
International Conference on Mathematics, Computational Methods & Reactor Physics (M&C 2009)
Saratoga Springs, New York, May 3-7, 2009, on CD-ROM, American Nuclear Society, LaGrange Park, IL (2009)

ANISOTROPIC DIFFUSION IN MODEL 2-D
PEBBLE-BED REACTOR CORES

Richard Vasques
Department of Mathematics

University of Michigan
Ann Arbor, Michigan 48109 USA

rvasques@umich.edu

Edward W. Larsen
Department of Nuclear Engineering and Radiological Sciences

University of Michigan
Ann Arbor, Michigan 48109 USA

edlarsen@umich.edu

ABSTRACT

We describe an analysis of neutron transport in a modeled 2-D (transport in a plane) pebble-bed reactor
(PBR) core consisting of fuel discs stochastically piled up in a square box. Specifically, we consider the
question of whether the force of gravity, which plays a role in this piling, affects the neutron transport
within the system. Monte Carlo codes were developed for (i) deriving realizations of the 2-D core,
and (ii) performing 2-D neutron transport inside the heterogeneous core; results from these simulations
are presented. In addition to numerical results, we present preliminary findings from a new theory that
generalizes the atomic mix approximation for PBR problems. This theory utilizes a non-classical form
of the Boltzmann equation in which the locations of the scattering centers in the system are correlated
and the distance to collision is not exponentially distributed. We take the diffusion limit of this equation
and derive an anisotropic diffusion equation. (The diffusion is anisotropic because the mean and mean-
square distances between collisions in the horizontal and vertical directions are slightly different.) We
show that the results predicted using the new theory more closely agree with experiment than the atomic
mix results. We conclude by discussing plans to extend the present work to 3-D problems, in which we
expect the anisotropic diffusion to be more pronounced.
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1. INTRODUCTION

The pebble bed reactor (PBR) is a graphite-moderated, gas-cooled, very high temperature reactor. It
uses spherical, roughly tennis-ball-sized fuel elements calledpebbles, which are made of pyrolytic graphite
(the moderator), containing thousands of microscopic fuel Tristructural-isotropic (TRISO) particles, each
of which consists of a fissile material surrounded by a coated ceramic layer of SiC for structural integrity.
Thousands of pebbles are placed together in the PBR core, which is cooled by an inert or semi-inert gas
such as helium.

Inside the PBR core, the fuel pebbles are piled on top of one another in a “random” manner. Typ-
ically, the neutronic modeling of the geometrically “random” core is done by: (i) developing self-shielded
multigroup cross sections for the pebbles, (ii) volume-averaging these cross sections over the entire core,
including the helium-filled region between the pebbles (theatomic mixapproximation), and (iii) introducing
the spatially-homogenized cross sections into a diffusion code.
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This procedure suggests two questions that we have considered in our work. First, in the clas-
sic atomic mix approximation, the cross sections for a random heterogeneous medium are approximated
by volume-averaging over the constituent materials, weighted by their respective volume fractions. This
approximation is known to be accurate only when thechunk sizesof the constituent materials are small
compared to a mean free path. However, PBR pebbles are not optically thin – they are O(1) mean free paths
thick. This casts some doubt on the validity of the atomic mix approximation for PBRs: how accurate is it,
really? The second question is related but subtly different: in a PBR core, does gravity affect the distance-to-
collision, or chord length probability distribution function, in a direction-dependent (anisotropic) manner?
In other words, the force of gravity (let us say it acts in the -z direction) causes the pebbles to become
arranged in a certain manner. If one considers a typical arrangement of pebbles in a PBR core, is the chord
length probability distribution function different in thez direction than in the(x, y)-plane? If it is different,
neutron transport and diffusion can be affected in an anisotropic manner that is not modeled by the atomic
mix approximation.

