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Abstract.In this work we report the state of art of particle transport theory in stochastic media,
discussing in detail the derivation of the atomic mix and the Levermore-Pomraning models. We
consider time independent stochastic transport in a randomly mixed binary medium. A Monte
Carlo procedure is used to generate a physical realization of the statistics, and for this realiza-
tion we numerically solve the transport equation, using the LTSN formulation. The ensemble-
averaged solution, as well as the standard deviation, is obtained by averaging a large number
of such calculations. Then, we compare this solution with those obtained for the atomic mix
and the Levermore-Pomraning models.
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1. INTRODUCTION

The description of linear particle transport and radiative transfer in a stochastic medium
consisting of two randomly immiscible materials has been an important recent problem in trans-
port theory. If we write the transport equation as

1

v

∂ψ

∂t
(r, E, Ω, t) + Ω · ∇ψ(r, E, Ω, t) + Σt(r, E, t)ψ(r, E, Ω, t) =

=

∫ ∞

0

∫

4π

Σs(r, E
′ → E, Ω′ · Ω, t)ψ(r, E ′, Ω′, t)dΩ′dE ′ + Q(r, E, Ω, t),

(1)

the goal has been to develop a formalism to describe the ensemble-averaged solution to this
equation, whenΣt, Σs andQ are binary discrete random variables. Here,ψ(r, E, Ω, t) is the
angular flux, withr, Ω, andt representing the spatial, angular, and time coordinates, andE
representing the particle’s energy;v is the particle speed;Σt(r, E, t) is the total cross section;
Σs(r, E

′ → E, Ω′ · Ω, t) is the scattering kernel (such thatΣs(r, E, t) is the scattering cross
section); andQ(r, E, Ω, t) represents an internal source of particles. Further, assuming that the
system of interest is nonreentrant (convex) and characterized by a volumeV , and that the range
of interest in the time variable is0 ≤ t < ∞, Eq. (1) is subject to the boundary and initial
conditions

ψ(rs, E, Ω, t) = Γ(rs, E, Ω, t) n · Ω < 0, (2)

ψ(r, E, Ω, 0) = α(r, E, Ω), (3)

whereΓ andα are specified functions,rs is a point on the surface, andn is a unit outward
normal vector at this point.

Historically, this problem has been solved through a widely-used approximate homogeniza-
tion technique known asAtomic Mix, which is valid when the system’s spatial heterogeneities
occur on a length scale which is small compared to a typical mean free path. The term atomic
mix applies to mixtures of two or more materials in which the “chunks” of the materials are so
small that we can assume mixing at the atomic level. Its derivation can be intuitively done, since
this assumption leads us to think of a homogeneous material with physical parameters given by
the average of each component material properties.

Bearing in mind the limitation of this assumption, a formulation of a particle transport
formalism in binary random media arised in the mid-1980’s, providing the foundations for the
so-called Levermore-Pomraning method. The first derivations of the Levermore-Pomraning
method (Levermore et al., 1986; Pomraning, 1986) considered time independent transport in
a purely absorbing medium. In this case, an exact solution was obtained for the ensemble-
averaged angular flux. However, this derivation becomes algebraically too cumbersome to lead
to useful results when the scattering interaction is involved (Pomraning, 1991). In fact, in
scattering problems, the task of reducing this exact expression to an useable one is exceedingly
complex.

Later, it was shown (Vanderhaegen, 1986) that the use of Chapman-Kolmogorov equations
(Parzan, 1962; Pomraning, 1991) provides a master equation for the joint probability density
(Frisch, 1968; Morrison, 1972; Van Kampen, 1981). This treatment was extended by a master
equation approach to analyze the general transport equation, including time dependence and
scattering.

In this work, we discuss still another derivation of this model, using the idea of the stochas-
tic balance, introduced by Adams et al. (1989). Here, however, the details of the derivation are



done in a different way, in such manner that the reader may find it more illuminating in terms
of the physics of the problem.

We outline this paper as follows: in section 2, we briefly present the physical problem, and
derive the atomic mix equation for the case of nonscattering transport, which can be readily
extended to the general case. At the end of the section we remark that, despite its simplicity,
the atomic mix model shows itself very innacurate when its basic assumption is not satisfied.
In section 3, we derive the Levermore-Pomraning equations using the stochastic balance idea,
reporting in detail all the derivation steps as well as underlying physical assumptions. In section
4, we consider time independent stochastic transport (including scattering) in a layered planar
geometry, under the assumption of homogeneous Markov mixing statistics for the two compo-
nents of the random medium. We generate a physical realization of the statistics using a Monte
Carlo procedure, and numerically solve the corresponding transport equation. We repeat this
process a large number of times and average the results. The physical problem we consider
is the transmission-reflection problem for a finite system without internal sources. We report
the ensemble-averaged probabilities of reflection and transmission, as well as their respective
standard deviations, for different choices ofΣt, Σs and slab thickness. Then, we compare the
predictions of the atomic mix and Levermore-Pomraning models with these results.

