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Abstract.In this work we report the state of art of particle transport theory in stochastic media,
discussing in detail the derivation of the atomic mix and the Levermore-Pomraning models. We
consider time independent stochastic transport in a randomly mixed binary medium. A Monte
Carlo procedure is used to generate a physical realization of the statistics, and for this realiza-
tion we numerically solve the transport equation, using thejT@mulation. The ensemble-
averaged solution, as well as the standard deviation, is obtained by averaging a large number
of such calculations. Then, we compare this solution with those obtained for the atomic mix
and the Levermore-Pomraning models.
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1. INTRODUCTION

The description of linear particle transport and radiative transfer in a stochastic medium
consisting of two randomly immiscible materials has been an important recent problem in trans-
port theory. If we write the transport equation as

L0 B Q)+ Q- Vo, B, Q1) + S, B D)0, B, Q1) =
v Ot (1)

:/ /ES(T,E’—>E,Q’-Q,t)w(r,E’,Q’,t)dQ’dE’+Q(r,E,Q,t),
0 4

the goal has been to develop a formalism to describe the ensemble-averaged solution to this
equation, whert;, >, and( are binary discrete random variables. Hepér, F, Q) t) is the
angular flux, withr, 2, andt representing the spatial, angular, and time coordinates,Fand
representing the particle’s energyis the particle speed;,(r, E/, t) is the total cross section;

Ys(r, ' — E Q- Qt) is the scattering kernel (such thaf(r, F,t) is the scattering cross
section); and)(r, F, (), t) represents an internal source of particles. Further, assuming that the
system of interest is nonreentrant (convex) and characterized by a vblyaral that the range

of interest in the time variable i < t < oo, Eg. (1) is subject to the boundary and initial
conditions

U(rs, E,Q,t) =T(rg, E,Q,t) n-Q<0, (2)

W(r, E,9Q,0) = a(r, E,Q), 3)

whereI" and a are specified functions;, is a point on the surface, andis a unit outward
normal vector at this point.

Historically, this problem has been solved through a widely-used approximate homogeniza-
tion technique known a&tomic Mix which is valid when the system’s spatial heterogeneities
occur on a length scale which is small compared to a typical mean free path. The term atomic
mix applies to mixtures of two or more materials in which the “chunks” of the materials are so
small that we can assume mixing at the atomic level. Its derivation can be intuitively done, since
this assumption leads us to think of a homogeneous material with physical parameters given by
the average of each component material properties.

Bearing in mind the limitation of this assumption, a formulation of a particle transport
formalism in binary random media arised in the mid-1980’s, providing the foundations for the
so-called Levermore-Pomraning method. The first derivations of the Levermore-Pomraning
method (Levermore et al., 1986; Pomraning, 1986) considered time independent transport in
a purely absorbing medium. In this case, an exact solution was obtained for the ensemble-
averaged angular flux. However, this derivation becomes algebraically too cumbersome to lead
to useful results when the scattering interaction is involved (Pomraning, 1991). In fact, in
scattering problems, the task of reducing this exact expression to an useable one is exceedingly
complex.

Later, it was shown (Vanderhaegen, 1986) that the use of Chapman-Kolmogorov equations
(Parzan, 1962; Pomraning, 1991) provides a master equation for the joint probability density
(Frisch, 1968; Morrison, 1972; Van Kampen, 1981). This treatment was extended by a master
equation approach to analyze the general transport equation, including time dependence and
scattering.

In this work, we discuss still another derivation of this model, using the idea of the stochas-
tic balance, introduced by Adams et al. (1989). Here, however, the details of the derivation are



done in a different way, in such manner that the reader may find it more illuminating in terms
of the physics of the problem.

We outline this paper as follows: in section 2, we briefly present the physical problem, and
derive the atomic mix equation for the case of nonscattering transport, which can be readily
extended to the general case. At the end of the section we remark that, despite its simplicity,
the atomic mix model shows itself very innacurate when its basic assumption is not satisfied.
In section 3, we derive the Levermore-Pomraning equations using the stochastic balance idea,
reporting in detail all the derivation steps as well as underlying physical assumptions. In section
4, we consider time independent stochastic transport (including scattering) in a layered planar
geometry, under the assumption of homogeneous Markov mixing statistics for the two compo-
nents of the random medium. We generate a physical realization of the statistics using a Monte
Carlo procedure, and numerically solve the corresponding transport equation. We repeat this
process a large number of times and average the results. The physical problem we consider
is the transmission-reflection problem for a finite system without internal sources. We report
the ensemble-averaged probabilities of reflection and transmission, as well as their respective
standard deviations, for different choicesXf X, and slab thickness. Then, we compare the
predictions of the atomic mix and Levermore-Pomraning models with these results.

