s
Ψ(x, µ, s) + µ

∂

∂x
Ψ(x, µ, s) + σt(s)Ψ(x, µ, s) = 0, (1a)

Ψ(x, µ, 0) ≡ ϕ(x) =
c

2

∫ 1

−1
dµ′

∫ ∞
0

ds′ σt(s
′)Ψ(x, µ′, s′) +

Q(x)

2
, (1b)

where x and µ represent position and scattering angle cosine, Ψ is the nonclassical angular flux, c is the

scattering ratio, and Q is an isotropic source. Observe that Ψ(x, µ, 0) as given in Eq. (1b) is a function of

x only, represented by ϕ(x). The total cross section σt is modeled as a function of the free-path s and is

related to the particle free-path distribution by

p(s) = σt(s)e
−

∫ s
0 ds

′σt(s′) . (2)

In the case of classical transport the s-dependence is removed; Eq. (2) then becomes the exponential p(s) =

σte
−σts, and Eqs. (1) reduce to the classical steady-state, one-speed linear Boltzmann equation with isotropic

scattering in slab geometry [6].

Until recently, deterministic numerical results for the nonclassical transport equation given by Eqs. (1) were

only available for problems in rod geometry (cf. [7]). This is in part because the s-dependence of σt and

the improper integral on Eq. (1b) tend to make an approach involving the discretization of the variable s
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inefficient. As a first step to address this issue, a set of nonclassical spectral SN equations has been recently

introduced [8]. In this approach, the spectral method is used to represent the nonclassical flux as a series of

Laguerre polynomials [9] in the variable s. The resulting nonclassical equation is then approximated by the

SN formulation and numerically solved by the conventional fine-mesh Diamond Difference (DD) method

with a source iteration scheme.

For highly scattering systems, the spectral radius of transport problems can get arbitrarily close to unity [10],

and acceleration becomes key to an efficient solver. The goal of the present work is to introduce a moment-

based, P1 synthetic acceleration (P1SA) technique to accelerate the convergence of the nonclassical spectral

SN equations. In the full version of this work, we will provide more details about its effectiveness using

numerical results. This will be the first time the solution of these equations will be accelerated.

The remainder of this summary is organized as follows. In Section 2, we sketch the derivation of the

nonclassical spectral SN equations and source iteration. In Section 3, we present the P1SA technique. We

conclude our summary in the final section with a brief discussion.

2. NONCLASSICAL SPECTRAL SN AND SOURCE ITERATION

This section presents a brief sketch of the derivation of the nonclassical spectral SN equations. For a detailed

derivation, we direct the reader to the work presented in [8].

Defining ψ̂ such that

Ψ(x, µ, s) ≡ ψ̂(x, µ, s)e−
∫ s
0 ds

′σt(s′) (3)

and substituting it in Eqs. (1), we obtain the following nonclassical problem:

∂

∂s
ψ̂(x, µ, s) + µ

∂

∂x
ψ̂(x, µ, s) = 0, (4a)

ψ̂(x, µ, 0) ≡ ϕ̂(x) =
c

2

∫ 1

−1
dµ′

∫ ∞
0

ds′p(s′)ψ̂(x, µ′, s′) +
Q(x)

2
, (4b)

where p(s′) is the free-path distribution given in Eq. (2). Here, we assume vacuum boundaries. To apply the

spectral method, we represent ψ̂ using a Laguerre polynomial expansion [9]:

ψ̂(x, µ, s) =
M∑
m=0

ψm(x, µ)Lm(s), (5)

where M is the expansion order for Laguerre polynomials. We introduce this expansion in the nonclassical

problem given by Eqs. (4). Then, the following steps take place (cf. [8]): (i) we multiply Eq. (4a) by

e−sLm(s); (ii) we integrate from 0 to∞ with respect to s; and (iii) we perform algebraic manipulations to

simplify the result. This procedure returns the nonclassical spectral equation

µ
∂

∂x
ψm(x, µ) + ψm(x, µ) =

c

2

∫ 1

−1
dµ′

∫ ∞
0

ds′p(s′)