2. THE ATOMIC MIX MODEL

Let us consider neutron transport in a heterogeneous volumeV such that the boundary
∂V of V is specified, but the interior structure ofV is unknown. Specifically, we restrict our
attention to the case in whichV consists of two random immiscible materials denoted by an
index i, with i = 1, 2. We can actually imagineV as a heterogeneous volume consisting of
randomly distributed chunks of random sizes and shapes of material 1 imbedded in material
2. If we consider a particle traversing the mixture along a random path, it will pass through
alternating segments of these two materials, as we can see in Fig. 1.

Figure 1: Particle traversing the mixture along a random path

The quantitiesΣt, Σs andQ are considered as discrete random variables. That is, in theith
material, these elements are denoted byΣti(r, E, t), Σsi(r, E

′ → E, Ω′ ·Ω, t), andQi(r, E, Ω, t).
Thus, the stochasticity of the problem is due to the fact that we only have a probabilistic idea
about which material ocuppies the space pointr at a timet. Since we considerΣt, Σs andQ
as random variables, we must also consider the angular fluxψ as a random variable. Therefore,
we want to find an expression for

〈
ψ

〉
, the ensemble-averaged angular flux, i.e., the expected



value ofψ.
For convenience, let us consider the case of transport in a nonscattering medium. Thinking

aboutΩ · ∇ in Eq. (1) as a directional derivative, and usingΣt = Σs + Σa, whereΣa is the
absorption cross section, we can rewrite this equation as

1

v

∂ψ(s, t)

∂t
+

∂ψ(s, t)

∂s
+ Σa(s, t)ψ(s, t) = Q(s, t), (4)

wheres denotes the spatial variable in the directionΩ. One must notice that Eq. (4) describes
particle transport at each energyE and directionΩ, which are omitted since they are only
parameters. We also consider the boundary condition

ψ(0, t) = Γ(0, t), (5)

and the initial condition

ψ(s, 0) = α(s). (6)

We denote
〈
W

〉
as the ensemble average of any random variableW , and defineW̃ as the

deviation ofW from
〈
W

〉
. Then

〈
W̃

〉
= 0, andW =

〈
W

〉
+ W̃ . Using this notation, we

ensemble-average equations (4) through (6) to obtain

1

v

∂
〈
ψ

〉

∂t
+

∂
〈
ψ

〉

∂s
+

〈
Σa

〉〈
ψ

〉
+

〈
Σ̃aψ̃

〉
=

〈
Q

〉
, (7)

〈
ψ(0, t)

〉
=

〈
Γ(0, t)

〉
= Γ(0, t), (8)

〈
ψ(s, 0)

〉
=

〈
α(s)

〉
= α(s). (9)

The values of
〈
Σa

〉
and

〈
Q

〉
in this equation are defined in terms of the properties of materials

1 and 2. Definingpi(s, t) as the probability of presence of the materiali at positions at timet,
such that

p1(s, t) + p2(s, t) = 1, (10)

we can write
〈
Σa(s, t)

〉
= p1(s, t)Σa1(s, t) + p2(s, t)Σa2(s, t), (11)

〈
Q(s, t)

〉
= p1(s, t)Q1(s, t) + p2(s, t)Q2(s, t), (12)

Now, let us define the characteristic chord length for the chunks of the materiali asΛi.
Assuming that

ΣtiΛi ¿ 1, i = 1, 2, (13)

then a particle, between collisions, is likely to travel a distance that spans many different chunks
of materials 1 and 2. SinceΣti = λ−1

i (whereλi is the mean free path of materiali), Eq. (13)
means thatΛi is very small when compared withλi. On physical grounds, this assumption
appropriately describes vanishingly small chunks in the mixture, which can be understood as
if the two components of the system were mixed at the atomic level. In the present case we
haveΣti = Σai, and therefore it is clear that the cross correlation term