Currently, PBR cores are simulated using a diffusion approximation with anisotropic diffusion
tensor, in which neutrons diffuse equally in all spatial directions. However, if the chord length probability
distribution function is different in thez direction than in thex, y directions, then the diffusion length in the
z direction could be different than in thex andy directions, and in this case one has an anisotropic diffusion
tensor.

In this preliminary work, we consider a 2-D “flatland” (neutron transport occurs only in a plane)
model of a PBR core, consisting of circular discs randomly piled up (by gravity) inside a box. (Hereafter,
we use the term “2-D” to describe this model.) We have developed a Monte Carlo computer code to derive
realizations of the 2-D core; and a second Monte Carlo code that performs 2-D neutron transport inside the
heterogeneous core. By calculating neutron transport Monte Carlo simulations in the heterogeneous cores,
we can determine (i) the accuracy of the atomic mix approximation, and (ii) whether anisotropic effects
occur.

Our 2-D simulations show that the atomic mix model is reasonably accurate. However, there are
small but discernible differences between the Monte Carlo results and the atomic mix model. In particular,
we observe small anisotropic effects: neutron transport in the horizontal(x) direction slightly differs from
that in the vertical(y) direction, in which the force of gravity acts. The classic atomic mix model does not
account for this.

In addition to our numerical results, we present some preliminary results from a new and more
accurate theory that generalizes the atomic mix approximation for PBR-type problems, with the inclusion
of anisotropic behavior.

In Section 2 of this paper, we describe our numerical comparisons between the heterogeneous and
atomic mix PBR cores. In Section 3, we present the new theory for a general, 3-D problem. In Section 4, we
show that for the 2-D model presented here the new theory is more accurate than atomic mix. We conclude
with a brief discussion in Section 5.

2 THE 2-D “FLATLAND” PROBLEM AND NUMERICAL RESULTS

We define material1 as the background material (void) and material2 as the material of the fuel
discs (of radiusr). In this case, fori ∈ {1, 2} we have:

Σti = total cross section of materiali , (1a)

ci = scattering ratio of materiali . (1b)

In the following approach, we focus on the transport of the particles generated by a single fuel disc, since the
particles generated by different discs will have (on average) the same behavior. To minimize the statistical
error and obtain a general result we used the following procedure:
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Figure 1. Packing of discs in a 30X30 box

(a) A realization of the packed system is generated using the ballistic deposition model [1], adapted for the
2-D case (Fig. 1);

(b) A discD0 close to the center of this system is chosen as the one in which particles will be generated;

(c) A particleP is born randomly at a point insideD0, with a random (2-D) direction of flight. Using Monte
Carlo, we follow the history of the particleP and store all relevant information (such as distances travelled
between collisions, distance from birth point to point of “death”, etc.);

(d) We repeat step(c) for Np particles;

(e) We return to step(a) and repeat the procedure forNr different realizations of the system.

In the test problem presented here, we have a system of widthX = 200 cm and heightY = 200
cm, with vacuum as the background material (material 1) and fuel discs of radiusr = 0.5 cm (material
2), whose total cross section and scattering ratio are, respectively,Σt2 = 1.0 cm−1 andc2 = 0.99. The
scattering in material 2 is assumed to be isotropic. The quantities we are interested in analyzing are:

〈s〉 = mean distance to collision, (2a)

〈s2〉 = mean-squared distance to collision, (2b)

〈x2〉 = mean-squared horizontal distance to absorption (from point of birth), (2c)

〈y2〉 = mean-squared vertical distance to absorption (from point of birth), (2d)

〈ρ〉 = 〈
√
x2 + y2〉 = mean distance to absorption (from point of birth), (2e)

〈ρ2〉 = 〈x2 + y2〉 = mean-squared distance to absorption (from point of birth). (2f)
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In our numerical simulations, we constructedNr = 600 realizations of the system and generatedNp =
2, 000 particles histories for each realization. This yields a total of1, 200, 000 simulated particles (of which
only 57 ended up leaking out of the system). The average number of discs packed in each realization was
found to be 41,541, which gives an average packing fraction〈pack〉 ≈ 0.81566.

