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ABSTRACT

A multiple length-scale asymptotic analysis shows that 1-D diffusive heterogeneous-media transport
problems are accurately modeled by the atomic mix approximation when the optical widths of the
“chunks” of different materials are O(1). (The atomic mix approximation is commonly known to be
valid only when the chunks of different materials are optically thin.) The analysis also shows that for the
same class of problems, the Standard, or Levermore-Pomraning (LP) model does not have the correct
asymptotic behavior. Numerical results are given that validate the theoretical predictions.
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1. INTRODUCTION

The atomic mix approximation is a simple, classic, and widely-used model for particle transport in a
heterogeneous physical system consisting of two or more materials in which the “chunks” of the various
materials are optically thin [1,2]. This approximation consists of replacing, in the transport equation, the
spatially-variable cross sections by their volume-averages. Dumas and Golse [2] have recently proved that
the atomic mix approximation is an asymptotic limit of the particle transport equation as the chunk widths
limit to zero. This is precisely the limit in which the atomic mix approximation is commonly understood to
be valid.

The diffusion approximation is an altogether different classic model, for particle transport in a physical
system in which absorption and sources are weak and the solution varies slowly over the distance of a mean
free path. The diffusion equation has long been known to be an asymptotic limit of the transport equation
[3-5].

In this paper, we consider 1-D transport problems that combine features of both of these asymptotic
limits. In particular, we assume that:

1. The physical system is heterogeneous, consisting of chunks of two materials. It is not necessary to
know the locations of the boundaries of the chunks, but it is necessary to know the cross sections for
each material and the volume fractions of the two materials in the system. Unlike the conventional
atomic mix approximation, the chunks are not required to be optically thin; they can be on the order
of a mean free path in thickness (or smaller).



2. The physical system is optically thick, and at each spatial point, absorption and sources are weak. In
a global sense, the system is diffusive.

3. These two assumptions imply that the number of material chunks in the system is large. The structure
of the system (in terms of the location of the chunks) can be either random or not-random (e.g.,
periodic).

In this paper, we show that for the above 1-D diffusive atomic mix problems, the solution of the particle
transport equation is well-approximated by the solution of the atomic mix diffusion equation. [This is the
conventional diffusion equation, whose coefficients are based on the atomic mix (volume-averaged) cross
sections.] In effect, the diffusive atomic mix limit considered in this paper is one in which the asymptotic
diffusion and atomic mix approximations are both applied – except that the material chunks are not required
to be optically thin. To our knowledge, this is the first demonstration that the atomic mix approximation is
valid for a class of problems in which the material chunks are not optically thin. A preliminary version of
this work was recently published [6]. In the present paper, we provide more analytic details, and we give
numerical results that confirm our theoretical predictions.

We also in this paper consider the Standard or Levermore-Pomraning (LP) approximation [1,7-10] in
the diffusive atomic mix limit. The LP equations are a well-known generalization of the atomic mix approx-
imation to systems in which the chunk widths are not optically thin. The LP model is known to be accurate
for problems with (i) weak scattering, and (ii) a Markovian distribution of chord lengths across material
chunks. However, numerical experiments have indicated that the LP model is inaccurate for diffusive sys-
tems [10]. In this paper, we show that in the diffusive atomic mix limit, the LP model reduces to a diffusion
equation with an incorrect diffusion coefficient. This theoretically explains the inaccuracies observed in LP
simulations for diffusive problems.

Finally, we include in this paper computational results that validate our theoretical predictions. These
simulations demonstrate that for transport problems in the diffusive atomic mix limit, (i) the solution of the
transport equation limits to the solution of the atomic mix diffusion equation, and (ii) the solution of the LP
equations limit to the solution of a physically incorrect (but theoretically-predicted) diffusion equation. In
all cases, the numerical results closely agree with the predictions of the asymptotic theory.