〈
Σ̃aψ̃

〉
in Eq. (7) can be

neglected when Eq. (13) is valid. Thus, Eq. (7) becomes

1

v

∂
〈
ψ

〉

∂t
+

∂
〈
ψ

〉

∂s
+

〈
Σa

〉〈
ψ

〉
=

〈
Q

〉
, (14)



which is closed for the ensemble-averaged angular flux
〈
ψ

〉
. This equation represents the

atomic mix description of Eq. (4) (nonscattering media).
Applying the same arguments above on equations (1) through (3), the atomic mix descrip-

tion of stochastic transport, including scattering, is given by

1

v

∂
〈
ψ(r, E, Ω, t)

〉

∂t
+ Ω · ∇〈

ψ(r, E, Ω, t)
〉

+
〈
Σt(r, E, t)

〉〈
ψ(r, E, Ω, t)

〉
=

=

∫ ∞

0

∫

4π

〈
Σs(r, E

′ → E, Ω′ · Ω, t)
〉〈

ψ(r, E ′, Ω′, t)
〉
dΩ′dE ′ +

〈
Q(r, E, Ω, t)

〉
,

(15)

with
〈
ψ(rs, E, Ω, t)

〉
= Γ(rs, E, Ω, t), n · Ω < 0, (16)

〈
ψ(r, E, Ω, 0)

〉
= α(r, E, Ω). (17)

Here, for any random variableW we have
〈
W

〉
= p1(r, t)W1 + p2(r, t)W2, (18)

and the neglected cross correlation terms are
〈
Σ̃tψ̃

〉
and

〈
Σ̃sψ̃

〉
.

REMARK:

Atomic mix is a very appealing model because of its simplicity. Since the cross correlation
terms are neglected, this model leads to a description that essentialy does not deal with stochas-
tic effects. Assuming that the statistics of mixing is known, the problem of solving Eq. (15) is
not different of the one we face to solve Eq. (1). However, when Eq. (13) is not satisfied, the
atomic mix description is generally inaccurate. Although there exist specified classes of prob-
lems in which atomic mix is shown to be accurate even when the chunk sizes are not optically
small (Larsen, 2003), in general it fails quite badly in these situations. As an example, consider
time independent transport in a nonscattering medium without internal sources, given by

∂ψ(s)

∂s
+ Σa(s)ψ(s) = 0, (19)

with the boundary condition

ψ(0) = Γ0, (20)

where (0 ≤ s < ∞). Following Pomraning (1991), let material 1 be composed of optically
thin packets such thatΣa1Λ1 ¿ 1. Then, define material 2 as very sparse optically thick
chunks imbedded on material 1, in such way thatΣa2Λ2 À 1 andp2(s) ¿ 1. Here,Λi is
the characteristic chord length of materiali andp2 is the probability of finding material 2 at
positions. The physical description is that of a near vacuum where sparse absorbing packets
of (essentialy) infinite thickness can be found. Particles travelling through this mixture tend to
pass through it without undergoing an interaction, at least on the average, as can be seen from
Fig. 2. On the other hand, if we write the atomic mix description of equations (19) and (20)
neglecting the cross correlation term

〈
Σ̃aψ̃

〉
:

∂
〈
ψ

〉

∂s
+

〈
Σa

〉〈
ψ

〉
= 0, (21)



Figure 2: Particle travelling through a near void with sparse chunks

〈
ψ(0)

〉
=

〈
Γ0

〉
= Γ0, (22)

we will conclude that
〈
ψ

〉
will be exponentially attenuated, with a scale length1/

〈
Σa

〉
, and it

is clear that
〈
Σa

〉
is very large, sinceΣa2 is very large. Therefore, this modelling will lead to

essentialy no transmission through the system. In general, the cross correlation term neglecting
will always underestimate particle transmission.

3. THE LEVERMORE-POMRANING METHOD

We will now present a derivation of the Levermore-Pomraning equations, restricting our
considerations to time independent statistics (i.e., the configuration of materials 1 and 2 in any
given physical realization of the mixing statistics is static). Further, the statistics is taken to
be homogeneous, by which we mean that all points in the system have the same statistical
properties. In this case, the probability of finding materiali at pointr is given by

pi(r) =
Λi

Λ1 + Λ2

, (23)

where, again,Λi is the characteristic chord length for the chunks of materiali.
For notation simplicity, let us consider the transport equation with an isotropic internal

source, and let us assume that the scattering process is both coherent and isotropic. Thus, we
have

1

v

∂ψ(r, Ω, t)

∂t
+ Ω · ∇ψ(r, Ω, t) + Σtψ(r, Ω, t) =

Σs

4π

∫

4π

ψ(r, Ω′, t)dΩ′ +
Q(r, t)