To obtain a theoretical prediction using the atomic mix model, we need the problem’s parameters
and the average packing fraction. With this information, we calculate

〈Σt〉 = volume-averaged total cross section= (1− 〈pack〉)Σt1 + 〈pack〉Σt2 (3a)

and

〈cΣt〉 = volume-averaged scattering cross section= (1− 〈pack〉)c1Σt1 + 〈pack〉c2Σt2 . (3b)

The atomic mix model assumes classical transport (in which the probability distribution function of the
distance travelled between collisions is an exponential). In this case,〈s〉 = 1/〈Σt〉 and〈s2〉1/2 =

√
2〈s〉.

The atomic mix equation [2] for this system with a point source at the origin is:

Ω ·∇〈ψ(x,Ω)〉+ 〈Σt〉〈ψ(x,Ω)〉 =
〈cΣt〉
2π

〈Φ(x)〉+
〈Q(x)〉

2π
δ(x)δ(y) , (4)

whereΩ = (cosϕ, sinϕ) and〈Φ(x)〉 =
∫ 2π
0 〈ψ(x,Ω)〉dϕ. Defining 〈Σa〉 = 〈Σt〉 − 〈cΣt〉, the classic

diffusion equation for Eq. (4) is

− 1
2〈Σt〉

∇2〈Φ(x)〉+ 〈Σa〉〈Φ(x)〉 = 〈Q(x)〉δ(x)δ(y) . (5)

(The factor 2 occurs in the diffusion coefficient because diffusion occurs only in a plane.)
To calculate the mean-squared distance of a particle from its birth point, we operate on Eq. (5) by∫∞

−∞
∫∞
−∞(x2 + y2)(·)dxdy and get explicitly:∫∞

−∞
∫∞
−∞(x2 + y2)〈Φ(x)〉dxdy∫∞
−∞

∫∞
−∞〈Φ(x)〉dxdy

= 〈ρ2〉 =
2

〈Σt〉〈Σa〉
; (6)

similarly we can get〈x2〉 = 〈y2〉 = 1/(〈Σt〉〈Σa〉). The relative statistical errors for the numerical results
(estimated using the Central Limit Theorem) and the relative errors of the atomic mix prediction compared
to the numerical results are shown in Table I. The number of particles simulated guarantees that the sta-
tistical errors are smaller than the difference between the atomic mix prediction and the numerical results.

Table I. Numerical Results and Predictions of the Atomic Mix Model

Numerical Atomic Statistical Error Relative Error (Compared
Results Mix (95% confidence) to Numerical Results)

〈s〉 1.22127 1.22601 0.01859% 0.38748%

〈s2〉1/2 1.74365 1.73383 0.02068% 0.56318%

〈ρ2〉1/2 17.42908 17.33835 0.15929% 0.52056%

〈x2〉1/2 12.29878 12.26006 0.20612% 0.31479%

〈y2〉1/2 12.34961 12.26006 0.20503% 0.72507%
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Figure 2. 〈ρ〉 and 〈ρ2〉1/2 at different angles

Another interesting trend is that〈x2〉1/2 is about0.42% smaller than〈y2〉1/2. This indicates a small ten-
dency of particles to travel further in the vertical direction than in the horizontal direction, which suggests
that transport in this system has a small anisotropic behavior. To investigate this, we calculated the values of
both〈ρ〉 and〈ρ2〉1/2 at different angular intervals formed with the vertical axis (each interval covering4.5◦).
In other words, we computed the mean and mean-squared distances to absorption (from point of birth) in
different directions. The differences between these results and those obtained for the near-vertical angles
(0 ≤ θ ≤ 4.5◦) are depicted in Fig. 2; it is clear that particles tend to travel further in the vertical direction

Figure 3. 〈s〉 and 〈s2〉1/2 at different angles
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than in the horizontal direction. This anisotropic trend in the transport can also be seen when we examine
〈s〉 and〈s2〉 in the same fashion; although the values of〈s〉 remain fairly close to each other at all angles, it
is clear that the same does not happen for〈s2〉 (see Fig. 3).