The remainder of this paper is organized as follows. In Sec. 2 we present the asymptotic theory for the
transport equation, and in Sec. 3 we apply a similar asymptotic theory to the LP equations. In Sec. 4 we
present numerical results that confirm the theoretical predictions. We conclude with a brief discussion in
Sec. 5.

2. ASYMPTOTIC ANALYSIS OF THE TRANSPORT EQUATION

We consider the following 1-D transport problem, with vacuum boundaries, and space-dependent cross
sections and source:

µ
∂Ψ
∂x

(x, µ) + Σt(x)Ψ(x, µ) =
Σs(x)

2

∫ 1

−1
Ψ(x, µ′)dµ′ +

Q(x)
2

,

− X ≤ x ≤ X , −1 ≤ µ ≤ 1 , (2.1a)

Ψ(−X, µ) = 0 , 0 < µ ≤ 1 , (2.1b)

Ψ(X, µ) = 0 , −1 ≤ µ < 0 . (2.1c)

The physical system −X ≤ x ≤ X consists of layers (chunks) of distinct materials. We assume:

1. The widths of the layers are comparable to (or small compared to) a mean free path.
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2. The spatial variable x is scaled so that a typical chunk width and a typical mean free path are O(1).
[Thus, Σt = O(1).]

3. The system is optically thick. Thus, the dimensionless parameter

ε ≡ typical width of a chunk
width of the system

=
1

number of chunks
(2.2a)

is small, and

2X = the system width = O

(
1
ε

)
. (2.2b)

4. At all spatial points, absorption is weak. We express this by writing the absorption cross section as

Σt(x) − Σs(x) = Σa(x) = ε2σa(x) , (2.3)

where σa(x) = O(1).

5. For convenience, the source is scaled so that the infinite-medium solution is O(1). We express this by
writing

Q(x) = ε2q(x) , (2.4)

where q(x) = O(1).

6. The flux depends on two spatial variables: the fast spatial variable x, which describes “rapid” varia-
tions on the order of a mean free path or a chunk width, and a new slow spatial variable

z = εx , (2.5)

which describes slowly-varying spatial variations in the flux over the O(1/ε) optical width of the
system. We express this assumption by writing

Ψ(x, µ) = ψ(x, z, µ) , (2.6a)

which implies:

∂Ψ
∂x

(x, µ) =
∂ψ

∂x
(x, z, µ) + ε

∂ψ

∂z
(x, z, µ) . (2.6b)

Introducing Eqs. (2.3)-(2.6) into Eq. (2.1a), we obtain the following scaled transport equation:

µ
∂ψ

∂x
(x, z, µ) + εµ

∂ψ

∂z
(x, z, µ) + Σt(x)ψ(x, z, µ)

=
Σt(x) − ε2σa(x)

2

∫ 1

−1
ψ(x, z, µ′)dµ′ + ε2 q(x)

2
. (2.7)

To asymptotically solve this equation, we assume the ansatz:

ψ(x, z, µ) =
∞∑

n=0

εnψn(x, z, µ) , (2.8)
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in which ε � 1, and x and z are treated as independent variables. Introducing Eq. (2.8) into Eq. (2.7) and
equating the coefficients of different powers of ε, we obtain for n ≥ 0:

µ
∂ψn

∂x
(x, z, µ) + Σt(x)

[
ψn(x, z, µ) − 1

2

∫ 1

−1
ψn(x, z, µ′)dµ′

]
= −µ

∂ψn−1

∂z
(x, z, µ) − σa(z)

2

∫ 1

−1
ψn−2(x, z, µ′)dµ′ + δn,2

q(x)
2

, (2.9)

where ψ−1 = ψ−2 = 0. These equations are solved first for n = 0, then n = 1, etc.
The n = 0 equation,

µ
∂ψ0

∂x
(x, z, µ) + Σt(x)

[
ψ0(x, z, µ) − 1

2

∫ 1

−1
ψ0(x, z, µ′)dµ′

]
= 0 , (2.10)

is a purely-scattering transport equation. It has the following isotropic, bounded solution:

ψ0(x, z, µ) =
1
2
φ0(z) , (2.11)

where ψ0(z) is undetermined.
Eq. (2.9) for n = 1 becomes:

µ
∂ψ1

∂x
(x, z, µ) + Σt(x)

[
ψ1(x, z, µ) − 1

2

∫ 1

−1
ψ1(x, z, µ′)dµ′

]
= −µ

2
dφ0

dz
(z) . (2.12)

A particular solution of Eq. (2.12) is linear in µ:

ψ1,part(x, z, µ) = ψ10(x, z) + µψ11(z) . (2.13)

Introducing Eq. (2.13) into Eq. (2.12) and equating the coefficients of µn for n = 0 and 1, we obtain two
equations for ψ10 and ψ11. These equations quickly yield the following particular solution:

ψ1,part(x, z, µ) = −1
2

(
g(x) +

µ

Σt

)
dφ0

dz
(z) , (2.14a)

where

g(x) =
∫ x

−X

(
1 − Σt(x′)

Σt

)
dx′ , (2.14b)

and

Σt =
1

2X

∫ X

−X
Σt(x′)dx′ = volume-averaged total cross section . (2.14c)

The general solution of Eq. (2.12) is then:

ψ1(x, z, µ) =
1
2
φ1(z) − 1

2

(
g(x) +

µ

Σt

)
dφ0

dz
(z) , (2.15)

where φ1(z) is undetermined.
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Next, Eq. (2.9) for n = 2 becomes:

µ
∂ψ2

∂x
(x, z, µ) + Σt(x)

[
ψ2(x, z, µ) − 1

2

∫ 1

−1
ψ2(x, z, µ′)dµ′

]
.

= −µ
∂

∂z

[
1
2
φ1(z) − 1

2

(
g(x) +

µ

Σt

)
dφ0

dz
(z)

]
− σa(x)

2
φ0(z) +

q(x)
2

. (2.16)

For a bounded solution of this equation to exist, the right side must satisfy a solvability condition, obtained
by operating on Eq. (2.16) by 1

2X

∫ X
−X

∫ 1
−1(·)dµdx. We obtain

1
2X

[∫ 1

−1
µψ2(X, z, µ)dµ −

∫ 1

−1
µψ2(−X, z, µ)dµ

]
=

1
3Σt

d2φ0

dz2
(z) − σaφ0(z) + q , (2.17a)

where

σa =
1

2X

∫ X

−X
σa(x)dx = volume-averaged absorption cross section , (2.17b)

q =
1

2X

∫ X

−X
q(x)dx = volume-averaged interior source . (2.17c)

The right side of Eq. (2.17a) is O(1). However, the left side is O(ε) because X = O(1/ε). To ensure that
Eq. (2.17a) is satisfied, we set the right side equal to zero, yielding:

− 1
3Σt

d2

dz2
φ0(z) + σaφ0(z) = q . (2.18)

Finally, we return to the original (unstretched) variables. Multiplying Eq. (2.18) by ε2 and using:

ε2σa = p1ε
2σa1 + p2ε

2σa2 = p1Σa1 + p2Σa2 = Σa , (2.19a)

ε2q = p1ε
2q1 + p2ε

2q2 = p1Q1 + p2Q2 = Q , (2.19b)

Φ0(x) = φ0(εx) = φ0(z) , (2.19c)

we obtain:

− 1
3Σt

d2

dx2
Φ0(x) + ΣaΦ0(x) = Q , −X < x < X . (2.20)

Eq. (2.20) is the leading-order asymptotic limit of Eq. (2.7) as ε → 0; it is also the conventional dif-
fusion equation, with volume-averaged (atomic mix) cross sections. If the diffusion approximation were
applied to the atomic mix transport equation that approximates Eq. (2.1), Eq. (2.20) would result. Thus, Eq.
(2.20) contains the simplifications to Eq. (2.1) that come from both the atomic mix and diffusion approxima-
tions. We repeat that the above derivation shows that Eq. (2.20) is valid for problems in which optical widths
of the material chunks are O(1); for such problems, the atomic mix approximation has not previously been
known to be valid.