4π
, (24)

and we define boundary and initial conditions

ψ(rs, Ω, t) = Γ(rs, Ω, t), n · Ω < 0 (25)

ψ(r, Ω, 0) = α(r, Ω), (26)

wherers is a point on the surface of the system andn is a unit outward normal vector atrs.
Now, we introduce the characteristic functions

χi(r) =

{
1, if r is in materiali
0, if r is in materialj 6= i

. (27)



The basic issue is that we do not know the functionsχ1(r) andχ2(r), but we know that they
satisfy

χ1(r) + χ2(r) = 1. (28)

Multiplying Eq. (24) byχi(r), and using:

χi

(
Ω · ∇ψ

)
= Ω · ∇(χiψ)− ψ(Ω · ∇χi), (29)

χiΣt = Σtiχi, (30)

χiΣs = Σsiχi, (31)

χiQ = Qiχi, (32)

we find, fori = 1, 2,

1

v

∂(χiψ)

∂t
+Ω ·∇(χiψ)+Σti(χiψ) =

Σsi

4π

∫

4π

χiψ(r, Ω′, t)dΩ′+
Qiχi

4π
+ψ(Ω ·∇χi). (33)

The next step is to ensemble average this result over all statistical realizations. We obviously
have the ensemble-averaged characteristic function given by

〈
χi(r)

〉
= pi(r), (34)

and therefore we define

ψi(r, Ω, t) =

〈
χi(r)ψ(r, Ω, t)

〉
〈
χi(r)

〉 , (35)

whereψi is the ensemble average ofψ(r, Ω, t) over all physical realizations such thatr is in
materiali. Hence, Eq. (33) becomes

1

v

∂(piψi)

∂t
+Ω·∇(piψi)+Σti(piψi) =

Σsi

4π

∫

4π

piψi(r, Ω
′, t)dΩ′+

piQi

4π
+

〈
ψ(Ω·∇χi)

〉
. (36)

Further, using Eq. (28) and equations (34) and (35), we deduce that
〈
ψ(r, Ω, t)

〉
= p1(r)ψ1(r, Ω, t) + p2(r)ψ2(r, Ω, t), (37)

which is the overall ensemble average of the angular flux as defined earlier. Boundary and
initial conditions forψi(r, Ω, t) are obtained by multiplying equations (25) and (26) byχi(r)
and ensemble-averaging them:

ψi(rs, Ω, t) = Γ(rs, Ω, t), n · Ω < 0, (38)

ψi(r, Ω, 0) = α(r, Ω). (39)

Now, to obtain a closed system of equations and boundary conditions forψ1 andψ2, it is
necessary to evaluate the term

〈
fi(r, Ω, t)

〉
=

〈
ψ(r, Ω, t)[Ω · ∇χi(r)]

〉
on the right hand side of

Eq. (36). To do this, we consider the average value offi(r, Ω, t) over a volumeV , and take the
limit asV approaches zero:

〈
fi(r, Ω, t)

〉
= lim

V→0

〈
ψ(r, Ω, t)

(
1

V

∫

V

Ω · ∇χi(r)dr

)〉
. (40)



The ensemble-average in Eq. (40) is over all realizations. However, for a given realization, we
have

∫
V

Ω · ∇χi(r)dr 6= 0 only if there is an interface between materials 1 and 2 intersecting
V . Therefore, we write

〈
ψ(r, Ω, t)

(
1

V

∫

V

Ω · ∇χi(r)dr

)〉
= P ∗

〈
ψ(r, Ω, t)

(
1

V

∫

V

Ω · ∇χi(r)dr

)〉∗
, (41)

whereP ∗ is the probability that a realization has an interface that intersectsV , and
〈 · 〉∗ is a

restricted average, defined to be an ensemble average over all realizations having an interface
that intersectsV .

