One-way Coupled Benchmark for Combined-Hyperthermia-Radiotherapy Treatment in Slab Geometry

Barry D. Ganapol

Department of Aerospace and Mechanical Engineering, University of Arizona Tucson, Arizona, 85721 ganapol@cowboy.arizona.edu

Japan K. Patel Department of Mechanical and Aerospace Engineering, The Ohio State University Columbus, OH, 43210 patel.3545@osu.edu

Richard Vasques

Department of Mechanical and Aerospace Engineering, The Ohio State University Columbus, OH, 43210 vasques.4@osu.edu

Radiation dosimetry has traditionally been treated as single physics [1]. However, several applications could benefit from the coupling of dose deposition with other physics to synchronously model the underlying system. One such application is the modeling of tumor response to combined-hyperthermia-radiotherapy (CHR) treatment. Several different tumor microenvironments undergo constitutive changes upon exposure to heat [2]. These changes result in increased radiosensitivity in tumor tissue making tumors more susceptible to treatment via radiation [3]. CHR treatments combine heat and radiation to maximize tumor cell kill while reducing damage to the surrounding normal tissue.

We developed a multiphysics-based one-way coupled model to predict the response of localized tumors to CHR in [4]. It combines radiation transport (dosimetry) with heat transfer (hyperthermia) and cell population dynamics (tumor dynamics) to model a highly simplified slab-geometry system. We used the following mono-energetic, slab geometry transport equation with isotropic scattering to model transport [5]:

$$\frac{1}{v}\frac{\partial\psi}{\partial t} + \mu\frac{\partial\psi}{\partial x} + \sigma_t\psi = \frac{\sigma_s}{2}\varphi + \frac{Q}{2},$$
 (1)

where, $\psi = \psi(x, \mu, t)$ is the angular flux at position x, along angular cosine μ , at time t; σ_t and σ_s are the macroscopic total and scattering cross-sections; Q is an isotropic internal source; v is the particle speed; and $\phi = \int_{-1}^{1} \psi d\mu$ is the scalar flux. The cell survival probability was calculated using the following set of equations [6]:

$$D = \left(\frac{\mu_{en}}{\rho}\right) \phi \Delta t E, \qquad (2a)$$
$$D_E = \alpha D + \beta D^2, \qquad (2b)$$

$$S = \exp(-D_{\rm E}), \tag{2c}$$

where, D, D_E , and S are the dose, effective dose, and the cell survival probability at position x and time t, respectively. Moreover, α and β are radiobiology parameters. Hyperthermia is modeled using the following heat conduction equation [7]:

$$\rho c_p \frac{\partial T}{\partial t} = \frac{\partial}{\partial x} \kappa \frac{\partial T}{\partial x} + q, \qquad (3)$$

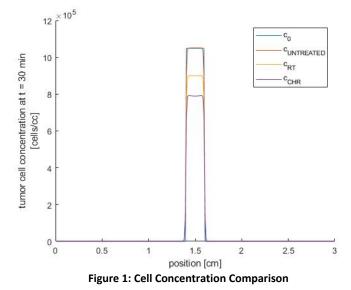
where ρ , c_p , and κ are the specific heat capacity, the material density, and the thermal conductivity of tissue, respectively; q is the volumetric heat source; and T is the temperature at position x and time t. The tumor dynamics is modeled as a diffusion process using the following equation [8]:

$$\frac{\partial c}{\partial t} = \frac{\partial}{\partial x} I \frac{\partial c}{\partial x} + pc - Rc, \qquad (4)$$

where c is the tumor cell concentration at position x and time t; I is the coefficient representing motility of tumor cells; and p is the proliferation rate. Here, R represents the effect of therapy on tumor cell kill:

$$R_{RT} = 1 - S,$$
 (5a)
 $R_{CHR} = \xi(1 - S),$ (5b)

where R_{RT} and R_{CHR} quantify the effect of stand-alone radiotherapy and CHR treatments respectively, and ξ is a radiosensitivity parameter at position x and time t [4]. The above set of equations returns a one-way coupled system that can be solved sequentially.



2

We will develop a highly precise benchmark set of solutions for the coupled equations (Eqs. 1 to 5) presented above. Our preliminary result presents a comparison of tumor response to different treatment scenarios in Fig. 1. This result is precise up to five digits. We will employ sophisticated convergence acceleration techniques including the Wynnepsilon algorithm [9] to develop our benchmark for the full presentation and subsequent paper.

ACKNOWLEDGMENTS

J. K. Patel and R. Vasques acknowledge support under award number NRC-HQ-84-15-G-0024 from the Nuclear Regulatory Commission. The statements, findings, conclusions, and recommendations are those of the authors and do not necessarily reflect the view of the U.S. Nuclear Regulatory Commission.

REFERENCES

- [1] F. Attix, *Introduction to Radiological Physics and Radiation Dosimetry*, Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim, Germany (2004).
- [2] P. Kaur, M. Hurwitz, S. Krishnan, A. Asea, Cancers 3, 3799-3823 (2011).
- [3] E.J. Hall, A.J. Giaccia, *Radiobiology for the Radiologist*, Lippincott Williams and Wilkins, Philadelphia, USA (2012).
- [4] OUR M&C PAPER idk how to cite it yet MAYBE PUT IT ON ARXIV?
- [5] E.E. Lewis, W.F. Miller, *Computational Methods of Neutron Transport*, American Nuclear Society, La Grange Park, USA (1993).
- [6] R. Rockne et al., Phys. Med. Biol. 55, 3271-3285 (2010).
- [7] J.R. Cannon, *Encyclopedia of Mathematics and Its Applications*, Addison-Wesley Publishing Company/Cambridge University Press, Boston, USA (1984).
- [8] NEED THE RIGHT REFERENCE ITS IN ROCKNE PAPER WILL LOOK LATER
- [9] THE PHYSOR PAPER FOR FBR NEED TO PUT IT IN LATER