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Abstract
A compact detector for space-time metric and curvature is highly desirable. Here we show that
quantum spatial superpositions of mesoscopic objects could be exploited to create such a detector.
We propose a specific form for such a detector and analyse how asymmetries in its design allow it
to directly couple to the curvature. Moreover, we also find that its non-symmetric construction
and the large mass of the interfered objects, enable the detection gravitational waves (GWs).
Finally, we discuss how the construction of such a detector is in principle possible with a
combination of state of the art techniques while taking into account the known sources of
decoherence and noise. To this end, we use Stern–Gerlach interferometry with masses ∼10−17 kg,
where the interferometric signal is extracted by measuring spins and show that accelerations as low
as 5 × 10−15 ms−2Hz−1/2, as well as the frame dragging effects caused by the Earth, could be
sensed. The GW sensitivity scales differently from the stray acceleration sensitivity, a unique
feature of the proposed interferometer. We identify mitigation mechanisms for the known sources
of noise, namely gravity gradient noise, uncertainty principle and electro-magnetic forces and
show that it could potentially lead to a metre sized, orientable and vibrational noise
(thermal/seismic) resilient detector of mid (ground based) and low (space based) frequency GWs
from massive binaries (the predicted regimes are similar to those targeted by atom interferometers
and LISA).

1. Introduction

Matter wave interferometry has been very successful with atoms [1], and implemented already with
macromolecules (104 amu mass) [2]. There has been a push to extend this to larger superpositions, or more
macroscopic masses [3–17], or both [18, 19] to explore collapse model modifications of quantum
mechanics [20, 21] and to test whether the gravitational field is fundamentally quantum in nature [22, 23].
However, as it will be a considerable effort to realize these interferometers, it is really important to examine
their usefulness beyond the purely fundamental and postulated processes. In addition, while searching for
applications, it makes sense to be optimistic about the regimes achievable by combining several
state-of-the-art quantum technologies and experimental techniques. With the above motivations, here we
examine sensor/detector applications of the large mass, large superposition regime [18, 19, 22] in
interferometry. We find an application in which such superpositions are used to detect fully the classical
gravitational effects in a location as quantified by the metric and curvature. This comes against a backdrop
of proposals of smaller particle interferometers [24–26] or larger quantum optomechanical systems [27, 28]
to detect a g00 metric component, whose variations can be used to infer the associated component of
curvature, the direct measurement of such curvature [29] or to detect the Earth’s rotation [30, 31] or
general relativistic effects [32–35]. The most challenging entities to detect are the gravitational waves
(GWs), the gij metric components, whose detection has been a huge recent success using kilometre long
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optical interferometers [36, 37], with future devices proposed in space [38]. On the other hand there are
also proposals for usage of atomic interferometers [39–45] and various resonators [46–50], but nothing
yet on the potential of interferometers for propagating (untrapped) objects much larger than single
atoms.

In this paper, we will discuss how mesoscopic-object interference could be employed for detecting
metric and curvature (MIMAC), and moreover present an example scheme based on the Stern–Gerlach
principle [18, 51–53, 64]. Thus this paper has three aims: 1. To show that large mass interferometry with a
certain asymmetric design would allow the capability to directly detect unprecedented regimes of inertial
and gravitational effects with compact sized devices, 2. To present an explicit example interferometer and
demonstrate how to, in general, infer the signals it can sense 3. Present a viability study for this specific
interferometer to highlight that these regimes will soon be accessible. Here it noteworthy that there could be
other, perhaps more viable schemes based on other methods to prepare superpositions of mesoscopic
objects. Such investigations would be fuelled by our findings under aims 1 and 2.