Now, we considerV to be a sphere of radiusε centered atr. Assuming that there exists
an interface intersecting this sphere, forε small enough we can regard this interface as a plane
with normal vectorni pointing out of regioni. If we chose thez-axis perpendicular to this
planar interface as shown in Fig. 3, then the intersection of the interface with the sphere is a

Figure 3: Intersection of the interface with the sphereV

disc of radiusdε =
√

ε2 − z2
0 , given by the intersection of the planez = z0 with the sphere,

andni = êz. In this coordinate system,∇χ(r) = −niδ(z − z0); thus

1

V

∫

V

Ω · ∇χi(r)dr =
3

4πε3

∫

V

(−Ω · ni)δ(z − z0)dxdydz =

=
3

4πε3
(−Ω · ni)πd2

ε =
3

4ε3
(−Ω · ni)d

2
ε,

(42)

and Eq. (40) becomes

〈
fi(r, Ω, t)

〉
= lim

ε→0

[
− 3

4ε3
P ∗

〈
(Ω · ni)ψ(r, Ω, t)d2

ε

〉∗]
. (43)

Let us define
〈 · 〉∗

Ω·ni>0
to be the ensemble average over all realizations such that an interface

intersectsV andΩ points out of materiali. Then, sinceni = −nj,



〈
(Ω · ni)ψ(r, Ω, t)d2

ε

〉∗
=

=

〈
(Ω · ni)ψ(r, Ω, t)d2

ε

〉∗

Ω·ni>0

+

〈
(Ω · ni)ψ(r, Ω, t)d2

ε

〉∗

Ω·ni<0

=

〈
(Ω · ni)ψ(r, Ω, t)d2

ε

〉∗

Ω·ni>0

−
〈

(Ω · nj)ψ(r, Ω, t)d2
ε

〉∗

Ω·nj>0

,

(44)

and defining

Ψε
i =

〈
(Ω · ni)ψ(r, Ω, t)d2

ε

〉∗
Ω·ni>0〈

(Ω · ni)d2
ε

〉∗
Ω·ni>0

(45)

we can rewrite Eq. (43) as

〈
fi(r, Ω, t)

〉
= lim

ε→0

[
3

4ε3
P ∗

(
Ψε

j

〈
(Ω · nj)d

2
ε

〉∗
Ω·nj>0

−Ψε
i

〈
(Ω · ni)d

2
ε

〉∗
Ω·ni>0

)]
. (46)

The geometrical quantities
〈
(Ω · ni)d

2
ε

〉∗
Ω·ni>0

in Eq. (46) are equal fori = 1, 2, and can be
explicitly evaluated if we assume:

1) the pointsz0 in Fig. 3 to be uniformly distributed on−ε < z0 < ε;
2) the normal vectors of interfaces passing throughV to be uniformly

distributed on the unit sphere.

Then, usingΩ · ni = µ andd2
ε = ε2 − z2

0 , we obtain fori = 1 and2

〈
(Ω · ni)d

2
ε

〉∗
Ω·ni>0

=
〈
µ(ε2 − z2

0)
〉∗

µ>0

=

∫ 1

0

(
1

2ε

∫ ε

−ε

µ(ε2 − z2
0)dz0

)
dµ

=
ε2

3
.

(47)

Introducing this result into Eq. (46), we get

〈
fi(r, Ω, t)

〉
= lim

ε→0

[
3

4ε3

ε2

3
P ∗

(
Ψε

j −Ψε
i

)]
= lim

ε→0

[
1

4ε
P ∗

(
Ψε

j −Ψε
i

)]
. (48)

Further, it is possible to calculateP ∗. To do this, let us consider an arbitrary infinite line through
the pointr, and let us assume that the interfaces all intersect the line perpendicularly. Then, it
can be seen from Fig. 4 that an interface intersectsV only if the pointr lies within a distance
ε of an interface. This creates a line segment of width2ε about each interface, such that ifr is
in one of these segments, then an interface intersectsV . Over a very large length of this line,
spanning n chunks of materiali and n chunks of materialj, we have

(2n)(2ε) = 4nε

=

(
the length of the line segments such that ifr lies on
one of these segments, then an interface intersectsV

)
,

(49)



Figure 4: Arbitrary infinite line intersecting interfaces perpendicularly

and

n(Λ1 + Λ2) ≈ (total length of the line). (50)

The ratio of equations (49) and (50) isP ∗, that is,

P ∗ =
4ε

Λ1 + Λ2

, (51)

and one can easily see that this expression has the right qualitative behavior. It correctly limits
to zero asε → 0, and asΛ1, Λ2 →∞.

Introducing Eq. (51) into Eq. (48), we obtain

〈
fi(r, Ω, t)

〉
= lim

ε→0

[
1

4ε

(
4ε

Λ1 + Λ2

)(
Ψε

j −Ψε
i

)]
= lim

ε→0

[
1

Λ1 + Λ2

(
Ψε

j −Ψε
i

)]
. (52)

Finally, definingΨi = lim
ε→0

Ψε
i and using Eq. (23), we have

〈
fi(r, Ω, t)

〉
=

1

Λ1 + Λ2

(
Ψj −Ψi

)

=
pjΨj

Λj

− piΨi

Λi

,

(53)

and this result is the Levermore-Pomraning expression for
〈
fi

〉
. Combining Eq. (36) with Eq.