Our asymptotic analysis does not yield boundary conditions for Eq. (2.20) that approximate the vacuum
boundary conditions (2.1b) and (2.1c). In our numerical simulations, we used the extrapolated endpoint
boundary conditions, taking the extrapolation distance to be twice the diffusion coefficient:

Φ0

(
X +

2
3Σt

)
= Φ0

(
−X − 2

3Σt

)
= 0 . (2.21)

These boundary conditions are heuristic, but we show that when used with Eq. (2.20), they very accurately
predict the solution of Eqs. (2.1) in the diffusive atomic mix limit.

American Nuclear Society Topical Meeting in Mathematics & Computations, Avignon, France, 2005 5/13



3. ASYMPTOTIC ANALYSIS OF THE LP EQUATIONS

To state the LP approximation to Eqs. (2.1), we must specify additional information [1,7-9]. For con-
venience, we assume that the system is binary, consisting of alternating chunks of two materials, labeled 1
and 2. The cross sections and source for material i (i = 1 or 2) are labeled Σi and Qi. Also, we specify:

λi = the mean width of the chunks of material i , (3.1a)

pi =
λi

λ1 + λ2
= the volume fraction of material i . (3.1b)

Then, the LP approximation to Eqs. (2.1) is:

µ
∂Ψi

∂x
(x, µ) + ΣtiΨi(x, µ) =

Σsi

2

∫ 1

−1
Ψi(x, µ′)dµ′ + |µ|

(
Ψj(x, µ)

λj
− Ψi(x, µ)

λi

)
+

piQi

2
, −X < x < X , −1 ≤ µ ≤ 1 , (3.2a)

Ψi(−X, µ) = 0 , 0 < µ ≤ 1 , (3.2b)

Ψi(X, µ) = 0 , −1 ≤ µ < 0 . (3.2c)

In these equations, i = 1 or 2 and j = 2 or 1, with j �= i. [Thus, each of Eqs. (3.2) is really two equations.]
After Eqs. (3.2) are solved, the LP estimate of < Ψ >, the mean angular flux – ensemble-averaged over all
physical realizations – is:

< Ψ > (x, µ) = Ψ1(x, µ) + Ψ2(x, µ) . (3.2d)

The LP equations (3.2) are a simplification of Eqs. (2.1) because the cross sections in Eqs. (3.2a) are inde-
pendent of x.

To analyze Eqs. (3.2) in the same asymptotic limit just applied to Eqs. (2.1), we take:

Σti = O(1) , λi = O(1) , (3.3a)

Σai = Σti − Σsi = ε2σai , Qi = ε2qi , (3.3b)

z = εx , X = O(1/ε) , (3.3c)

Ψi(x, µ) = ψi(z, µ) . (3.3d)

As before, the widths of the chunks are assumed to be comparable to a mean free path, x is scaled so that a
chunk width and a mean free path are O(1), absorption and sources are small [O(ε2)], and – since there is
no fast spatial variation in Eqs. (3.2) – the flux depends only on the slow spatial variable z and the angular
variable µ. In his book [1], Pomraning considers an asymptotic diffusion approximation of Eqs. (3.2) in
which the material chunks are optically thick. That asymptotic limit is fundamentally different from the
asymptotic limit considered here. (Also, Pomraning does not apply a corresponding asymptotic limit to the
original transport equation, so it is not known whether his result is physically correct.)

