
2015 International Nuclear Atlantic Conference - INAC 2015
São Paulo, SP, Brazil, October 4-9, 2015
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ABSTRACT

The neutron point kinetics equation, which models the time-dependent behavior of nuclear reactors,
is often used to understand the dynamics of nuclear reactor operations. It consists of a system of
coupled differential equations that models the interaction between (i) the neutron population; and (ii)
the concentration of the delayed neutron precursors, which are radioactive isotopes formed in the fission
process that decay through neutron emission. These equations are deterministic in nature, and therefore
can provide only average values of the modeled populations. However, the actual dynamical process is
stochastic: the neutron density and the delayed neutron precursor concentrations vary randomly with
time. To address this stochastic behavior, Hayes and Allen have generalized the standard deterministic
point kinetics equation. They derived a system of stochastic differential equations that can accurately
model the random behavior of the neutron density and the precursor concentrations in a point reactor.
Due to the stiffness of these equations, this system was numerically implemented using a stochastic
piecewise constant approximation method (Stochastic PCA). Here, we present a study of the influence of
stochastic fluctuations on the results of the neutron point kinetics equation. We reproduce the stochastic
formulation introduced by Hayes and Allen and compute Monte Carlo numerical results for examples
with constant and time-dependent reactivity, comparing these results with stochastic and deterministic
methods found in the literature. Moreover, we introduce a modified version of the stochastic method to
obtain a non-stiff solution, analogue to a previously derived deterministic approach.

1. INTRODUCTION

The neutron point kinetics equation, which simulates the time-dependent behavior of
nuclear reactors [1, 2, 3, 4], is a system of coupled differential equations that models
the interaction of the neutron population with the concentration of the delayed neutron
precursors. Such equations, as expected by its deterministic nature, provide only average
values of the modeled neutron and precursors populations. However, certain applications
require a stochastic approach of this system to attain an accurate solution.

There are several methods in the current literature that can perform such an endeavor.
They differ from each other in the way stochastic fluctuations are introduced in the system,
as well as in the choice of the solution procedure.



When considering the insertion of the fluctuations in the system, one can find cases of
(i) insertions in the dependent variables; and (ii) insertions in the physical parameters.
Examples of insertions in the dependent variables include cases in which the fluctuations
observed in the neutron density are caused by the reactivity as a stationary Gaussian
function [5]; and cases in which a stochastic non-white reactivity input was used [6].
Literature concerning fluctuations inserted in the reactivity function may be found in
references [7, 8, 9]. These references address cases with non-linear neutron point kinetics,
which is not the focus of the present work. Regarding the insertion of the fluctuations in
the remaining time-dependent variables, Hayes and Allen [2] have generalized the stan-
dard deterministic point kinetics equation, deriving a system of stochastic differential
equations that model the random behavior of the neutron density and the precursor con-
centrations in a point reactor. Due to stiffness, the authors of [2] implemented this system
numerically using a stochastic and piecewise constant approximation method (Stochastic
PCA). Numerical approaches of this same method were also presented by Saha Ray [10].

The different methods of solution include the use of Taylor power series and Euler-
Maruyama approach in [10]; integral transforms into discrete time steps in [7]; linearization
and Bourret approximations in [6]; Monte Carlo in [2, 11]; and others [7, 12, 13]. It is
noteworthy that, with the exception of cases modeled without or with only one group of
neutron precursors, the stiff character of the problem remains present in the stochastic
approach.

In this paper we present an approach to obtain a non-stiff solution for the stochastic
formulation of the neutron point kinetics equation. Specifically, this approach allows the
calculation of the neutron and precursor densities at any time of interest (without the need
of using progressive time steps), similar to the work presented in [14]. This is attained
by the combination of the Decomposition Method [14, 15], the stochastic formulation
derived in [2], and the use of the Monte Carlo Method [2, 10, 14]. The initial steps for
this solution were already presented in [16], where we obtained a non-stiff solution for
the case of constant reactivity. In this work we reproduce the stochastic formulation
introduced in [2] and compute numerical Monte Carlo results for examples with constant
and time-dependent reactivity, comparing these results with stochastic and deterministic
methods found in the literature [2, 10, 14]. We also present the analysis of the first four
statistical moments of the obtained solution.

To this end, in Section 2 we present a brief review on the key aspects of the Decomposition
Method and the stochastic formulation that were used to derive the non-stiff stochastic
solution. In Section 3 we present the non-stiff solution method. In Section 4 we present
some of our new findings, and review previous ones. In Section 5 we summarize our results
and present our conclusions.

