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1. INTRODUCTION

The Levermore–Pomraning (LP) model is a well-known approach for solving linear particle transport prob-

lems in a heterogeneous physical system consisting of two (or more) materials [1]. For binary systems, the

model is represented by coupled transport equations for the two materials in the problem and can be solved

using Monte Carlo algorithms [2]. While the LP model is exact for purely absorbing non-participating

media, it is generally inaccurate in diffusive systems.

For physical systems in which absorption and sources are weak and the solution varies slowly over the

distance of a mean free path, the diffusion equation has been shown to be an asymptotic limit of the transport

equation [3]. However, considering these same assumptions, the standard LP model reduces to a diffusion

equation with an incorrect diffusion coefficient [4, 5]. Adjusted models of the LP equations with modified

closures have been proposed to mitigate this issue [6].

The theory of nonclassical particle transport describes processes in which the particle’s free-path s (the

particle’s distance between interactions) is not exponentially distributed. Instead, it is given by [7]

p(s) = Σt(s)e
−

∫ s
0 Σt(s′)ds′ . (1)

Here, Σt(s) represents the nonclassical macroscopic total cross section, which depends upon the free-path

variable s.

Recently, it has been shown that certain diffusion approximations to the transport equation can be repre-

sented exactly by a nonclassical transport equation [8]. This is done by obtaining explicit expressions for

the free-path distribution p(s) and the corresponding Σt(s) such that the nonclassical equation can be con-

verted to an integral equation for the scalar flux that is identical to the integral formulation of the diffusive
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approximation. Moreover, the sampling of s from nonexponential probability functions p(s) allows the use

of Monte Carlo methods to solve these nonclassical transport equations. In particular, it is possible to solve

diffusion problems using a nonclassical Monte Carlo transport method [9].

The goal of this work is to introduce a nonclassical Monte Carlo transport approach to solve the LP equations

in diffusive binary stochastic media. The full version of this work will present the following original content:

1. We will derive explicit expressions for p(s) and Σt(s) such that the diffusion equations for the LP

model (and its adjusted models) can be exactly represented by a nonclassical transport equation.

2. We will consider transport problems in diffusive binary stochastic media and perform nonclassical

Monte Carlo simulations in which the free-paths are sampled from the appropriate nonexponential

distributions. Numerical results will be presented.

3. We will investigate the effectiveness of the nonclassical Monte Carlo algorithm in approximating the

results of the classical LP Monte Carlo algorithms. Numerical results will be presented.

4. We will analyze the advantages and disadvantages of the nonclassical Monte Carlo approach when

compared to standard LP Monte Carlo algorithms.

The remainder of this summary is organized as follows. In Section 2, we sketch the integral formulation of

the LP diffusion equation and compare it to the integral formulation of the nonclassical transport equation.

This allows us to determine the free-path distribution p(s) from which s will be sampled in the nonclassical

Monte Carlo algorithm. In Section 3 we present a brief discussion of what will be included in the full work.

2. INTEGRAL FORMULATION OF THE LP DIFFUSION EQUATION

Consider the following LP formulation for transport in a binary stochastic medium:

µ
∂Ψi

∂x
(x, µ) + ΣtiΨi(x, µ) =

Σsi

2

∫ 1

−1
Ψi(x, µ

′)dµ′ (2)

+ |µ|
(

Ψj(x, µ)

λj
− Ψi(x, µ)

λi

)
+
PiQi

2
, −X ≤ x ≤ X,−1 ≤ µ ≤ 1,

where i, j ∈ {1, 2} with j 6= i; Ψi(x, µ) = Pi(x)ψi(x, µ); Pi(x) is the volume fraction for material i at

location x; and ψi(x, µ) is the material averaged flux in direction µ at location x conditioned on the location

being in material i. Here, Σti and Σsi are the macroscopic total and isotropic scattering cross sections for

material i, and λi is the mean chord length value of a segment of material i.

For diffusive systems that (I) have weak absorption and sources; (II) are optically thick; and (III) consist of

a large number of material layers with mean thicknesses comparable to (or small compared to) a mean free

path, the LP formulation above has been shown to asymptotically limit to the LP diffusion equation [4, 5]

− β

3Σt

d2φ

dx2
(x) + Σaφ(x) = Q. (3)
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Here, φ(x) is the scalar flux at location x, and

Σai = Σti − Σsi, Σm = P1Σm1 + P2Σm2 for m = t, s, a, Q = P1Q1 + P2Q2,

β =

∫ 1

0
3µ2α(µ)dµ, α(µ) =

λ1λ2Σt(P1Σt2 + P2Σt1) + (λ1Σt1 + λ2Σt2)µ

λ1λ2Σt1Σt2 + (λ1Σt1 + λ2Σt2)µ
.

If Σt1 6= Σt2, β > 1 and the diffusion coefficient is unphysically large. Modified closures of the LP

formulation lead to different values of β.

Let us define the scattering source S(x) ≡ Σsφ(x) +Q(x). We can now rewrite Eq. (3) as

−d
2φ

dx2
(x) +

3Σ2
t

β
φ(x) =

3Σt

β
S(x) . (4)

The Green’s function for the operator on the left hand side of Eq. (4) is:

G(|x− x′|) =
e
−

√
3Σt√
β
|x−x′|

4π|x− x′|
. (5)

Therefore, we can solve Eq. (4) for φ(x) by taking

φ(x) =

∫
3Σt|x− x′|e

−
√

3Σt√
β
|x−x′|

4πβ|x− x′|2
S(x′)dx′, (6)

and the collision rate density f = Σtφ is given by

f(x) = Σtφ(x) =

∫
3Σ2

t |x− x′|e
−

√
3Σt√
β
|x−x′|

4πβ|x− x′|2
S(x′)dx′ . (7)

The integral formulation of the nonclassical transport equation yields the collision rate [8, 9]

f(x) =

∫
S(x′)

p(|x′ − x|)
4π|x′ − x|2

dx′, (8)

where p is the free-path distribution given by Eq. (1). This result agrees with Eq. (7) iff

p(s) =
3Σ2

t s

β
e
−

√
3Σt√
β

s
. (9)

If we define

ξ =

∫ s

0
p(s′)ds′ = 1−

(
1 +

√
3Σt√
β
s

)
e
−

√
3Σt√
β

s
, (10)

the nonclassical Monte Carlo algorithm can sample the free-path s using

s =

√
β√

3Σt

τ−1(ξ), (11a)

where

τ(z) = (1 + z)e−z. (11b)

The solution obtained by this Monte Carlo procedure should match the solution of Eq. (3), which should

converge to the solution of Eq. (2) in diffusive systems.
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3. DISCUSSION

The goal of this work is to introduce a nonclassical Monte Carlo algorithm to address transport problems in

diffusive binary stochastic media. In the full version, we will expand on the theory sketched in Section 2

and provide full details on the exact representation of the LP diffusion equation as a nonclassical transport

equation. We will include similar results to the adjusted LP equations with modified closures.

We will present a full set of numerical results for problems in slab geometry, in which we will compare

the results of the nonclassical Monte Carlo algorithm with those obtained through classical LP Monte Carlo

algorithms. The effectiveness of the proposed approach will be investigated, and the advantages and disad-

vantages of the method will be analyzed.
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