2. THE ATOMIC MIX MODEL

Let us consider neutron transport in a heterogeneous voldrsach that the boundary
oV of V is specified, but the interior structure Bfis unknown. Specifically, we restrict our
attention to the case in whicl consists of two random immiscible materials denoted by an
index, with 7 = 1,2. We can actually imagin& as a heterogeneous volume consisting of
randomly distributed chunks of random sizes and shapes of material 1 imbedded in material
2. If we consider a particle traversing the mixture along a random path, it will pass through
alternating segments of these two materials, as we can see in Fig. 1.

[0 material 1

] material 2

> particle

Figure 1: Particle traversing the mixture along a random path

The quantities;, X, and(@ are considered as discrete random variables. That is, iitithe
material, these elements are denote@hyr, £, t), X (r, B/ — E,-Q,t), andQ;(r, E,Q,t).
Thus, the stochasticity of the problem is due to the fact that we only have a probabilistic idea
about which material ocuppies the space poiat a timet. Since we considex;, >, and
as random variables, we must also consider the angularfasa random variable. Therefore,
we want to find an expression f(égb), the ensemble-averaged angular flux, i.e., the expected



value of.

For convenience, let us consider the case of transport in a nonscattering medium. Thinking
about() - V in Eq. (1) as a directional derivative, and usiig = X, + X,, whereX, is the
absorption cross section, we can rewrite this equation as

0 )
% ?ﬂé?t) + wg? t) + Xa(s,0)0(s,t) = Q(s,1), @

wheres denotes the spatial variable in the directionOne must notice that Eq. (4) describes
particle transport at each energy and direction(2, which are omitted since they are only
parameters. We also consider the boundary condition

¥(0,1) =T(0,1), (5)
and the initial condition
¥(s,0) = afs). (6)

We denote<W> as the ensemble average of any random variibJend defindV as the
deviation of W from (W). Then(W) = 0, andW = (W) + W. Using this notation, we
ensemble-average equations (4) through (6) to obtain

L) 4 O L ) + (5 = (@) @
(1(0,1)) = (I(0,8)) =T(0,1), (8)
(¥(s,0)) = (a(s)) = a(s). 9)

The values of ,) and(Q) in this equation are defined in terms of the properties of materials
1 and 2. Defining;(s, t) as the probability of presence of the matefiat positions at timet,
such that

pi(s,t) +pa(s,t) =1, (10)
we can write

(Za(s,1)) = pa(s,8)Sar(s, 1) + pa(s, t)Saa(s, 1), (11)

(Q(s,1)) = puls,1)Qu(s,) + pals, 1) Qa(s, 1), (12)

Now, let us define the characteristic chord length for the chunks of the matersal;.
Assuming that

EtiAi < 17 L= 17 27 (13)

then a particle, between collisions, is likely to travel a distance that spans many different chunks
of materials 1 and 2. Sincg,; = ;' (where); is the mean free path of materid) Eq. (13)
means that\; is very small when compared witk;. On physical grounds, this assumption
appropriately describes vanishingly small chunks in the mixture, which can be understood as
if the two components of the system were mixed at the atomic level. In the present case we
haveY,; = X,;, and therefore it is clear that the cross correlation t(afm;} in Eqg. (7) can be
neglected when Eq. (13) is valid. Thus, Eq. (7) becomes

L) ) | s )w) = (@), (1)



which is closed for the ensemble-averaged angular <(Iqa)c This equation represents the
atomic mix description of Eq. (4) (nonscattering media).