3 GENERALIZED TRANSPORT THEORY

Consider a cylindrical pebble core with radiusR and heightZ, composed of spherical pebbles
dropped into it in a “random” way. The gravitational force acting in thez-direction causes these pebbles
to become arranged in a certain manner. The underlying question is: will the neutron transport in thez
direction differ significantly from thex, y directions? To answer this question, we consider a transport
equation for a hypothetical system in which the distance between collisions is not exponentially distributed.

3.1 The Generalized Boltzmann Equation

For the problem we want to approach, the incremental probabilitydp that a particle at pointx with
energyE will experience an interaction while traveling an incremental distanceds in a directionΩ is given
by dp = Σt(x,Ω, E)ds. Here,Σt depends upon boths andΩ, since the locations of the scattering center
in the system are correlated in a way that depends on the direction of flightΩ. For simplicity, we do not
consider the most general problem here. We assume that:

• The physical system is infinite and statistically homogeneous.

• Particle transport is monoenergetic. (However, the inclusion of energy-dependence is straightfor-
ward.)

• Particle transport is driven by a known interior isotropic sourceQ(x) satisfyingQ→ 0 as|x| → ∞.

• Σt(Ω, s) is known.
• The distribution functionP (Ω ·Ω′) for scattering fromΩ′ to Ω is independent ofs. (The correlation

in the scattering center positions affects the distances to collision, but not the scattering properties
when a collision occurs.)

Using the notationx = (x, y, z) = position andΩ = (Ωx,Ωy,Ωz) = direction of flight (with|Ω| = 1), and
defining

s = the path length traveled by the particle since

its previous interaction (birth or scattering) , (7)

we make the necessary adjustments in the theory presented by Larsen in [3], and without difficulty we obtain
theGeneralized Boltzmann Equation:

∂ψ

∂s
(x,Ω, s) + Ω ·∇ψ(x,Ω, s) + Σt(Ω, s)ψ(x,Ω, s)

= δ(s) c
∫

4π

∫ ∞

0
P (Ω′ ·Ω)Σt(Ω′, s′)ψ(x,Ω′, s′) ds′dΩ′ + δ(s)

Q(x)
4π

. (8)

To repeat, we have for simplicity assumed an infinite homogeneous system with a “local” sourceQ(x); and
we takeψ(x,Ω, s) → 0 as|x| → ∞.

This equation can be written in a mathematically equivalent way, in which the delta function is not
present. We write Eq. (8) fors > 0:

∂ψ

∂s
(x,Ω, s) + Ω ·∇ψ(x,Ω, s) + Σt(Ω, s)ψ(x,Ω, s) = 0 . (9a)
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Then, we operate on Eq. (8) bylim
ε→0

∫ ε

−ε
(·) ds and useψ = 0 for s < 0 to obtain:

ψ(x,Ω, 0) = c

∫
4π

∫ ∞

0
P (Ω′ ·Ω)Σt(Ω′, s′)ψ(x,Ω′, s′) ds′dΩ′ +

Q(x)
4π

. (9b)

Eqs. (9) are mathematically equivalent to Eq. (8).