In the particular type of interferometer which we study as an example model, although a spatial
interferometry involving superpositions of separated motional states takes place, the output signal of the
interferometer is encoded in a spin degree of freedom in a manner which is insensitive to the initial noise in
the motional state (thermal and seismic). We demonstrate that it can be used to observe the metric and, as a
result of using a non-symmetric set-up, also ‘directly’ observe the derivatives in the interferometric signal
which determine the curvature of a perturbed Minkowski metric (as opposed to indirectly inferring the
curvature by measuring the metric in nearby locations and then approximating derivatives of the metric). It
is due to this ability to directly sense curvature through the interferometer that we describe the
interferometer as sensitive to metric and curvature (cf section 4). Additionally, these interferometers enable
the measuring of the Earth’s frame dragging and gravitational waves of certain strength and frequency
range. In all these cases, it is remarkable, and indeed directly due to the high masses of the objects
undergoing interferometry, that the interferometer is very compact (one meter or smaller), and highly
sensitive at a single object level, i.e., does not require a high flux of objects.

This paper will proceed as follows: section 2 will review the general form of the action for a mass
moving through non-trivial space-time in the non-relativistic limit. It also presents the standard arguments
in favour of using larger ‘mesoscopic’ masses as the interferometric particles. Of course the observations of
this section are independent of the specific type of mesoscopic object interferometer that one uses, and as
such is adaptable to other future proposals. Section 3 presents a specific proposal for a mesoscopic object
interferometer for detecting the space-time metric and its curvature (MIMAC). This interferometer
employs Stern–Gerlach interferometry and is a modified version of the previously proposed interferometer
suggested in other contexts with both atoms [51–53] and mesoscopic particles [18, 22]. Section 4 will
present the exact components of the space-time metric detectable by the suggested form of MIMAC in such
a way to also provide a guide to analyse future interferometer proposals. Sections 5–7 will present and
discuss how the most interesting signals found in section 4, namely Newtonian gravity and its associated
curvature, frame dragging and gravitational waves (GW), can be detected. This will include suggesting the
basic experimental parameters required for detection and presenting the resulting sensitivities. Finally
section 8 will discuss in detail the requirements for the most challenging of the signals, gravitational wave
observation in the mid-band frequency and demonstrate how, although ambitious, such a device does not
appear to be beyond realisability. This is done by presenting how current state-of-the-art techniques match
or beat the minimum experimental requirements for theoretical gravitational wave observation. We also
discuss the primary expected noise sources and their effects in such a device, namely decoherence effects,
gravity gradient noise (GGN), the Heisenberg uncertainty limit and electro-magnetic effects. While
section 2 points out the potential of a new regime and section 3 is presents a necessary modification of an
existing apparatus, sections 5–7 are entirely new theoretical results. Section 8 is, of course, compiling
state-of-art commercially available equipment and experimental achievements by various laboratories to
justify the potential realisability of our scheme.

2. Non-relativistic action

The signal extracted by an interferometer coupled to the space-time metric is the phase difference (Δφ)
between the two arms of the interferometer. This is given by Δφ = ΔS/�, where ΔS is the difference in
action between the two paths through the interferometer. As such, relative to any classical gravimeter or
similar classical experiment, this 1/� dependence in the final phase will hugely amplify the final measured
signal in a quantum interferometer. If we consider the space-time metric, gμν , as slightly perturbed, as is
true for Earth based measurements, the space-time metric can be written as gμν = ημν + hμν where ημν is
the standard Minkowski metric with signature (−+++) and hμν is some small perturbation that may have
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space and time dependencies. We will also take the non-relativistic limit for the interferometric particles
motion, as a result the laboratory time t can be taken to be approximately equivalent to the proper time.
Then the action for a particle of mass m travelling along a trajectory ι in the is

S = −mc

∫
ι

ds

= −mc

∫
ι

√
ds2

= −mc

∫
ι

(
gμν

dxμ

dτ

dxν

dτ

)1/2

dτ

= mc2

∫
ι

[
− (η00 + h00)

dt2

dτ 2
− h0j

vj

c

dt

dτ
− hi0

vi

c

dt

dτ
−
(
δij + hij

) vi

c

vj

c

]1/2

dτ (1)