Applying the same arguments above on equations (1) through (3), the atomic mix descrip-
tion of stochastic transport, including scattering, is given by

19((r, E,Q,1))
v ot

+ Q- V<¢(T, E, Q,t>> + <Et(ra E,t)><@[)(’l°,E,Q7t)> -

_ /0 N (2B = B 0,) (000, B0V + QU B, 1), .
with
((rs, B, Q1)) =T(rs, E,Q,t), n-Q<0, (16)
<¢(r, E Q, 0)> =a(r, £, Q). @an
Here, for any random variablé” we have
(W) = pi(r, )Wy + pa(r, t) W, (18)

and the neglected cross correlation terms(iheﬁ} and@szﬁ}.
REMARK:

Atomic mix is a very appealing model because of its simplicity. Since the cross correlation
terms are neglected, this model leads to a description that essentialy does not deal with stochas-
tic effects. Assuming that the statistics of mixing is known, the problem of solving Eq. (15) is
not different of the one we face to solve Eq. (1). However, when Eq. (13) is not satisfied, the
atomic mix description is generally inaccurate. Although there exist specified classes of prob-
lems in which atomic mix is shown to be accurate even when the chunk sizes are not optically
small (Larsen, 2003), in general it fails quite badly in these situations. As an example, consider
time independent transport in a nonscattering medium without internal sources, given by

0

W) ssus) =0, (19)
with the boundary condition

¥(0) =T, (20)

where () < s < o0). Following Pomraning (1991), let material 1 be composed of optically
thin packets such that,;A; < 1. Then, define material 2 as very sparse optically thick
chunks imbedded on material 1, in such way thatA, > 1 andps(s) < 1. Here,A; is

the characteristic chord length of materiadnd p, is the probability of finding material 2 at
positions. The physical description is that of a near vacuum where sparse absorbing packets
of (essentialy) infinite thickness can be found. Particles travelling through this mixture tend to
pass through it without undergoing an interaction, at least on the average, as can be seen from
Fig. 2. On the other hand, if we write the atomic mix description of equations (19) and (20)
neglecting the cross correlation tes,):

o
W) 4wy =0, @

S



n . optically thick chunks -\

near void

&

e particle

Figure 2: Particle travelling through a near void with sparse chunks

(1(0)) = (T'o) =T, (22)

we will conclude thaty)) will be exponentially attenuated, with a scale lengf{>, ), and it

is clear that<2a> is very large, sinc&,, is very large. Therefore, this modelling will lead to
essentialy no transmission through the system. In general, the cross correlation term neglecting
will always underestimate particle transmission.

3. THE LEVERMORE-POMRANING METHOD

We will now present a derivation of the Levermore-Pomraning equations, restricting our
considerations to time independent statistics (i.e., the configuration of materials 1 and 2 in any
given physical realization of the mixing statistics is static). Further, the statistics is taken to
be homogeneous, by which we mean that all points in the system have the same statistical
properties. In this case, the probability of finding material pointr is given by

A

pi(r) = O (23)

where, again)\; is the characteristic chord length for the chunks of material

For notation simplicity, let us consider the transport equation with an isotropic internal
source, and let us assume that the scattering process is both coherent and isotropic. Thus, we
have

19(r, ,1)

S Q- VU, 0, ) + S (r, 1) = (/wrQ’dQ Q(>,(M)

and we define boundary and initial conditions
U(rs, Q1) =T(rs, 2, t), n- Q<0 (25)

W(r,Q,0) = a(r,Q), (26)

wherer, is a point on the surface of the system anid a unit outward normal vector af.
Now, we introduce the characteristic functions

(27)

(r) = 1, if ris in materiak
XiTI=0 0, if risin materialj # i °



The basic issue is that we do not know the functign&-) and y»(r), but we know that they
satisfy

x1(r) + xo(r) = 1. (28)
Multiplying Eq. (24) byx;(r), and using:

Xi(Q2- V) = Q- V(xiv) — Q- Vi), (29)

Xi2t = 2tiXis (30)

Xizs = EsiXia (31)

XiQ = QiXi, (32)
we find, fori = 1, 2,

10(y; / ALY

LD 40 )+ But) = 2 [ et @ 0a2+ BN 0 vy (33)

4

The next step is to ensemble average this result over all statistical realizations. We obviously
have the ensemble-averaged characteristic function given by

<Xi(7">> = pi(r), (34)
and therefore we define

<X¢(7’)¢(Ta Qv t>>
(a(r)

whereq); is the ensemble average ofr, ), t) over all physical realizations such thais in
materiali. Hence, Eq. (33) becomes