3.2 The Angular-dependent Path Length Distributions

Without loss of generality, let us consider a single particle, which is released from an interaction
site atx = 0 in the directionΩ = i = direction of the positivex-axis. Eq. (9a) for this particle becomes:

∂

∂s
ψ(x,Ω = i, s) +

∂

∂x
ψ(x,Ω = i, s) + Σt(Ω = i, s)ψ(x,Ω = i, s) = 0 . (10)

For this particle, we have

x(s) = s and ψ(x(s),Ω = i, s) ≡ F (Ω = i, s) . (11a)

Therefore,

dF

ds
(Ω = i, s) =

∂ψ

∂x
(x(s),Ω = i, s)

(
dx

ds

)
+
∂ψ

∂s
(x(s),Ω = i, s) =

∂ψ

∂x
+
∂ψ

∂s
. (11b)

Using this, Eq. (10) simplifies to:

dF

ds
(Ω = i, s) + Σt(Ω = i, s)F (Ω = i, s) = 0 . (12a)

We apply the initial condition

F (Ω = i, 0) = 1 , (12b)

because we are considering a single particle. The solution of Eqs. (12) is:

F (Ω = i, s) = e−
R s
0 Σt(Ω=i,s′) ds′

= the probability that the particle will travel the distance

s in the given directionΩ = i without interacting . (13)

Generalizing this equation for all directions, we obtain

F (Ω, s) = e−
R s
0 Σt(Ω,s′) ds′

= the probability that the particle will travel the distance

s in a given directionΩ without interacting . (14)

The probability of a collision betweens ands+ ds in a given directionΩ is:

Σt(Ω, s)F (Ω, s)ds = ps|Ω(s|Ω)ds , (15)

and therefore:

ps|Ω(s|Ω) = Σt(Ω, s)e−
R s
0 Σt(Ω,s′) ds′

= conditional distribution function for the distance-to-collision

in a given directionΩ .

(16)
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Let us also define

pΩ(Ω)dΩ = probability that a particle is traveling indΩ aboutΩ ; (17)

then

p(Ω, s)dΩds = (probability that a particle is traveling indΩ aboutΩ) × (probability

of a collision betweens ands+ ds in a given directionΩ)

= (pΩ(Ω)dΩ)(ps|Ω(s|Ω)ds) ; (18)

that is,p(Ω, s) is a joint distribution function.
From Eq. (16), the mean distance-to-collision (mean free path) in a given directionΩ is:

〈sΩ〉(Ω) =
∫ ∞

0
sps|Ω(s|Ω) ds

=
∫ ∞

0
s
[
Σt(Ω, s)e−

R s
0 Σt(Ω,s′)ds′

]
ds

= s
[
−e−

R s
0 Σt(Ω,s′)ds′

]∞
0
−

∫ ∞

0

[
−e−

R s
0 Σt(Ω,s′)ds′

]
ds

=
∫ ∞

0
e−

R s
0 Σt(Ω,s′)ds′

ds . (19)

Hence, by the Law of Total Expectation [4], the mean free path〈s〉 is given by

〈s〉 =
∫

4π

∫ ∞

0
sp(Ω, s)dsdΩ =

∫
4π
pΩ(Ω)〈sΩ〉(Ω)dΩ . (20)

Note: for the rest of this work we assume that〈sΩ〉(Ω) is an even function ofΩ. (From the physical point of
view, the mean free path of a particle traveling in the directionΩ must equal the mean free path of a particle
traveling in the direction−Ω.)

3.3 Asymptotic Diffusion Limit of the GBE

To begin this discussion, we must first consider the Legendre-polynomial expansion of the distrib-
ution functionP (Ω ·Ω′) = P (µ0):

P (µ0) =
∞∑

n=0

2n+ 1
4π

anPn(µ0) , (21)

wherea0 = 1 anda1 = µ0 = mean scattering cosine. We defineP ∗(µ0) by:

P ∗(µ0) = cP (µ0) +
1− c

4π
, (22)

which has the Legendre polynomial expansion:

P ∗(µ0) =
∞∑

n=0

2n+ 1
4π

a∗nPn(µ0) , (23a)

a∗n =

{
1 , n = 0
can , n ≥ 1

. (23b)
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Using the work in [5] as a guide, we scaleΣt = O(ε−1), 1− c = O(ε2),Q = O(ε), P ∗(µ0) is independent
of ε, and∂ψ/∂s = O(ε−1), with ε� 1. Eqs. (8) and (22) yield, in this scaling,