≈ m

∫
ι

[
c2

(
1 − h00

2

)
− ch0jv

j −
(
δij + hij

) vivj

2

]
dt, (2)

where δij is the Kronecker delta. From the above formula it is evident that compared to the h00 component
(Newtonian potential), the terms h0j (frame dragging) are harder to detect as c is replaced by a
non-relativistic velocity vj, while hij (Gravitational Waves) will be the most difficult to detect with c2

replaced by vivj. On the other hand, a high value of m (compared to atomic masses) are expected to
increase the sensitivity to all terms, potentially allowing the detection of signals which would otherwise be
to small to see. For example, for similar velocities and times (we will show how to achieve this in later
sections), when one uses nano-objects of mass 10−17 kgs, there is an O(108) times amplification in the final
signal (Δφ) compared to a heavy atom.

3. Interferometric setup

Here we will present an example form for a mesoscopic object interferometer. This proposal amounts to a
modification of the devices previously proposed for atomic and mesoscopic interferometry. Stern–Gerlach
interferometry of the type we are proposing to use requires a spin embedded in a nano-crystal. This is a
very generic requirement and the proposal does not rely on a specific type of spin system or crystalline host.
The primary requirement is that a superposition of embedded spin states remains coherent for the duration
of an experiment, which is a common requirement in the field of quantum computing with spin qubits. For
the moment, consider a mesoscopic mass (nano-meter sized crystal) containing an embedded spin 1 degree
of freedom (three spin states |+ 1〉, |0〉, | − 1〉). One example is a diamond crystal of nanometer scale
diameter with a nitrogen-vacancy (NV) centre spin, which is generally considered as a promising candidate
for similar experiments [10, 12, 54, 55]. Another example is a rare-earth dopant spin in a crystal [56, 57].
The mass is initially optically trapped, made neutrally charged [58] and rapidly cooled [59–63]. The
internal spin state is then initialised by the application of a sudden microwave pulse in a superposition of
spin eigenstates 1√

2

(
|+1〉+ |0〉

)
. At this point (t = 0) the mass is released from the trap in a motional

wavepacket |ψ(0)〉 centred at velocity v =
(
0, vy, 0

)
with the aforementioned internal spin superposition.

The presence of a magnetic field gradient (∂xB) in the x direction induces an acceleration a = (a, 0, 0) on
the |+ 1〉 spin state. The magnetic field gradient source we consider here consists of many flat carbon
nanotubes arranged as shown in the detailed cut-out of figure 1. To ensure a uniform magnetic field
gradient is achieved the current through the wire can be switched on only when it is directly above the
particle. This acts to generate the spatial superposition required while also coupling the spin and motional
states. The acceleration of the non-zero spin component is reversed at time t = τ 1 and again at
t = τ 2 = 3τ 1 by reversing the spin state, while the acceleration magnitude is maintained so that at any time
t, the combined spin and motional state is 1√

2

(
|0〉 |ψ0(t)〉+ |σ〉 |ψσ(t)〉

)
, where σ represents the non-zero

spin state. This procedure will lead to the maximum spatial superposition distance Δx occurring at time
t = 2τ 1, at which point the centres of the spatial states |ψ0(2τ 1)〉 and |ψσ(2τ 1)〉 are separated by Δx = aτ 2

1 .
These are then brought back together so that their motional states exactly overlap at time t = τ 3 = 4τ 1, i.e.,
|ψ0(4τ 1)〉 = |ψσ(4τ 1)〉.

This spin-motion coupled interferometry has two striking consequences [18]: (i) The relative
phase Δφ between the interferometric arms is mapped on to the spin state in the form
1
2 eiφ0(t)

((
eiΔφS − 1

)
|0〉+

(
eiΔφS + 1

)
|↑〉

)
, so that it can be measured by measuring the spin state alone.