Introducing Eqs. (3.3) into (3.2), we obtain the scaled LP equations:

εµ
∂ψi

∂z
(z, µ) + Σtiψi(z, µ) =

Σti − ε2σai

2

∫ 1

−1
ψi(z, µ′)dµ′

+ |µ|
(

ψj(z, µ)
λj

− ψi(z, µ)
λi

)
+ ε2 piqi

2
. (3.4)
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As before, we solve these equations by assuming the ansatz

ψi(z, µ) =
∞∑

n=0

εnψi,n(z, µ) . (3.5)

Introducing Eqs. (3.5) into (3.4) and equating the coefficients of different powers of ε, we obtain for n ≥ 0,

Σti

[
ψi,n(z, µ) − 1

2

∫ 1

−1
ψi,n(z, µ′)dµ′

]
+ |µ|

(
ψi,n(z, µ)

λi
− ψj,n(z, µ)

λj

)
= −µ

∂ψi,n−1

∂z
(z, µ) − σai

2

∫ 1

−1
ψi,n−2(z, µ′)dµ′ + δn,2

piqi

2
, (3.6)

where ψi,−1 = ψi,−2 = 0. Eqs. (3.6) can be solved recursively, first for n = 0, then n = 1, etc. The
algebraic details are straightforward, so for brevity we will only state the important results here.

Eqs. (3.6) with n = 0 have only an isotropic solution of the form:

ψi,0(z, µ) =
pi

2
φ0(z) , (3.7)

where φ0(z) is undetermined.
Eqs. (3.6) with n = 1 have a solvability condition, which is automatically satisfied. The general

solution of the n = 1 equations is:

ψi,1(z, µ) =
pi

2

[
φ1(z) − µfi(|µ|)

dφ0

dz
(z)

]
, (3.8)

where φ1(z) is undetermined and:

fi(|µ|) =
λ1λ2Σtj + (λ1 + λ2)|µ|

λ1λ2Σt1Σt2 + (λ1Σt1 + λ2Σt2)|µ|
. (3.9)

Eqs. (3.6) with n = 2 have a solvability condition, which is not automatically satisfied. To obtain this
condition, we (i) integrate Eqs. (3.6) with n = 2 over −1 ≤ µ ≤ 1, and (ii) add the resulting two equations.
This gives:

0 = − d

dz

∫ 1

−1
µ [ψ1,1(z, µ) + ψ2,1(z, µ)] dµ

−
∫ 1

−1
[σa1ψ1,0(z, µ) + σa2ψ2,0(z, µ)] dµ

+ (p1q1 + p2q2) . (3.10)

Introducing Eqs. (3.7) and (3.8) into Eq. (3.10) and simplifying, we obtain the following diffusion equation
for φ0:

− γ

3Σt

d2φ0

dz2
(z) + σaφ0(z) = q , (3.11)

where

σa = p1σa1 + p2σa2 , (3.12a)

q = p1q1 + p2q2 , (3.12b)

γ =
∫ 1

0
3µ2

(
µ + α

µ + β

)
dµ , (3.12c)

α = p2
1λ2Σt2 + p2

2λ1Σt1 , (3.12d)

β =
[
(λ1Σt1)

−1 + (λ2Σt2)
−1

]−1
. (3.12e)
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Next, we return to the original (unscaled) variables. Multiplying Eq. (3.11) by ε2 and using Eqs. (2.19), we
obtain:

− γ

3Σt

d2Φ0

dx2
(x) + ΣaΦ0(x) = Q , −X < x < X . (3.13)

Finally, Eqs. (3.2d), (3.3d), (3.5), (3.7), (3.1b), and (2.19) give:

Φ(x) =
∫ 1

−1
Ψ(x, µ)dµ

=
∫ 1

−1
[Ψ1(x, µ) + Ψ2(x, µ)] dµ

=
∫ 1

−1
[ψ1(z, µ) + ψ2(z, µ)] dµ

= p1φ0(z) + p2φ0(z) + O(ε)
= φ0(z) + O(ε)
= Φ0(x) + O(ε) . (3.14)

Thus, Eq. (3.13) is the leading-order asymptotic limit of Eq. (3.4) as ε → 0, and the unknown Φ0(x) in this
equation is the leading-order estimate of the scalar flux.