10(pis)
v Ot

wi<r7 Q? t) =

(35)

Qz

+Q V(Pz¢z)+2m(pz%)— /41%‘%‘(7"7 Q/ )dQ/ pl <77Z}(QVX2)> (36)

41
Further, using Eq. (28) and equations (34) and (35), we deduce that

<¢ T, Q 13 > pl ¢1(7’ Q t) +p2( )¢2(T7Q7t)’ (37)

which is the overall ensemble average of the angular flux as defined earlier. Boundary and
initial conditions fory;(r, €2, t) are obtained by multiplying equations (25) and (26)pyr)
and ensemble-averaging them:

Yi(rs, Q1) =L(rs, Q,t), n-Q <0, (38)

Yi(r,Q,0) = a(r, Q). (39)

Now, to obtain a closed system of equations and boundary conditions fand ., it is
necessary to evaluate the tefti(r, 2, t)) = (¢(r,Q,t)[Q - Vx;(r)]) on the right hand side of
Eq. (36). To do this, we consider the average valug of €2, t) over a volumé/, and take the
limit as V' approaches zero:

(£:(r,2,1)) = lim <¢(7~,Q,t) (%/‘/Q-in(r)dr)>. (40)



The ensemble-average in Eq. (40) is over all realizations. However, for a given realization, we
have ||, Q- Vx;(r)dr # 0 only if there is an interface between materials 1 and 2 intersecting
V. Therefore, we write

<1/;(r, 0, t) (% /V Q- in(r)dr)> = P*<1/}(r, 0, 1) (% /v Q- V)@(T)d?ﬁ) >*, (41)

where P* is the probability that a realization has an interface that interSéptmd( . >* is a
restricted average, defined to be an ensemble average over all realizations having an interface
that intersect¥’.

Now, we considel to be a sphere of radiuscentered at. Assuming that there exists
an interface intersecting this sphere, famall enough we can regard this interface as a plane
with normal vectorn; pointing out of regiorni. If we chose thez-axis perpendicular to this
planar interface as shown in Fig. 3, then the intersection of the interface with the sphere is a

X
3

interface
material i material j
d. £
» 7
z r

Figure 3: Intersection of the interface with the sphéfe

disc of radiusd. = /&2 — 22, given by the intersection of the plane= z, with the sphere,
andn; = é,. In this coordinate systeny]y(r) = —n;0(z — z); thus

1 3
v /V Q- Vxi(r)dr = — /V (= n)d(z — z0)dadydz = )
3 qnrd = B
_47r53( Q nl)ﬂd5—4€3( Q- n;)d,
and Eg. (40) becomes
. 3 . o\

Let us defing( - >;_n,>0 to be the ensemble average over all realizations such that an interface
intersects/ and(2 points out of material. Then, since:;, = —n;,



<(Q ) (r, Q,t)d§>* -

* *

+ <(Q )b (r, Q,t)d§> (44)

Q-n; <0

<(Q -n;)(r, £, t)d§>9.m>0

* *

(@ mputrane)

<(Q : ni)w(r,Q,t)d§>

Q-n;>0 Qn;>0
and defining
_ (- n)Y(r,Q t)d2>Q >0 (45)
<<Q T dg>Q-ni>0
we can rewrite Eq. (43) as
3
(filr, 1)) = hm {4—63}7*( (-, d2>ﬂn 0 T5((Q - n d2>Q >0)} (46)

The geometrical quantltleé(ﬂ n;)d?
explicitly evaluated if we assume:

>Q -0 in Eq. (46) are equal foi = 1,2, and can be

1) the pointsz, in Fig. 3 to be uniformly distributed ore < zy < ¢;
2) the normal vectors of interfaces passing throligto be uniformly
distributed on the unit sphere.