(53), we obtain

1

v

∂(piψi)

∂t
+Ω·∇(piψi)+Σti(piψi) =

Σsi

4π

∫

4π

piψi(r, Ω
′, t)dΩ′+

piQi

4π
+

pjΨj

Λj

−piΨi

Λi

. (54)

Unfortunately, this result consists of two equations with four unknown functions, namelyψ1,
ψ2, Ψ1 and Ψ2; thus, a closure is needed to make this formalism useful. No simple exact
relationship seems to exist relatingψi (the ensemble average ofψ over all physical realizations
such thatr is in materiali) andΨi (the ensemble average ofψ at interface points for which
Ω · ni > 0). Nevertheless, in analogy with upwind differencing encountered in the numerical
analysis of hyperbolic equations, we approximateΨi simply replacing it withψi. This is the
“classic” Levermore-Pomraning closure, and using it we rewrite Eq. (54) as

1

v

∂(piψi)

∂t
+Ω·∇(piψi)+Σti(piψi) =

Σsi

4π

∫

4π

piψi(r, Ω
′, t)dΩ′+

piQi

4π
+

pjψj

Λj

−piψi

Λi

, (55)

and the general case (general scattering, arbitrary source) is straightforwardly given by

1

v

∂(piψi)

∂t
+ Ω · ∇(piψi) + (Σai + Si)(piψi) = piQi +

pjψj

Λj

− piψi

Λi

, (56)



whereSi is the scattering operator defined by

Siψi = Σsiψi −
∫ ∞

0

∫

4π

Σsi(r, E
′ → E, Ω′ · Ω, t)ψi(r, E

′, Ω′, t)dΩ′dE ′. (57)

The coupled equations (i = 1, 2) given by Eq. (56) are known as the “classic” Levermore-
Pomraning equations. As a remark, we mention that the atomic mix model can be deduced
from the Levermore-Pomraning equations through the use of asymptotic limits (Pomraning,
1991).

These considerations can be easily extended to nonstatic physical realizations of the mix-
ing. In this case, the characteristic functions will also depend upon the time variable, and a new
term will appear on the right-hand side of Eq. (33), namely

ψ

v

∂χi(r, t)

∂t
. (58)

Treating this term in analogy with the way we treated
〈
fi

〉
in the present derivation, one should

obtain another pair of Levermore-Pomraning equations, with extra terms representing the time
stochasticity.

Finally, it is important to notice that, in general, the assumption that the interfaces all
intersect an arbitrary line perpendicularly (Fig. 4) cannot be true. Although it leads to the
“classic” Levermore-Pomraning equation, we get a different result when this assumption is not
made. We hope to contemplate this issue in future work, in order to improve the present model.

4. NUMERICAL RESULTS

We consider time independent transport in planar geometry without internal sources. In
this case, assuming isotropic and coherent scattering, Eq. (1) is written

µ
∂ψ(z, µ)

∂z
+ Σt(z)ψ(z, µ) =

Σs(z)

2

∫ 1

−1

ψ(z, µ′)dµ′, (59)

whereµ is the cosine of the angle between thez-axis and the particle’s direction of travel.
We take Eq. (59) to hold on the interval0 ≤ z ≤ Z, and we consider an isotropic intensity,
normalized to a unit incoming flux, incident upon the planar system atz = 0; and no intensity
incident upon the system atz = Z. This corresponds to the boundary conditions

{
ψ(0, µ) = 2, µ > 0

ψ(Z, µ) = 0, µ < 0
. (60)

In analogy with the previous discussion, we take this system to be statistically composed
of alternating slabs of two materials, such that each material has spatially independent cross
sectionsΣt andΣs. The statistics of this situation is assumed to be a homogeneous Markov
process, which implies (Pomraning, 1991) that the thickness of each slab of materiali is chosen
at random from an exponential distribution given by

fi(ξ) = Λ−1
i e−ξ/Λi . (61)

Here,fi(ξ)dξ is the probability of a segment of materiali having a length lying betweenξ and
ξ + dξ, andΛi is the mean slab thickness of materiali, such that

Λi =

∫ ∞

0

ξfi(ξ)dξ. (62)



At any point in this system, the probabilitypi of finding materiali is given by Eq. (23). To obtain
ensemble-averaged results for this transport problem, we first generate a physical realization of
the statistics using a Monte Carlo procedure, and for this realization we solve the corresponding
transport problem. We used the LTSN formulation for a multi-region slab (Segatto et al., 2001)
to obtain this solution, withN = 50.