1
ε

∂ψ

∂s
(x,Ω, s) + Ω ·∇ψ(x,Ω, s) +

Σt(Ω, s)
ε

ψ(x,Ω, s)

= δ(s)
∫

4π

∫ ∞

0

[
P ∗(Ω ·Ω′)− ε2

1− c

4π

]
Σt(Ω′, s′)

ε
ψ(x,Ω′, s′) ds′dΩ′ + εδ(s)

Q(x)
4π

. (24)

Next, we define defineΨ(x,Ω, s) by:

ψ(x,Ω, s) ≡ Ψ(x,Ω, s)
e−

R s
0 Σt(Ω,s′)ds′

〈s〉
. (25)

Then, using Eq. (16), Eq. (24) forψ(x,Ω, s) becomes the following equation forΨ(x,Ω, s):

∂Ψ
∂s

(x,Ω, s) + εΩ ·∇Ψ(x,Ω, s)

= δ(s)
∫

4π

∫ ∞

0

[
P ∗(Ω ·Ω′)− ε2

1− c

4π

]
ps|Ω(s′|Ω′)Ψ(x,Ω′, s′) ds′dΩ′

+ ε2δ(s)〈s〉Q(x)
4π

. (26)

This equation is mathematically equivalent to:

∂Ψ
∂s

(x,Ω, s) + εΩ ·∇Ψ(x,Ω, s) = 0 , s > 0 , (27a)

Ψ(x,Ω, 0) =
∫

4π

[
P ∗(Ω ·Ω′)− ε2

1− c

4π

] ∫ ∞

0
ps|Ω(s′|Ω′)Ψ(x,Ω′, s′)ds′dΩ′

+ ε2〈s〉Q(x)
4π

. (27b)

Integrating Eq. (27a) over0 < s′ < s, we obtain:

Ψ(x,Ω, s) = Ψ(x,Ω, 0)− εΩ ·∇
∫ s

0
Ψ(x,Ω, s′) ds′

=
∫

4π

[
P ∗(Ω ·Ω′)− ε2

1− c

4π

] ∫ ∞

0
ps|Ω(s′|Ω′)Ψ(x,Ω′, s′)ds′dΩ′

+ ε2〈s〉Q(x)
4π

− εΩ ·∇
∫ s

0
Ψ(x,Ω, s′) ds′ . (28)

Introducing into this equation the ansatz

Ψ(x,Ω, s) =
∞∑

n=0

εnΨ(n)(x,Ω, s) (29)

and equating the coefficients of different powers ofε, we obtain forn ≥ 0:

Ψ(n)(x,Ω, s) =
∫

4π
P ∗(Ω ·Ω′)

∫ ∞

0
ps|Ω(s′|Ω′)Ψ(n)(x,Ω′, s′)ds′dΩ′

−Ω ·∇
∫ s

0
Ψ(n−1)(x,Ω, s′) ds′

− 1− c

4π

∫
4π

∫ ∞

0
ps|Ω(s′|Ω′)Ψ(n−2)(x,Ω′, s′)ds′dΩ′

+ δn,2〈s〉
Q(x)
4π

. (30)
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We now solve these equations recursively, first forn = 0, thenn = 1, etc. In doing this, we use the Legendre
polynomial expansion (23) ofP ∗(µ0).