Then, using? - n; = p andd? = &% — 23, we obtain fori = 1 and2

<<Q ”l)d2>9nz>o <“(52_Z(2))>;>0

Introducing this result into Eq. (46), we get

(fi(r, Q1)) = lim [%%P* (\1;; - w)} — lim [4—213* <qf§ - xp)] . (48)
Further, it is possible to calculaf&’. To do this, let us consider an arbitrary infinite line through
the pointr, and let us assume that the interfaces all intersect the line perpendicularly. Then, it
can be seen from Fig. 4 that an interface intersectly if the pointr lies within a distance

e of an interface. This creates a line segment of witlitabout each interface, such that ifs

in one of these segments, then an interface interséc®ver a very large length of this line,
spanning n chunks of materiahnd n chunks of materiagl we have

(2n)(2¢) = 4ne

_( the length of the line segments such thatliies on (49)
~ \ one of these segments, then an interface inter$é¢ts



mterfaces\
I
| N |

=2 -2 2 F2:— =2z

Figure 4: Arbitrary infinite line intersecting interfaces perpendicularly

and
n(A; + Ay) ~ (total length of the ling (50)

The ratio of equations (49) and (50)4%, that is,

B 4e
A A

and one can easily see that this expression has the right qualitative behavior. It correctly limits
to zeroag — 0, and as\;, A, — oc.
Introducing Eq. (51) into Eq. (48), we obtain

) 1 4e . Y 1 e e
(flr. 2.1)) =ty {4_5(/\1 + A2) (\D - )] A [Al + Ay (qjj qu>] 2
Finally, definingV¥; = lin%\I/f and using Eq. (23), we have

*

(51)

1
_ p]\Il] _ pi\Iji
A; A

J

(53)

and this result is the Levermore-Pomraning expressioréjgr. Combining Eqg. (36) with Eq.
(53), we obtain

la(piwi)
v Ot

Yisi piQi  pV; PV
i(r, Q1) dY d_J _ . (54

+Q-V(pih))+2u(pih;) =

Unfortunately, this result consists of two equations with four unknown functions, namely

19, ¥ and Usy; thus, a closure is needed to make this formalism useful. No simple exact
relationship seems to exist relatigig (the ensemble average ofover all physical realizations
such that- is in materiali) and ¥; (the ensemble average ofat interface points for which

2 -n; > 0). Nevertheless, in analogy with upwind differencing encountered in the numerical
analysis of hyperbolic equations, we approximétesimply replacing it withe);. This is the
“classic” Levermore-Pomraning closure, and using it we rewrite Eq. (54) as

10(pii) s / ’  PiQi | piYy pii
Q- x = b (r, €, 6)d)
I e R L Vi W

, (55)

and the general case (general scattering, arbitrary source) is straightforwardly given by

10(pivyi) P piti
v Ot A A;

J

+ Q- V(pihs) + (Xai + 55) (piths) = piQi + (56)



wheresS; is the scattering operator defined by
Slwl = Esﬂpl — / / Esi(r, El — E, Q/ . Q, t)wl<7n7 El, Q,, t)dQ/dE/ (57)
0 A7

The coupled equations & 1,2) given by Eq. (56) are known as the “classic” Levermore-
Pomraning equations. As a remark, we mention that the atomic mix model can be deduced
from the Levermore-Pomraning equations through the use of asymptotic limits (Pomraning,
1991).

These considerations can be easily extended to nonstatic physical realizations of the mix-
ing. In this case, the characteristic functions will also depend upon the time variable, and a new
term will appear on the right-hand side of Eq. (33), namely

Y Ixu(r,1) ‘

v Ot (58)

Treating this term in analogy with the way we trea(éd} in the present derivation, one should
obtain another pair of Levermore-Pomraning equations, with extra terms representing the time
stochasticity.

Finally, it is important to notice that, in general, the assumption that the interfaces all
intersect an arbitrary line perpendicularly (Fig. 4) cannot be true. Although it leads to the
“classic” Levermore-Pomraning equation, we get a different result when this assumption is not
made. We hope to contemplate this issue in future work, in order to improve the present model.

4. NUMERICAL RESULTS

We consider time independent transport in planar geometry without internal sources. In
this case, assuming isotropic and coherent scattering, Eq. (1) is written

W s = 252 [ vt 59)

where . is the cosine of the angle between thaxis and the particle’s direction of travel.
We take Eqg. (59) to hold on the interval< > < Z, and we consider an isotropic intensity,
normalized to a unit incoming flux, incident upon the planar system-at0; and no intensity
incident upon the system at= Z. This corresponds to the boundary conditions