To obtain a physical realization, we first choose the material present atz = 0 statistically
according to the probabilitiespi. Then, we sample from Eq. (61) for the value ofi so determined
to establish the length of the first segment of this material, with its left-hand boundary atz = 0.
We next sample from Eq. (61) with the other material index to determine the length of the next
segment. We then sample from Eq. (61) with the original indexi to determine the length of the
third segment. We continue this process until the entire interval0 ≤ z ≤ Z is populated with
alternating segments of the two materials.

We computed the probabilities of reflectionR and transmissionT for the system, as given
by

R =

∫ 1

0

µψ(0,−µ)dµ, T =

∫ 1

0

µψ(Z, µ)dµ. (63)

The probability of absorptionA follows from particle conservation, such thatA = 1−R + T .
Repeating this process for a large number of physical realizations, ensemble-averaged re-

sults for the reflection and transmission follow from simple numerical averages, such that

〈
R

〉
=

1

K

K∑

k=1

Rk,
〈
T

〉
=

1

K

K∑

k=1

Tk. (64)

Here, the indexk denotes a particular realization of the statistics, andK represents the number
of realizations computed. Also, one can calculate the standard deviationσ of these results
according to

σ2(R) =

∣∣∣∣
〈
R

〉2 − 1

K

K∑

k=1

R2
k

∣∣∣∣, σ2(T ) =

∣∣∣∣
〈
T

〉2 − 1

K

K∑

k=1

T 2
k

∣∣∣∣, (65)

which gives an indication of the spread of the results about the means.
We have used this procedure to obtain results for four different sets ofΣti, Σsi andΛi.

These results are given in Tables 1-4 in the “Exact” columns. We also provide in these columns,
between parenthesis, the number of realizations computed. It is important to notice that, differ-
ent from the other cases whereK was chosen to be105, we choseK = 104 in Tables 1 and 3 for
the slab thicknessZ = 1.0. We did this for cpu time reasons, and we believe that the sampling
error we get is approximately the same we would obtain if we choseK = 105, since in these
cases each physical realization contains an average of ten regions of each material.

The predictions of the atomic mix and the Levermore-Pomraning models are also displayed
in Tables 1-4, numerically calculated using the LTSN formulation (Segatto et al., 1999; Segatto
et al., 2001), withN = 50. For the problem under consideration, the atomic mix equations (15)
and (16) are written

µ
∂
〈
ψ

〉

∂z
+

〈
Σt

〉〈
ψ

〉
=

〈
Σs

〉

2

∫ 1

−1

〈
ψ(z, µ′)

〉
dµ′, (66)

{〈
ψ(0, µ)

〉
= 2, µ > 0〈

ψ(Z, µ)
〉

= 0, µ < 0
, (67)



Table 1: Reflection and transmission results
Λ1 = 0.1 Σt1 = 0.1 Σs1 = 0.0 Σt1Λ1 = 0.01
Λ2 = 0.01 Σt2 = 2.5 Σs2 = 2.5 Σt2Λ2 = 0.025

Exact Atomic Levermore : Exact Atomic Levermore
Z = 0.1 (105) Mix Pomraning : Z = 1.0 (104) Mix Pomraning

:
< R > 0.0199 0.0209 0.0198 : < R > 0.1314 0.1346 0.1308
σ(R) 0.0245 * * : σ(R) 0.0479 * *

< T > 0.9626 0.9616 0.9627 : < T > 0.7119 0.7077 0.7124
σ(T ) 0.0222 * * : σ(T ) 0.0419 * *

:
Time (s) 5581.3 0.28 0.33 : Time (s) 77702.2 0.01 0.11

Table 2: Reflection and transmission results
Λ1 = 10.0 Σt1 = 0.1 Σs1 = 0.0 Σt1Λ1 = 1.0
Λ2 = 1.0 Σt2 = 2.5 Σs2 = 2.5 Σt2Λ2 = 2.5

Exact Atomic Levermore : Exact Atomic Levermore
Z = 0.1 (105) Mix Pomraning : Z = 1.0 (105) Mix Pomraning

:
< R > 0.0166 0.0209 0.0165 : < R > 0.0737 0.1346 0.0694
σ(R) 0.0512 * * : σ(R) 0.1798 * *