Our asymptotic analysis does not yield “vacuum” boundary conditions for Eq. (3.13). In our numerical
simulations, we used the extrapolated endpoint boundary conditions, as before taking the extrapolation
distance to be twice the diffusion coefficient:

Φ0

(
X +

2γ

3Σt

)
= Φ0

(
−X − 2γ

3Σt

)
= 0 . (3.15)

These boundary conditions are heuristic, but we show that when used with Eq. (3.13), they very accurately
predict the solution of Eqs. (3.2) in the diffusive atomic mix limit.

We note that because of the presence of the constant γ, Eq. (3.13) is not the correct atomic mix diffusion
equation. In fact, the easily-obtained identity

α − β =
(

λ1λ2

λ1 + λ2

)2 (Σt2 − Σt1)2

λ1Σt1 + λ2Σt2
(3.16)

shows that if Σt2 �= Σt1, then α > β, and hence by Eq. (3.12c), γ > 1. In this case, for any choice of λ1 and
λ2, the diffusion coefficient in Eq. (3.13) is unphysically large. This has the effect of incorrectly “flattening”
the solution of Eq. (3.13) in comparison to the correct atomic mix diffusion solution. Eq. (3.16) also shows
that as λi → 0, α → β, so γ → 1. Thus, if the chunk widths become small, the LP diffusion solution does
correctly limit to the atomic mix diffusion result.

4. NUMERICAL RESULTS

To test the predictions of the asymptotic analysis, we first consider Eq. (2.1) for spatially periodic
systems consisting of M cells, each of width � = �1 + �2, defined by:

Σt(x) =

{
Σt1 0 < x < �1

Σt2 �1 < x < �
,
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Σa(x) =

{
σa1
M2 0 < x < �1

σa2
M2 �1 < x < �

, (4.1a)

Q(x) =

{
q1

M2 0 < x < �1
q2

M2 �1 < x < �
. (4.1b)

These functions are extended periodically across the full system −X ≤ x ≤ X = M�/2, and vacuum
boundary conditions are assigned at the outer boundaries x = ±X . [Here, Σtn, σan, and qn are O(1)
constants; M >> 1, and ε = 1/M .] For each M , the atomic mix approximation to Eq. (2.1a) contains the
following volume-averaged cross sections and source:

Σt =
Σt1�1 + Σt2�2

�
, Σa =

σa1�1 + σa2�2

M2�
, Q =

q1�1 + q2�2

M2�
, (4.2)

and the system half-width is again X = M�/2.
We specifically consider problems of the above form with M = 10, 20, and 40, and:

n �n Σtn σan qn

1 3.0 1.0 0.1 0.2
2 3.0 0.0 0.0 0.0

In these problems, the spatial cells are 3.0 mean free paths thick; they are not optically thin. Also, material
1 is highly-scattering and material 2 is a void. [Material 2 being a void does not violate any of our physical
assumptions, it corresponds to well-known physical applications (e.g. pebble-bed reactors cores), and it
leads to significant discrepancies in the LP predictions.]

Our numerical results, plotted in Figure 1, were generated using the LTSN method [11] to solve the
heterogeneous-medium transport Eq. (2.1), the atomic mix approximation to Eq. (2.1), and the LP approxi-
mation (3.2). These simulations produced, respectively, the Exact Scalar Flux, the Atomic Mix Scalar Flux,
and the Exact LP Scalar Flux plotted in the figure. The Atomic Mix Diffusion Scalar Flux and LP Diffusion
Scalar Flux, also plotted in the figure, were obtained by analytically solving Eqs. (2.20) and (2.21), and
(3.13) and (3.15).

