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Radiation dosimetry has traditionally been treated as single physics [1]. However, 
several applications could benefit from the coupling of dose deposition with other 
physics to synchronously model the underlying system. One such application is the 
modeling of tumor response to combined-hyperthermia-radiotherapy (CHR) treatment. 
Several different tumor microenvironments undergo constitutive changes upon 
exposure to heat [2]. These changes result in increased radiosensitivity in tumor tissue 
making tumors more susceptible to treatment via radiation [3]. CHR treatments 
combine heat and radiation to maximize tumor cell kill while reducing damage to the 
surrounding normal tissue.   
 
We developed a multiphysics-based one-way coupled model to predict the response of 
localized tumors to CHR in [4].  It combines radiation transport (dosimetry) with heat 
transfer (hyperthermia) and cell population dynamics (tumor dynamics) to model a 
highly simplified slab-geometry system. We used the following mono-energetic, slab 
geometry transport equation with isotropic scattering to model transport [5]: 
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where, ψ = ψ(x, µ, t) is the angular flux at position x, along angular cosine µ, at time t; 
σ% and σ* are the macroscopic total and scattering cross-sections; 𝑄 is an isotropic 
internal source; 𝑣 is the particle speed; and ϕ = ∫ ψdµ	!

+! is the scalar flux. The cell 
survival probability was calculated using the following set of equations [6]:   
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𝐷. = α𝐷 + β𝐷(, (2b) 
𝑆 = exp(−D/), (2c) 

 
where, 𝐷, 𝐷., and 𝑆 are the dose, effective dose, and the cell survival probability at 
position x and time 𝑡, respectively. Moreover, α and β are radiobiology parameters. 
Hyperthermia is modeled using the following heat conduction equation [7]: 
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where	ρ, 𝑐0, and κ are the specific heat capacity, the material density, and the thermal 
conductivity of tissue, respectively; 𝑞 is the volumetric heat source; and 𝑇 is the 
temperature at position x and time 𝑡. The tumor dynamics is modeled as a diffusion 
process using the following equation [8]: 
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where 𝑐 is the tumor cell concentration at position x and time 𝑡; 𝐼 is the coefficient 
representing motility of tumor cells; and 𝑝 is the proliferation rate. Here, 𝑅 represents 
the effect of therapy on tumor cell kill: 
 

R45 = 1 − S, (5a) 
𝑅678 = ξ(1 − S),  (5b) 

 
where R45 and 𝑅678 quantify the effect of stand-alone radiotherapy and CHR 
treatments respectively, and  ξ is a radiosensitivity parameter at position x and time 𝑡 
[4]. The above set of equations returns a one-way coupled system that can be solved 
sequentially.  

	
Figure 1: Cell Concentration Comparison 



One-way Coupled Benchmark for Combined-Hyperthermia-Radiotherapy Treatment in Slab Geometry	

	 3	

We will develop a highly precise benchmark set of solutions for the coupled equations 
(Eqs. 1 to 5) presented above. Our preliminary result presents a comparison of tumor 
response to different treatment scenarios in Fig. 1. This result is precise up to five digits. 
We will employ sophisticated convergence acceleration techniques including the Wynn-
epsilon algorithm [9] to develop our benchmark for the full presentation and 
subsequent paper. 
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