M∑
k=0

ψk(x, µ
′)Lk(s

′) +
Q(x)

2
−
m−1∑
j=0

ψj(x, µ), (6a)

m = 0, 1, ...,M,
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and the classical angular flux Ψc(x, µ) =
∫∞
0 dsΨ(x, µ, s) is given by

Ψc(x, µ) =
M∑
m=0

ψm(x, µ)

∫ ∞
0

dsLm(s)e−
∫ s
0 ds

′σt(s′) . (6b)

Introducing the SN formulation [10] in Eqs. (6), we obtain

µn
d

dx
ψm,n(x) + ψm,n(x) =

c

2

N∑
l=1

ωl

M∑
k=0

ψk,l(x)

∫ ∞
0

ds′p(s′)Lk(s
′) +

Q(x)

2
−
m−1∑
j=0

ψj,n(x), (7a)

m = 0, 1, ...,M, n = 1, ..., N,

Ψc,n(x) =
M∑
m=0

ψm,n(x)

∫ ∞
0

dsLm(s)e−
∫ s
0 ds

′ σt(s′), n = 1, 2, ...,N . (7b)

In order to solve the nonclassical spectral SN equations using standard source iteration [10], we lag the

scattering source and other terms on the right-hand side:

µn
d

dx
ψi+1
m,n(x) + ψi+1

m,n(x) =
c

2

N∑
l=1

ωl

M∑
k=0

ψik,l(x)

∫ ∞
0

ds′p(s′)Lk(s
′) +

Q(x)

2
−
m−1∑
j=0

ψij,n(x), (8)

where i is the iteration index.

3. P1 SYNTHETIC ACCELERATION

Subtracting the exact nonclassical spectral SN equation from Eq. (8) yields the following error equation:

µn
d

dx
εi+1
m,n(x) + εi+1

m,n(x) =
c

2

M∑
k=0

υik(x)

∫ ∞
0

ds′p(s′)Lk(s
′)−

m−1∑
j=0

εij,n(x), (9)

where εi+1
m,n(x) = ψm,n(x)−ψi+1

m,n(x) is the error in themth Laguerre moment of angular flux along direction

µn. Here, υk(x) =
∑N

l=1 ωlεk,l(x) is the zeroth Legendre moment of εk,n(x).

For highly scattering problems, acceleration is important for an efficient solution due to the spectral radius

becoming arbitrarily close to unity [10]. In this work, we propose P1 acceleration, where the error equation

above is represented using the following P1 equations:

d

dx
Υm(x) + υm(x) =

c

2

M∑
k=0

υk(x)

∫ ∞
0

ds′p(s′)Lk(s
′)−

m−1∑
j=0

υj(x) m = 0, 1, ...M, (10a)

1

3

d

dx
υm(x) + Υm(x) = −

m−1∑
j=0

Υj(x) m = 0, 1, ...M . (10b)

Here, Υk(x) =
∑N

l=1 µlωlεk,l(x) is the first Legendre moment of εk,n(x). This set of 2×(M+1) equations

is used in the error correction stage [10], which results in the P1 synthetic acceleration scheme.
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4. DISCUSSION

A set of nonclassical spectral SN equations has been recently introduced as an option to provide determin-

istic numerical results of the nonclassical transport equation [8]. These equations are obtained through a

spectral method that represents the nonclassical flux as a series of Laguerre polynomials in the variable s.

The resulting nonclassical equation has a classical form, and is then solved using the SN formulation with

the DD method and a source iteration scheme.

It is known that the spectral radius of transport problems can get arbitrarily close to unity in highly scattering

systems [10]. For this reason, the goal of the present work is to introduce a moment-based, P1 synthetic

acceleration (P1SA) technique to accelerate the convergence of the nonclassical spectral SN equations. In

this summary we have presented a sketch of the derivation of the nonclassical spectral SN equations and

have discussed the P1SA approach. In the full version of this work, we will validate the effectiveness of this

scheme using numerical results. This will be the first time the solution of these equations will be accelerated.
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