Eq. (30) withn = 0 is:

Ψ(0)(x,Ω, s) =
∫

4π
P ∗(Ω ·Ω′)

∫ ∞

0
ps|Ω(s′|Ω′)Ψ(0)(x,Ω′, s′)ds′dΩ′ . (31)

The general solution of this equation is:

Ψ(0)(x,Ω, s) =
Φ(0)(x)

4π
, (32)

whereΦ(0)(x) is, at this point, undetermined.
Next, Eq. (30) withn = 1 is:

Ψ(1)(x,Ω, s) =
∫

4π
P ∗(Ω ·Ω′)

∫ ∞

0
ps|Ω(s′|Ω′)Ψ(1)(x,Ω′, s′)ds′dΩ′ − sΩ ·∇Φ(0)(x)

4π
. (33)

If P ∗(Ω · Ω′) is even (as is the case with isotropic scattering) this equation can easily be shown to have a
particular solution of the form:

Ψ(1)
part(x,Ω, s) = −sΩ ·∇Φ(0)(x)

4π
. (34)

Hence, the general solution of Eq. (33) is:

Ψ(1)(x,Ω, s) =
Φ(1)(x)

4π
− sΩ ·∇Φ(0)(x)

4π
, (35)

whereΦ(1)(x) is undetermined.
We now consider Eq. (30) withn = 2. This equation has a solvability condition, which is obtained

by operating by
∫
4π

∫∞
0 ps|Ω(s|Ω)(·)dsdΩ. Using Eqs. (35) and (32) to obtain:∫ s

0
Ψ(1)(x,Ω, s′) ds′ = s

Φ(1)(x)
4π

− s2

2
Ω ·∇Φ(0)(x)

4π
, (36a)

and: ∫
4π

∫ ∞

0
ps|Ω(s′|Ω′)Ψ(0)(x,Ω′, s′) ds′dΩ′ = Φ(0)(x) , (36b)

the solvability condition becomes:

0 =
1
4π

∫
4π

∫ ∞

0
ps|Ω(s|Ω)

s2

2
(Ω · ∇)2Φ(0)(x) dsdΩ

− (1− c)
4π

∫
4π

∫ ∞

0
ps|Ω(s|Ω)Φ(0)(x) dsdΩ + 〈s〉Q(x) . (37a)

Thus

0 =
1

2〈s〉
1
4π

∫
4π
〈s2Ω〉(Ω)(Ω · ∇)2Φ(0)(x) dΩ− (1− c)

〈s〉
Φ(0)(x) +Q(x) . (37b)
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Evaluating the angular integrals and rearranging, we obtain the following anisotropic diffusion equation for
Φ(0)(x):

−Dx
d2

dx2
Φ(0)(x)− Dy

d2

dy2
Φ(0)(x)− Dz

d2

dz2
Φ(0)(x) +

1− c

〈s〉
Φ(0)(x) = Q(x), (38)

where

Dx =
1

2〈s〉

(
1
4π

∫
4π
〈s2Ω〉(Ω)Ω2

xdΩ
)
, (39a)

Dy =
1

2〈s〉

(
1
4π

∫
4π
〈s2Ω〉(Ω)Ω2

ydΩ
)
, (39b)

Dz =
1

2〈s〉

(
1
4π

∫
4π
〈s2Ω〉(Ω)Ω2

zdΩ
)
. (39c)

To summarize: ifP ∗(Ω ·Ω′) is even, the solutionψ(x,Ω, s) of Eq. (24) satisfies:

ψ(x,Ω, s) =
Φ(0)(x)

4π
e−

R s
0 Σt(Ω,s′)ds′

〈s〉
+O(ε) , (40)

whereΦ(0)(x) satisfies Eq. (38). Also, integrating Eq. (40) over0 < s < ∞ andΩ ∈ 4π, and using
equation (19), we obtain to leading order:∫

4π
ψ(x,Ω) dΩ = Φ(0)(x)

1
4π〈s〉

∫
4π
〈sΩ〉(Ω)dΩ , (41)

whereψ(x,Ω) is the classic angular flux.
It is easy to show that ifs andΩ are independent random variables, then Dx = Dy = Dz and Eq.

(38) reduces to the result obtained in [3]. From there, one can show that if the pathlength distribution is
exponential, Eq. (38) reduces to the classic diffusion equation, as it must.