For example, by measuring the probability of the state to be brought to the spin state |0〉 after the
application of a third microwave pulse. (ii) The Δφ depends solely on the difference between phases
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Figure 1. Interferometer path diagram showing spin |±1〉 dashed blue path and spin |0〉 path dotted in orange. The magnetic
field source (thick black line) could be shaped to follow the non-spin-zero path such that it can provide a large magnetic field
gradient without a needing an exceedingly large magnetic field. The detail cut-away shows how this can be sourced by many flat
current carrying wires arranged to approximate the ideal curved shape for the magnetic field source. By running a current
through each pair of wires in the same direction only when the particle is directly below it we can ensure the particle experiences
an approximately uniform magnetic field gradient only in the desired direction. The maximum superposition of Δx = aτ 2

1 is
achieved halfway through the interferometry process. The vertical dotted lines show the position when the acceleration direction
changes occur. The circular cut-out shows the detail for how the magnetic field source could actually be implemented as many
individual flat current carrying wires turned on in sequence. Note the unusual axis orientation with the x axis vertical
representing the spatial superposition distance.

accumulated in the interferometric paths, and is quite independent of |ψ(0)〉 making the interferometric
signal unaffected by an initial mixed thermal state or other noise (e.g. seismic) which occurs prior to the
initialising microwave pulse, which can always be modelled as probabilistic choices of |ψ(0)〉. Any phase
difference Δφ � 1√

N
will then be detectable after N measurements.

Thus the whole interferometric process will lead to the state of the particles state evolving approximately
as

Initial state: |0〉 ⊗ |ψ(0)〉

Microwave pulse:
1√
2

(
|0〉+ |σ〉

)
|ψ(0)〉

Spatial superposition created

and maintained for time t:
1√
2

(
eiφ0(t) |0〉 |ψ0(t)〉+ eiφσ (t) |σ〉 |ψσ(t)〉

)
Spatial wavefunctions

brought to overlap:
1√
2

(
eiφ0(t) |0〉+ eiφσ(t) |σ〉

)
|ψ(t)〉

Microwave pulse:
1

2

((
eiφσ (t) − eiφ0(t)

)
|0〉+

(
eiφσ (t) + eiφ0(t)

)
|σ〉

)
|ψ(t)〉

Final state:
1

2
eiφ0(t)

((
eiΔφS − 1

)
|0〉+

(
eiΔφS + 1

)
|σ〉

)
|ψ(t)〉 (3)

Here |ψ(t)〉 is the original spatial state of the particle if it were to freely evolve and evaluated at time t,
|ψ0(t)〉 and |ψσ(t)〉 are the mass state in the spin-zero and non-zero arms of the interferometer respectively
and |0〉 and |σ〉 are the respective spin states. This is an approximation of the evolution undertaken by the
particle, whereby each effect is taken to occur stepwise. The magnetic field gradient state creates and
recombines the spatial superposition, the microwave pulses create and recombines the spin superpositions.
Of particular note is that the initial state of the mass factors in the final result, this will trivially hold in
general, even if more complex states, for example thermal states, are used as the initial state.

This interferometric system amounts to an asymmetric modification of that proposed by Wan et al [18].
For a more in depth discussion of the required parameters required to realise the most sensitive and
ambitious form of the interferometer we will propose can be seen in section 8.

4. Observable components of space-time metric

To determine which components of the metric perturbation hμν are observable, we expand the action, S, to
the second order in derivatives of hμν assuming a temporally static and spatially slowly varying metric.

4
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Specifically we take

hμν(x, y, t) ≈ hμν(0, 0, 0) + x(t)∂xhμν(0, 0, 0) + y(t)∂yhμν(0, 0, 0) +
1

2!