2. A BRIEF REVIEW

In this section we present a short review on the aspects of the non-stiff deterministic
solution given in [14], followed by a direct presentation of the stochastic model derived in
[2].
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2.1. The Deterministic Solution

The neutron point kinetics equation with time-dependent reactivity is written as

d

dt
n(t) =

ρ(t)− β
Λ

n(t) +
6∑
i=1

λiCi(t), n(0) = n0 ,

d

dt
Ci(t) =

βi
Λ
n(t)− λiCi(t), Ci(0) =

βin0

Λλi
,

(1)

for i ∈ [1, 6]. Here, n(t) is the neutron density; ρ(t) is the time-dependent reactivity;
Ci(t) is the density of the i-th delayed neutron precursor group; λi is the decay constant
for a specific group i; Λ represents the neutron mean generation time; and βi represents
the delayed-neutron fraction in a specific group i, such that the total fraction of delayed

neutrons is given by β =
6∑
i=1

βi.

The solution for this system is obtained using a recursive scheme, with finite recursive
depth R. The truncation index is determined by an exponential convergence criterion (for
details see [14, 15]) evaluated after each recursion step. To this end, we write the neutron

population n(t) =
R∑
j=0

nj(t) and the precursors concentration Ci(t) =
R∑
j=0

Ci,j(t) in terms

of the solution from a recursion initialization (j = 0) and the respective correction terms
(j > 0) for an appropriate R ∈ N. Additionally, reactivity is expressed as ρ(t) = ρ0+ρ1(t),
with ρ0 being a constant value and ρ1(t) a generic time-dependent function.

For convenience we introduce the matrices:

Ξ =


ρ1(t)

Λ
{λi}{

βi
Λ

}T
0

 , (2)

Yj(t) = (nj(t), C1,j(t), C2,j(t), C3,j(t), C4,j(t), C5,j(t), C6,j(t))
T , (3)

and

Ω = diag

(
ρ0 − β

Λ
,−λ1,−λ2,−λ3,−λ4,−λ5,−λ6

)
, (4)

which allows us to cast the original problem (1) in matrix form:

dY(t)

dt
− ΩY(t) = Ξ(t)Y(t). (5)

Formally, Eq. (5) may be solved by the Laplace transform:

Y(t) = exp(Ωt)Y(0) +

∫ t

0

exp(Ωτ)Ξ(t− τ)Y(t)dτ . (6)
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Observe that the integral in this equation contains the time-dependent reactivity and the
decay constants that cause the stiffness of the problem. The integral equation (6) can be
decomposed into a set of equations [17] that allow to determine closed form solutions by
recursion (see also [14]):

dY0(t)

dt
− ΩY0(t) = 0,

dYi(t)

dt
− ΩYi(t) = Ξ(t)Yi−1(t) . (7)

Since the Laplace transform is a linear operation and the equation itself is linear, the
solution by Laplace transform can be employed directly in the recursion formalism, main-
taining the exact solution in the limit R→∞.

2.2. The Stochastic Formulation

The formulation postulated by Hayes in [2] describes the variation of the population and
can be interpreted as a balance between deaths, births and transformations of neutrons in
the system. These events have its probabilities determined by the physical parameters of
the model, such as the total and partial delayed neutron fraction; the fraction of delayed
neutrons of each precursor group; the decay constant of each group; and the average
number of neutrons produced in each fission. Based on this concept Hayes [2] was able to
express the expectation values and probabilities of each event. Assuming a time interval
small enough such that only one event occurs, one obtains an Itô system of differential
equations, given in its most general form by:

d

dt
[Y(t)] = ÂY(t) + Q(t) + B̂

1
2
dW

dt
, (8)

d

dt


n(t)
c1(t)
c2(t)

...
c6(t)

 = Â


n(t)
c1(t)
c2(t)

...
c6(t)

+


q(t)

0
0
...
0

+ B̂
1
2
d

dt


W0

W1

W2
...
W6

 , (9)

where

Â =


ρ−β

Λ
λ1 λ2 . . . λ6

β1
Λ
−λ1 0 . . . 0

β2
Λ

0 −λ2 . . . 0
...

...
. . . . . .

...
β6
Λ

0 . . . 0 −λ6

 (10)

and

B̂ =


ζ a1 a2 . . . a6

a1 b1,1 b2,3 . . . b2,6

a2 b3,2 b2,2 . . . b3,6
...

...
. . . . . .

...
a6 b1,2 . . . b5,6 b6,6

 , (11)
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in which

ζ = γn(t)
6∑
i=1

λici(t), γ =
−1− (ρ0 + ρ(t)) + 2β + (1− β)2ν

Λ
,

ai =
βi
Λ

(−1 + (1− β))n(t)− λici(t) ,

and

bi,j =
βi−1βj−1ν

Λ
n(t) + δij

(
βi

2ν

Λ
n(t) + λici(t)

)
.