The three plots in Figure 1, corresponding to ε = 1/M = 0.1, 0.05, and 0.025, show that the exact
scalar flux, the atomic mix scalar flux, and the atomic mix diffusion scalar flux increasingly agree as M
increases (ε decreases). Also, the exact LP scalar flux significantly disagrees with these results in a way that
is accurately predicted by the theory.

We have also considered “random” versions of the above “periodic” problems. In the “random” prob-
lems, all of the parameters defined above (including the width of the systems) are still used – except that the
widths of the individual material chunks are sampled from an exponential distribution with the mean values
�1 and �2 specified above. Thus, the systems have specified widths but are no longer periodic; they consist of
many layers of random thicknesses. (The LP approximation was developed to model precisely this type of
problem.) To simulate these random systems, for each M we generated 10,000 different realizations, solved
Eqs. (2.1) for each realization, and averaged the scalar fluxes to obtain the ensemble-averaged scalar fluxes.
The results are plotted in Figure 2. As in Figure 1, these plots show that: (i) the Ensemble-Averaged Scalar
Flux, the Atomic Mix Scalar Flux, and the Atomic Mix Diffusion Scalar Flux agree, and (ii) the Exact LP
Scalar Flux has a systematic error that is accurately predicted by the asymptotic theory.
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Figure 1: The “Periodic” Problem: M=10 (Top), M=20 (Middle), and M = 40 (Bottom)
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Figure 2: The “Random” Problem: M=10 (Top), M=20 (Middle), and M = 40 (Bottom)
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5. DISCUSSION

The asymptotic analysis developed in this paper shows that under certain diffusive conditions, the
atomic mix approximation to the transport equation is valid for 1-D heterogeneous-medium problems in
which the individual layers (“chunks”) of materials are not optically thin. Specifically: the physical system
should (i) have weak absorption and sources, (ii) be optically thick, and (iii) consist of a large number of
material layers, whose thicknesses are comparable to (or small compared to) a mean free path. It is not
necessary that the system be highly-scattering at all points; void regions are permitted. A related asymptotic
analysis, applied to the LP equations, shows that the LP model deviates from the correct (atomic mix diffu-
sion) result in a way that is confirmed by our numerical results. This provides a theoretical explanation for
the previously-observed inaccuracies in the LP model for diffusive problems.

The asymptotic limit considered in this paper is one for which the leading-order flux depends only
on “volume-averaged” data; fluctuations from this result are small. Therefore, the analysis applies to ei-
ther (i) a specific problem, in which the detailed space-dependence of the cross sections is known, or (ii)
a “random” problem, in which only volume-averaged cross sections are known, and an estimate of the
ensemble-averaged flux is desired. In both cases, the fluctuation from the atomic mix diffusion prediction
is small. It is possible that the asymptotic analysis can be generalized, in ways that would require minimal
extra geometrical information, to provide useful bounds on these small fluctuations.

Also, the results developed in this paper can be extended to multidimensional problems, but the rel-
atively simple “diffusive atomic mix” result derived here no longer generally holds. For example, 3-D
transport in the 1-D physical systems treated in this paper leads to an anisotropic diffusion equation of the
form

− 1
3Σt

∂2

∂x2
Φ0(x, y, z) − D⊥

(
∂2

∂y2
+

∂2

∂z2

)
Φ0(x, y, z) + ΣaΦ0(x, y, z) = Q , (5.1)

where D⊥ �= 1/3Σt. The diffusion coefficient in the y and z-directions differs from the diffusion coefficient
in the x-direction because the spatial heterogeneities are correlated: if a point at depth x = x0 is in material
i, then all points (x0, y, z) at the same depth are also in material i. For more general 3-D problems, any
spatial correlations of the cross sections can also lead to anisotropic diffusion.

In future work, we hope to extend the asymptotic analysis developed in this paper to these and other
more realistic problems. In addition, this asymptotic analysis provides a theoretical tool for examining
future generalizations of the LP model, which might – for example – be aimed at correcting the deficiency
described above.
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