{1/}(0,#) =2, u>0
V(Z,p) =0, p<0

In analogy with the previous discussion, we take this system to be statistically composed
of alternating slabs of two materials, such that each material has spatially independent cross
sectionsY; andX,. The statistics of this situation is assumed to be a homogeneous Markov
process, which implies (Pomraning, 1991) that the thickness of each slab of mateciabsen
at random from an exponential distribution given by

f;(&) = A te /AN (61)

(60)

Here,f;(£)d¢ is the probability of a segment of materiahaving a length lying betweefiand
¢+ d€, andA; is the mean slab thickness of materigduch that

A = / EE(E)de. (62)



At any point in this system, the probability of finding material is given by Eq. (23). To obtain
ensemble-averaged results for this transport problem, we first generate a physical realization of
the statistics using a Monte Carlo procedure, and for this realization we solve the corresponding
transport problem. We used the L¥ $ormulation for a multi-region slab (Segatto et al., 2001)
to obtain this solution, withV = 50.

To obtain a physical realization, we first choose the material presental statistically
according to the probabilities. Then, we sample from Eq. (61) for the value sb determined
to establish the length of the first segment of this material, with its left-hand boundary at
We next sample from Eq. (61) with the other material index to determine the length of the next
segment. We then sample from Eq. (61) with the original indexdetermine the length of the
third segment. We continue this process until the entire intérvalz < Z is populated with
alternating segments of the two materials.

We computed the probabilities of reflectiéhand transmissiofi’ for the system, as given

by

R—/O (0, —p)dp, T—/O p(Z, p)dp. (63)

The probability of absorptior follows from particle conservation, such that=1—- R+ T.
Repeating this process for a large number of physical realizations, ensemble-averaged re-
sults for the reflection and transmission follow from simple numerical averages, such that

(R) = %ZR;C, (T) = %ZT;C. (64)
k=1 k=1

Here, the indeX denotes a particular realization of the statistics, Ancepresents the number
of realizations computed. Also, one can calculate the standard deviatidrthese results
according to

0% (R) = ‘<R>2 — %ZR% . 0T = ’<T>2 — %ZT,?

which gives an indication of the spread of the results about the means.

We have used this procedure to obtain results for four different seXy; ob,; and A;.
These results are given in Tables 1-4 in the “Exact” columns. We also provide in these columns,
between parenthesis, the number of realizations computed. It is important to notice that, differ-
ent from the other cases whelkewas chosen to b&)°, we choses = 10* in Tables 1 and 3 for
the slab thicknesg = 1.0. We did this for cpu time reasons, and we believe that the sampling
error we get is approximately the same we would obtain if we cli6se 10°, since in these
cases each physical realization contains an average of ten regions of each material.

The predictions of the atomic mix and the Levermore-Pomraning models are also displayed
in Tables 1-4, numerically calculated using the WIférmulation (Segatto et al., 1999; Segatto
et al., 2001), withV = 50. For the problem under consideration, the atomic mix equations (15)
and (16) are written

: (65)

u% +(Ze)(¥) = <Z—2> /_11 (W2 1)), (66)

{ <¢(0>M)> =2, p>0 (67)

(W(Z,p) =0, p<0’



Table 1: Reflection and transmission results
A =01 Y1 =0.1 Y1 =0.0 YA =0.01
Ay =0.01 Yo = 2.5 Yo = 2.5 Yoo = 0.025

Exact | Atomic | Levermore]| : Exact | Atomic | Levermore
Z=0.11 (109 Mix | Pomraning| : | Z =1.0 | (10%) Mix | Pomraning
< R > | 0.0199| 0.0209 0.0198 <R > 0.1314 | 0.1346 0.1308
o(R) 0.0245 * * : o(R) 0.0479 * *
<T > |0.9626| 0.9616 0.9627 o< T > 0.7119 | 0.7077 0.7124
o(T) 0.0222 * * : o(T) 0.0419 * *
Time (s) | 5581.3| 0.28 0.33 ;| Time (s)| 77702.2| 0.01 0.11

Table 2: Reflection and transmission results
Ay =10.0 Y1 =01 Y1 =0.0 YA =1.0
Ay =1.0 Yo = 2.5 Yo = 2.5 Yo =25