The last term in equation (9) contains a vector with Wiener processes.

3. THE PROPOSED COMBINATION

It is noteworthy that the matrix B̂ depends on both the neutron populations and the
delayed neutron concentrations. Therefore, we propose that the solution of this problem
can be obtained by a double decomposition, as discussed next. In the first stage the
solution of the purely deterministic problem [14] is obtained by the processes already
described in the section 2.1.. Once the solution Y is know, the matrix B̂ can be determined
for a sequence of discrete time steps so that its components are constant in each time step.
In order to obtain the square root of the matrix B̂ one may use its symmetric nature and
resort to diagonalization.

When considering a specific time interval the function Q(t) is known and it is possible
to apply an analogue decomposition scheme to the one used for the deterministic model
with the recursion initialization and recursive scheme:

dY0(t)

dt
− ΩY0(t) = 0 and

dY i(t)

dt
− ΩY i(t) = Ξ(t)Y i−1(t) + F , (1)

where F = Q(t) + B̂
1
2
dW
dt

= constants known in each time step.

4. NUMERICAL RESULTS

4.1. Results for Constant Reactivities

We first tackle cases with constant reactivities in order to compare the proposed method
with results already established in the literature. We consider sub-critical, critical, and
super-critical constant reactivities.

4.1.1. Constant sub-critical reactivity

This case consists in a problem of constant sub-critical reactivity, considering only one
group of precursors. Note that for one precursor group the stiffness of the problem dis-
appears. The physical parameters are Λ1 = 0.1, β1 = 0.005, ν = 2.5, q = 200, Λ = 2

3
, and

ρ = −1
3
, with initial conditions x(0) = [400, 300]T and a simulated time of two seconds.
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Table 1: Results considering one group of precursors and constant
sub-critical reactivity

Monte Stochastic Euler-Maruyama Deterministic Proposed
Carlo PCA [2] Approximation [10] Model.[15] Method

E(n(2)) 400.032 395.32 412.23 412.13 402.350
σ(n(2)) 27.311 29.411 34.391 – 28.610
E(c1(2)) 300.01 300.67 315.96 315.93 305.84
σ(c1(2)) 7.807 8.3564 8.2656 – 7.924

A total of 1000 histories were accumulated in order to achieve a statistical error smaller
than 0.05% with 95% confidence according to the Central Limit Theorem. The proposed
method achieved similar results to Monte Carlo and Stochastic PCA methods; however,
we observe that the Euler-Maruyama Approximation yields higher values that approach
the deterministic solution.

4.1.2. Constant critical and super-critical reactivities

This case considers a stiff equation system with six precursor groups. The physical pa-
rameter set was drawn from reference [6]: β = [0.007], ν = 2.5, Λ = 0.00002, q = 0,
m = 6,

λi = [0.0127, 0.0317, 0.115, 0.311, 1.4, 3.87]T ,

βi = [0.000266, 0.001491, 0.001316, 0.002849, 0.000896, 0.000182]T ,

and initial condition

x(0) = 100
[

1, β1
λ1l
, β2

λ2l
, β3

λ3l
, β4

λ4l
, β5

λ5l
, β6

λ6l

]T
.

Table 2: Results for critical reactivity, ρ = 0.003

Monte Stochastic Euler-Maruyama Deterministic Proposed
Carlo PCA [2] Approximation [10] Model.[15] Method

E(n(0.1)) 183.04 186.31 208.6 200.005 187.05
σ(n(0.1)) 168.79 164.16 255.95 – 167.83

E(
∑6

i=1 ci(0.1)) 4.478×105 4.491×105 4.498× 105 4.497×105 4.488×105

σ(
∑6

i=1 ci(0.1)) 1495.72 1917.2 1233.38 – 1475.55

Table 3: Results for super-critical reactivity, ρ = 0.007

Monte Stochastic Euler-Maruyama Deterministic Proposed
Carlo PCA [2] Approximation [10] Model.[15] Method

E(n(0.001)) 135.66 134.55 139.568 139,61 135.86
σ(n(0.001)) 93.376 91.242 92.042 – 93.210

E(
∑6

i=1 ci(0.001)) 4.464×105 4.694×105 4.463× 105 4.463×105 4.463×105

σ(
∑6

i=1 ci(0.001)) 16.226 19.444 6.071 – 17.845

Once again, the proposed method presents results almost identical to Monte Carlo and
Stochastic PCA Methods. It is noteworthy that, in spite of high deviations, the statistical
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error is smaller than 0.05% (with 95% confidence). To achieve this criterion, a total of
1000 histories were collected for the case with critical reactivity ρ = 0.003, while for the
case with super-critical ρ = 0.007 a total of 5000 histories were accumulated.