(
x(t)2∂2

x hμν(0, 0, 0)

+ y(t)2∂2
y hμν(0, 0, 0) + 2x(t)y(t)∂x∂yhμν(0, 0, 0)

)
(4)

For clarity we will from now write hμν(0, 0, 0) as hμν . This gives the difference in the action between the two
interferometric paths due to the different components hμν (μ, ν = 0, x, y, z) as

ΔS (h00) = mc2aτ 3
1

(
∂xh00 +

23

60
aτ 2

1 ∂x∂xh00 + 2vyτ1∂x∂yh00

)

= mc2aτ 3
1

(
∂xh00 +

23

60
aτ 2

1 ∂x∂xh00 + . . .

)
, (5)

∑
j

ΔS
(
h0j

)
= mcavy

(
2τ 3

1

(
∂xh0y − ∂yh0x

)
+ 4vyτ

4
1

(
∂y∂yh0x − ∂x∂yh0y

)
+

23

30
aτ 5

1

(
∂x∂xh0y − ∂x∂yh0x

))

= mcavy

(
−2τ 3

1 ∂yh0x + 2τ 3
1 ∂xh0y +

23

30
aτ 5

1 ∂x∂xh0y + . . .

)
, (6)

ΔS (hxx) = −2

3
ma2τ 3

1

(
hxx + 2vyτ1∂yhxx +

1

2
aτ 2

1 ∂xhxx +
51

20
v2

yτ
2
1 ∂

2
y hxx +

43

280
a2τ 4

1 ∂
2
x hxx

)

ΔS
(
hxy

)
= mav2

yτ
3
1 ∂yhxy + 2mav3

yτ
4
1 ∂

2
y hxy +

293

60
ma2v2

yτ
5
1 hxy

ΔS
(
hyy

)
= −mav2

yτ
3
1 ∂xhyy −

38

3
mav3

yτ
4
1 ∂x∂yhyy −

23

60
ma2v2

yτ
5
1 ∂

2
x hyy

∑
i,j

ΔS
(
hij

)
=

−2

3
hxxma2τ 3

1 + . . . =
−2

3
hxxmv2

xτ1 + . . .

(7)

The equations presented here are split such that, once truncated, they correspond to the Newtonian
potential (equation (5)), frame dragging (equation (6)) and Gravitational waves (equation (7)) effects. Here
we note that the example interferometer can directly detect certain components of the metric perturbation.
Specifically the term hxx and, as rotating the apparatus is equivalent to relabelling the spatial direction, the
spatial components of the metric in general. Furthermore as the action is directly dependent on the second
derivatives of hμν , such an apparatus would also be sensitive to the local space-time curvature5. This allows
the experimentalist to simply identify certain components of the Riemann tensor Rμνσν in the above
equations term by term, it is for this reason we consider the interferometer directly sensitive to space-time
curvature. The role of the asymmetry in the interferometer can also now be seen from 7, given the second
order terms a2τ 2

1 � (vx)2 dependence, asymmetry is necessary to generate an action difference between the
arms. For example, if a symmetric interferometer was used, by taking the initial spin state of

1√
2

(
|+1〉+ |−1〉

)
, then both arms would contain the same v2

x dependent phase as seen in equation

(7). These would cancel in the final phase difference, leaving the interferometer no longer sensitive to
GWs.

In the following sections we will explore the basic experimental considerations for detecting Newtonian
gravity and its associated curvature (section 5), frame dragging effects (section 6) and gravitational waves
(section 7). We present the exact form that the signals will take, discuss their predicted amplitudes to
discern how well they can be detected and for the case of the Newtonian potential, we will also explore and
characterise a variety of different sources which could be generating the signal.