< T > 0.9659 0.9616 0.9661 : < T > 0.7738 0.7077 0.7778
σ(T ) 0.0457 * * : σ(T ) 0.1400 * *

:
Time (s) 292.7 0.05 0.17 : Time (s) 503.7 0.05 0.16

where
〈
Σt

〉
,
〈
Σs

〉
and

〈
ψ

〉
are given in analogy with Eq. (18). Also, the Levermore-Pomraning

equations (56) and (38) are written

µ
∂ψi(z, µ)

∂z
+ Σtiψi(z, µ) =

Σsi

2

∫ 1

−1

ψi(z, µ
′)dµ′ +

|µ|
Λi

[
ψj(z, µ)− ψi(z, µ)

]
, (68)

{
ψi(0, µ) = 2, µ > 0,

ψi(Z, µ) = 0, µ < 0,
, (69)

and the ensemble-averaged solution
〈
ψ

〉
is given according to Eq. (37). Here, it is important

to explain the term|µ|/Λi in Eq. (68). If the mean slab thickness of materiali is Λi, then the
mean chord length seen by a particle traveling at an angle characterized by its cosineµ is just
Λi/|µ|. That is, the mean chord length through materiali is angularly dependent, which leads
to this form of Eq. (68).

All numerical calculations were performed on a Pentium III 1.0 GHz; the cpu times are
displayed (in seconds) at the bottom of Tables 1-4. Our goal in presenting these results is to
compare the atomic mix and the Levermore-Pomraning models, and to test their accuracy.

As expected, the atomic mix model presents itself better whenZ = 0.1. We can see from
Tables 1 and 3 that its results are quite accurate when the productΣtiΛi approaches zero. In
fact, examining its relative error given by

Relative Error (%)= 100
|Exact− Atomic Mix|

Exact
, (70)

we will find it to be smaller than7% in these Tables.



Table 3: Reflection and transmission results
Λ1 = 0.1 Σt1 = 0.1 Σs1 = 0.1 Σt1Λ1 = 0.01
Λ2 = 0.01 Σt2 = 2.5 Σs2 = 0.0 Σt2Λ2 = 0.025

Exact Atomic Levermore : Exact Atomic Levermore
Z = 0.1 (105) Mix Pomraning : Z = 1.0 (104) Mix Pomraning

:
< R > 0.0084 0.0081 0.0083 : < R > 0.0487 0.0453 0.0476
σ(R) 0.0017 * * : σ(R) 0.0116 * *

< T > 0.9512 0.9489 0.9513 : < T > 0.6353 0.6247 0.6342
σ(T ) 0.0480 * * : σ(T ) 0.0927 * *

:
Time (s) 5113.1 0.01 0.12 : Time (s) 71299.3 0.01 0.11

Table 4: Reflection and transmission results
Λ1 = 10.0 Σt1 = 0.1 Σs1 = 0.1 Σt1Λ1 = 1.0
Λ2 = 1.0 Σt2 = 2.5 Σs2 = 0.0 Σt2Λ2 = 2.5

Exact Atomic Levermore : Exact Atomic Levermore
Z = 0.1 (105) Mix Pomraning : Z = 1.0 (105) Mix Pomraning

:
< R > 0.0089 0.0081 0.0089 : < R > 0.0740 0.0453 0.0727
σ(R) 0.0028 * * : σ(R) 0.0255 * *

< T > 0.9591 0.9489 0.9592 : < T > 0.7994 0.6247 0.7997
σ(T ) 0.0970 * * : σ(T ) 0.2712 * *

:
Time (s) 296.1 0.01 0.11 : Time (s) 497.3 0.06 0.11

However, we see that increasing the values ofΛ1 andΛ2 by the same factor, the atomic mix
results remain unchanged and the accuracy of the model deteriorates. This is not unexpected,
since in this case the productsΣtiΛi do not satisfy Eq. (13). Indeed, its relative error reaches
82% in Table 2 and38% in Table 4.

On the other hand, the Levermore-Pomraning model maintain a reasonable order of accu-
racy when the values ofΛi increase. Its relative error, calculated in analogy with Eq. (70), is
smaller than6% in all Tables. It is also important to point out that, as observed by Adams et
al. (1989), the Levermore-Pomraning model in general underestimate the ensemble-averaged
reflection probability

〈
R

〉
, and overestimate the ensemble-averaged transmission probability〈

T
〉
.
Analysing the results reported here, we underline the relevance of developing error esti-

mates for both models presented in this paper. To our knowledge, there are few papers where
this subject is considered. We focus our future attention in this direction.
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