4.2. Reactivities with Time Dependence

Here we present results of typical cases for reactivities with time dependence: (i) a linear
variation of reactivity with time; and (ii) a periodical one, i.e., represented by a sinusoidal
time dependence.

4.2.1. Linear reactivity

In this example, reactivity is described as a linear function of time ρ(t) = at, where the
rate of reactivity insertion a whose unit is [$/s] is a constant. The density is calculated
for two different values of a. Parameters are described in table 4 for a thermal reactor [3]
for Λ = 0.00001s .

Table 4: Nuclear parameters for a thermal reactor

Delayed Neutron Fraction Decay Constant
by Precursor Group by Precursor Group

βi · 10−3 λi(s
−1)

0,246 0,0127
1,363 0,0317
1,203 0,115
2,605 0,311
0,819 1,40
0,167 3,87

β = 6, 4 · 10−3

Table 5 presents the results obtained with the proposed method and compares them to
the Decomposition Method (DM), validated in [15] by the methods GAEM [18] and by
the Padè-type approach.

Table 5: Neutrons Density

a t(s) Neutrons Density
DM Proposed

method
0,25 0,25 1,069651 1,069542

0,50 1,156849 1,156695
0,75 1,265493 1,265332

1 1,401838 1,401982

Figure 1 shows the average behavior of the stochastic solution compared to the deter-
ministic solution, as well as two samples. Comparing the stochastic and deterministic
solutions one observes a systematic shift, i.e, the stochastic solution, despite having the
same qualitative behavior as the deterministic solution, assumes slightly lower values .
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In Figure 2 we present skewness and kurtosis of the linear case, calculated by the method
of moments, considering all the accumulated histories (≈ 105). We can assume based on
the results of kurtosis that samples are distributed around the average as expected from
a normal distribution. Further skewness indicates that the majority of the histories are
symmetric around zero.

Figure 1: Samples and Mean for a linear type reactivity

Figure 2: Skewness and Kurtosis for a linear type reactivity
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4.2.2. Sinusoidal reactivity

Finally, we simulate a case with reactivity of sinusoidal type ρ(t) = ρ0 sin(t), with ρ0 =
0.00073 and Λ = 0.00003s . Nuclear parameters are given in table 4 [3]. Figure 3 shows
the average behavior of the stochastic solution compared to the deterministic solution as
well as to a sample. Comparing the stochastic and deterministic solutions one sees that
the deterministic solution represents the average of the stochastic approach. Moreover,
the individual sample oscilates around the deterministic curve.

Figure 3: Samples and Mean for a sinusoidal type reactivity

In Figure 4 the skewness and kurtosis of the sinusoidal are presented, calculated by the
method of moments considering all the accumulated histories (≈ 106). We can assume
based on the results of kurtosis that samples are distributed around the average as ex-
pected from a normal distribution. However, skewness shows a slightly asymmetric be-
havior.

5. CONCLUSIONS

In this work we have presented a brief review of the method to obtain a non-stiff solution
of the neutron point kinetics equation, as well as a stochastic formulation of the same
system. We propose a combination of these methods in order to obtain a non-stiff solution
for the problem with six precursor groups and time dependent reactivities. The stochas-
tic characteristics are analyzed using four moments of the distribution: mean, variance,
skewness, and kurtosis.

Starting with the non-stiff approach and the analytical representation of its solution, one
can add a stochastic term and obtain a solution to any desired interval. The solution
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Figure 4: Skewness and Kurtosis for a sinusoidal type reactivity

is generated through successive iterations in each time interval by the use of a recursive
system with a stochastic term as a source term.

In order to validate the proposed method we present a comparison with other results in the
literature, showing that the method is in agreement with those already established. In the
current literature the stochastic problem is solved considering two precursor groups and
only constant reactivities, using numerical techniques to obtain such solutions; however,
these solutions are limited to feasible time intervals due to the stiffness inherent to the
problem.

The mean values follow the behavior of the deterministic model; however, when individual
realizations are taken into account they present considerable variations around the mean
value of the ensemble [16]. While the fluctuations in the population n(t) are significant,
the ones in the precursor concentration are neglibible. The skewness being systematically
around zero confirms agreement of the mean value with the deterministic model, and the
kurtosis indicates a distribution close to a homogeneous one.

The analyzed moments still depend on the size of the sample set and on the frequency
with which the stochastic fluctuation are applied. In principle, an adjustment such as
variance reduction and its consequences for higher moments could yield more realistic
results. To obtain such results independent of the sample size or frequency of application
of the stochastic fluctuations it would be necessary to find a reference scale. This still
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needs to be identified, as well as a necessary ingredient to mimic reactor fluctuations,
which is a topic for future work.
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