5. Newtonian potential

Considering only the first non-Minkowski term in 2 we can make the standard substitution for the
Newtonian potential, h00 = 2MG/c2R. We define the vertical as the x-axis, the experiment taken to be
performed at ground level so R is radius of the Earth, and M Earth’s mass, the difference in action between
the two arms up to the second order in

(
aτ 2

1 /R
)

is

ΔS (h00) ≈ −2mMG

R2
aτ 3

1 +
23mMG

15R3
a2τ 5

1 , (8)

5 The complete curvature is characterised by the Riemann tensor which is defined by Rμνσν =
1
2

(
∂σ∂μhρν+∂ν∂ρhμσ−∂ν∂μhρσ−∂σ∂ρhμν

)
.
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Figure 2. Newtonian potential and frame dragging phase difference scaling with the mass of objects for a maximum
interferometer size and time of Δx = 1 mm and τ 1 = 100 ms respectively with vy = 10 ms−1. As the mass m increases, the phase
change increases as Δx = aτ 2

1 can be kept to its highest value by allowing more time τ 1. However, an optimal point is reached
slightly after about m = 10−16 kg after which the Δx obtained with the maximum τ 1 starts decreasing in inverse proportion to
mass even for the fixed maximum feasible values of magnetic fields (106 Tm−1).

Δφ (h00) ≈ −2 × 1035 kg−1 m−1 s−1 × maτ 3
1 + 2 × 1028 kg−1 m−2 s−1 × ma2τ 5

1 . (9)

This is consistent with the notion that any curvature detection will be of the form U(L/R)2 where U is the
gravitational potential and L is the characteristic laboratory length (in the above case, L ∼ aτ 2

1 ) [65].
Despite this quadratic suppression, it is still detectable due to the 1/� factor in the phase difference. As
such, we can expect to observe even second order effects (curvature effects) as large phase shifts. Figure 2
shows how these results scale with the mass of the object in the interferometer assuming a maximum
allowed value of the spatial separation (aτ 2

1 ). From figure 2 it can be seen that a mass of 10−16 kg in a
∼ 1 mm interferometer with integration time τ 1 ∼ 100 ms gives a detection of acceleration with sensitivity
down to ∼ 5 × 10−15 ms−2Hz−1/2. This result is for the case of sending a single particle through the
interferometer at a time and as such represents a lower bound on the sensitivity of such a detector. This
compares favourably with the recent work demonstrating the direct detection of metric curvature of a test
mass with a sensitivity of 5 × 10−9 ms−2Hz−1/2 [29].

This detector could also be used to detect smaller masses and more local signals. For example, the mass
M at distance R which yields a detectable phase shift compared to it not being there, effectively it ceasing to
exist, is given by

M =
�R2

2
√

NmGΔxτ1
(10)

which suggests for the interferometer specifications used for figure 2, at a distance of 1 km, a mass of
approximately 4 kg is detectable provided the mass has moved from a very far distance to this 1 km range or
by varying the interferometer orientation relative to the mass. On the other hand, all stationary masses
naturally present around the interferometer will not act as a noise when detecting other signals as they will
provide a constant phase difference between arms for a fixed orientation of the interferometer.

We can also consider detecting the motion of a mass. Taking the motion to be slow enough that the
interferometer phase can be found for the mass M at R before it moves a distance d and detected again. The
minimum movement detectable will then be

d ≈ �R3

4
√

NmMGΔxτ1
(11)

where it has been assumed that d � R. For example the previous M = 4 kg mass a distance R = 100 m
away will produce a detectable phase variation if it moves by d ≈ 0.5 m or more. This can act as a noise
source when looking to detect other signals, this will be discussed below in section 8.

6. Frame dragging

To explore the detection of frame dragging, the ‘frame dragging’ metric given in [66] was considered.
Written in spherical with ψ the azimuthal and θ the polar angles:

ds2 = −H (r) c2dt2 + J (r)
[
dr2 + r2 dθ2 + r2 sin2 (θ) (dψ − Ω dt)2

]
(12)

6
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where

H (r) ≈ 1 − 8GM

c2 r
+ · · · , J (r) ≈ 1 +

8MG

c2r
+ · · · , (13)

where the binomial expansion approximation has been used for being in the linearized limit, and
Ω = 2MGν/c2R is the scaled angular velocity of the central rotating mass, where once again M is the mass
of the Earth, R is its radius and ν is its angular velocity. The relevant component of 12 is the cross term
dψdt.