4 GENERALIZED TRANSPORT THEORY: 2-D CASE

For the “Flatland” 2-D case, Eq. (38) becomes

−Dx
d2

dx2
Φ(0)(x)− Dy

d2

dy2
Φ(0)(x) +

1− c

〈s〉
Φ(0)(x) = Q(x), (42)

where

Dx =
1

2〈s〉

(
1
2π

∫ 2π

0
〈s2Ω〉(Ω) cos2(ϕ)dϕ

)
, (43a)

Dy =
1

2〈s〉

(
1
2π

∫ 2π

0
〈s2Ω〉(Ω) sin2(ϕ)dϕ

)
. (43b)

The same manipulation described in Section 2 applied to Eq. (42) yields:

〈ρ2〉 =
2

Σa
(Dx + Dy), (44a)

〈x2〉 = 2
Dx

Σa
, (44b)

〈y2〉 = 2
Dy

Σa
. (44c)

International Conference on Mathematics, Computational Methods & Reactor Physics (M&C 2009)
Saratoga Springs, New York, May 3-7, 2009, on CD-ROM, American Nuclear Society, LaGrange Park, IL (2009)

11/13



R. Vasques and E. W. Larsen

Table II. Prediction of the Non-classical Model with Angular Dependence

Theoretical Relative Error
Predictions (Compared to Numerical Results)

Numerical Atomic New Atomic New
Results Mix Theory Mix Theory

〈ρ2〉1/2 17.42908 17.33835 17.43655 0.52056% 0.04286%

〈x2〉1/2 12.29878 12.26006 12.31386 0.31479% 0.12258%

〈y2〉1/2 12.34961 12.26006 12.34513 0.72507% 0.03630%

Using the experimentally-obtained values for〈s2〉 in Table I (and doing a Riemann sum to calculate the
diffusion coefficients), Eqs. (44) generate predictions for〈x2〉 and〈y2〉 that reflect the anisotropic behavior
we expect, as can be seen in Table II.

We note that the new angular-dependent theory produces (i) an estimate of〈ρ2〉1/2 that is more than
one order of magnitude more accurate than the atomic mix estimate, and (ii) estimates of〈x2〉1/2 and〈y2〉1/2

that are significantly more accurate than the atomic mix estimates. These results indicate that by including
angle-dependence in the probability distribution function for distance to collision, the generalized transport
theory can accurately estimate even small anisotropic effects in neutron distributions.

5 CONCLUSIONS

The modeling of neutron transport in random media has been limited to a few special techniques,
such as the atomic mix approximation and the Levermore-Pomraning model, which is known to be inaccu-
rate when applied to diffusive problems [2]. This paper shows that, at least for the kind of problem treated
here, the generalized transport theory yields more accurate results than atomic mix, and it accurately predicts
anisotropic diffusion in this kind of system.

Finally, we acknowledge that even though the 2-D problem considered above exhibits only small
deviations from the atomic mix model and small anisotropic effects, we expect that both of these these
features will be greater for 3-D problems. If correct, this will increase the importance of a mathematical
model that is capable of describing these features. We have two main reasons for this expectation:

• (i) The packing fraction in 3-D tends to be about 0.14 smaller than in the 2-D case, meaning that the
void percentage of the system is larger in the 3-D case;

Figure 4. Horizontal void corridors in a layer of spheres in a 3-D system
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• (ii) While “void corridors” in the 2-D case are in general smaller than the diameter of a disc in both
horizontal and vertical directions, the same will not be true in the 3-D case. In fact, the horizontal
directions of spherical packing will have numerous “void corridors”, with lengths larger than that of
a sphere diameterd (Fig. 4). Due to the effect of gravity, these corridors will generally not be bigger
thand in the vertical direction. Previous results showing anisotropic distributions in 3-D packings
obtained by a similar method [1] seem to confirm this expectation.
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