Exact | Atomic | Levermore| : Exact | Atomic | Levermore
Z=0.1] (10 | Mix | Pomraning : | Z=1.0| (10°) Mix | Pomraning
< R> | 0.0166| 0.0209 0.0165 |l < R> | 0.0737| 0.1346 0.0694
o(R) 0.0512 * * : o(R) 0.1798 * *
<T > |0.9659| 0.9616 0.9661 Dl <T > |0.7738| 0.7077 0.7778
o(T) 0.0457 * * : o(T) 0.1400 * *
Time (s)| 292.7 | 0.05 0.17 ;| Time(s)| 503.7 | 0.05 0.16

where(X, ), (X,) and(v) are given in analogy with Eq. (18). Also, the Levermore-Pomraning
equations (56) and (38) are written

a AGE)
It wg()z ) + Sz, 1) (2, p)dp' + = L [%(Z 1) = iz )], (68)
{ i (0, 1) =2, p>0, 7 (69)
Vi(Z,p) =0, n <0,

and the ensemble-averaged solut(@n} is given according to Eq. (37). Here, it is important
to explain the termy|/A; in Eq. (68). If the mean slab thickness of matefia A;, then the
mean chord length seen by a particle traveling at an angle characterized by its;casjost
A;/|p|- Thatis, the mean chord length through material angularly dependent, which leads
to this form of Eq. (68).

All numerical calculations were performed on a Pentium Il 1.0 GHz; the cpu times are
displayed (in seconds) at the bottom of Tables 1-4. Our goal in presenting these results is to
compare the atomic mix and the Levermore-Pomraning models, and to test their accuracy.

As expected, the atomic mix model presents itself better when0.1. We can see from
Tables 1 and 3 that its results are quite accurate when the pragiictapproaches zero. In
fact, examining its relative error given by

|Exact— Atomic Mix|
Exact

Relative Error (%)= 100 : (70)

we will find it to be smaller thari% in these Tables.



Table 3: Reflection and transmission results
A =01 Y1 =0.1 Ys1 =0.1 YA =0.01
Ay =0.01 Yo = 2.5 Yo =10.0 Yoo = 0.025

Exact | Atomic | Levermore]| : Exact | Atomic | Levermore
Z=0.11 (109 Mix | Pomraning| : | Z =1.0 | (10%) Mix | Pomraning
< R > | 0.0084| 0.0081 0.0083 < R> 0.0487 | 0.0453 0.0476
o(R) 0.0017 * * : o(R) 0.0116 * *
<T > ]0.9512| 0.9489 0.9513 o< T > 0.6353 | 0.6247 0.6342
o(T) 0.0480 * * : o(T) 0.0927 * *
Time (s)| 5113.1| 0.01 0.12 | Time (s)| 71299.3| 0.01 0.11

Table 4: Reflection and transmission results
A1 =10.0 Y1 =0.1 Y1 =0.1 YulAi=1.0

Ay =1.0 g = 2.5 g2 =0.0 YAy =25

Exact | Atomic | Levermore| : Exact | Atomic | Levermore
Z =011 (109 Mix | Pomraning| : | Z =1.0 | (10°) Mix | Pomraning
< R> | 0.0089| 0.0081 0.0089 |:| <R> | 0.0740| 0.0453 0.0727
o(R) 0.0028 * * : o(R) 0.0255 * *
< T > | 0.9591| 0.9489 0.9592 |:| <T > | 0.7994| 0.6247 0.7997
o(T) 0.0970 * * : o(T) 0.2712 * *
Time (s)| 296.1 0.01 0.11 ;| Time (s)| 497.3 0.06 0.11

However, we see that increasing the valued pdndA, by the same factor, the atomic mix
results remain unchanged and the accuracy of the model deteriorates. This is not unexpected,
since in this case the producis;A; do not satisfy Eq. (13). Indeed, its relative error reaches
82% in Table 2 and8% in Table 4.

On the other hand, the Levermore-Pomraning model maintain a reasonable order of accu-
racy when the values of; increase. Its relative error, calculated in analogy with Eq. (70), is
smaller thar6% in all Tables. It is also important to point out that, as observed by Adams et
al. (1989), the Levermore-Pomraning model in general underestimate the ensemble-averaged
reflection probability<R>, and overestimate the ensemble-averaged transmission probability

T).
< >Analysing the results reported here, we underline the relevance of developing error esti-
mates for both models presented in this paper. To our knowledge, there are few papers where
this subject is considered. We focus our future attention in this direction.
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