The apparatus is taken to be aligned parallel with the equator and surface of the Earth, and taking a
small angle approximation with regards to the angular distance the mass travels along the interferometer in
the ‘y’ direction measured from the centre of the Earth. Defining M as the mass of the Earth, R its radius,
and ν its angular velocity gives a phase difference, again to the second order in

(
aτ 2

1 /R
)

Δφ
(
h0j

)
≈ 8mMGν sin2 (θ) avy

�c2 R

(
τ 3

1 − 3M2G2

c4R2
τ 3

1

)
+

92mM3G3ν sin2 (θ) vy

5�c6R4
a2τ 5

1 . (14)

Substituting all known constants, assuming the interferometer is located on the surface of the Earth,
gives Δφ

(
h0j

)
≈ 4 × 1021 mavyτ

3
1 as the first order, metric dependent phase and Δφ

(
h0j

)
≈ 6 × 10−4

ma2vyτ
5
1 for the second order, curvature dependent phase. These effects are significantly more modest so

high precision measurements would be needed, specifically to measure the second order term. Such
measurements would provide an independent verification of the results from gravity probe B [33]. Figure 2
also shows the phase due to first and second order effects independently with respect to the object mass.

7. Gravitational waves

Our setup can also extract the phase from the transverse traceless perturbations around the Minkowski
background:

hxx = −hyy = h+ cos (ψ0 + ωt) (15)

hxy = hyx = h× cos (ψ0 + ωt) , (16)

where ψ0 is the GW phase at the interferometer at t = 0 in the interferometers reference frame. We have
assumed the GW is propagating along the x3 = z direction perpendicularly to the interferometer with
angular frequency ω and taken the two helicity states of the GWs as h+, h× � 1. We also ignore the kinetic
energy component of the atoms action, see 2, as it is not relevant for the purpose of detecting the phase.
The GW induced phase difference is

Δφ
(
hij

)
=

4mh+a2τ1 cos (ψ0) cos (ωτ1)

�ω2

(
1 − sin (ωτ1)

ωτ1

)
(17)

≈ 2mh+a2τ 3
1 cos (ψ0)

3�
(18)

where ψ0 is the wave’s phase at t = 2τ 1 and the approximate form holds when ωτ 1 � 1. Note the h×
component is not recorded in our interferometer, as it is proportional to vx which varies between positive
and negative values, thus cancelling itself out unlike h+ as it is a function of v2

x . A rotated apparatus
detects h×.

The underlying mechanism for this phase difference is ultimately through the particle coupling to the
local space-time parameters (the metric). The metric is what will be directly affected by the GW and this is
detected through the phase evolution as given by the action, see 2. Note that our apparatus is not directly
detecting the tidal acceleration of the particle caused by the GW. In fact, it is negligible compared to that
generated by the magnetic field gradient needed to enable the interferometry. It is simply measuring the
spatial stretching/contraction as caused by the GW in the same manner as it would measure a permanent
change in the relevant components of the metric. Of course there is an unavoidable time variation of the
metric due to the GW, but we do not exploit this variation6 —the time variation of the metric is much
slower than an individual run of the interferometer for the frequencies our detector is most sensitive to.
Essentially the interferometer detects phase changes due to static metric components. In this way the correct
analogy here between laser interferometers and our interferometer is that the mass is the replacement of the

6 Here we are specifically referring to the variation during a single particles traversal of the interferometer. The sinusoidal modulation of
the phase difference due to the variation of the metric from one run to the next will be how the GW is measured.
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Figure 3. Comparison of strain sensitivity between two different mass, Δx = 1 m GW detectors. The dashed green curve is for a
ground based interferometer of mass 10−25 kg, τ 1 = 7.3 × 10−5 s and a flux N = 106 taken from [32] for Rb87 atoms, the lack of
GGN limit in the sensitivity can be attributed to the extremely short interferometry time reducing the effect of the Newtonian
potential in the final phase difference. The lower orange curves are for a 10−17 kg mass, τ 1 ≈ 0.73 s, and N = 400 for ground
based (solid, including GGN with relevant cancelation) and space based (dotted) sensitivities. It also shows the low frequency
strain sensitivity reduction due to gravity gradient noise.

photons. They both act to measure the change in spatial distances due to the GW. As the path length
difference of ∼ h+L is essentially being measured in units of the matter wave de Broglie wavelength,
∼ 10−17 m, L ∼ 1 m suffices (note in our case L = Δx). Let us emphasize here that one should not interpret
our interferometer as detecting the tidal acceleration as given by h+Lω2 directly acting on the mass. This
also leads directly to how the GW sensitivity in our interferometer scales uniquely compared to the
acceleration sensitivity. Consider increasing the magnetic field gradient applied, such that aτ 2

1 = Δx

remains fixed, while reducing τ 1. The GW induced phase difference scales as Δφ(hij) ∝ Δx2

τ1
hij because the

GW metric couples to the velocity of the particle (S ∝ hijv
ivj) while the stray acceleration induced phase

difference scales as Δφ (h00) ∝ Δxτ1h00. As such the GW sensitivity can be further enhanced while
suppressing the noise effects in our signal, giving an improved signal to noise ratio. Thus our interferometer
is qualitatively very different from LIGO/LISA. A second crucial difference between laser interferometers
and MIMAC is that there is no back-action and as such the related standard quantum limit is not a limiting
factor. This is because the measurement only occurs once after the interferometry has taken place, and the
position is not measured either, only the final spin state. Indeed our interferometer is closest in mechanism
to single atom interferometers, which were suggested as some of the early atom-interferometry schemes for
GW detection [39–41].

These two differences form the basis of the potential future advantages this interferometer holds over
laser interferometers, in which the standard quantum limit and Newtonian noise act as the primary limits
on the sensitivity. Neither are fundamentally limiting with MIMAC or a MIMAC like interferometer.

With respect to the early atom interferometers, our advantage stems from the much larger m for our
interferometers as our Stern–Gerlach (SG) methodology opens up the scope to create a high enough Δx,
even with the increased mass. Here we should note that the more advanced proposals from atom
interferometry such as atomic GW interferometric sensor (AGIS) as discussed in [43] are qualitatively very
different from our scheme. As such, we can compare only the scales, but not the mechanism. They generate
a phase difference ∼ 1016h+ for the space based detector [42] with baseline size L ∼ 107 m compared to our
Δφ

(
hij

)
∼ 1017h+ for a baseline size of 1 m as shown in figure 3. Again, as the mechanism of our proposal

differs significantly from AGIS and related schemes the above comparison does not capture the entire
effectiveness of these two proposals.

One can see from 18 that the phase output will be independent of GW frequency provided
ωτ 3 ∼ ωτ 1 � 1, though it will be limited by gravity gradient noise at lower frequencies (see figure 3). It is
in this regime that our interferometer is most sensitive to GWs. The frequency scaling of detectability is
understood by noting it is susceptible to the wave’s time-averaged amplitude, which tends to zero for higher
frequencies. As such, higher frequency GWs can be detected by using shorter time detectors, as seen in
figure 3, albeit with a lower sensitivity without also increasing the magnetic field gradient and mass. Note
that we define a detectable strain by Δφ

(
hij

)
� 1/

√
N for N particles traversing the interferometer in series

(and/or several interferometers in parallel). Further note that around 10–104 Hz, LIGO is already
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performing [67], while there are undetected lower frequency GW sources [68]. Our interferometer will be
complementary in part of the range of LISA [38] (10−6–10 Hz) for an underground implementation or all
of its range for a space based interferometer.

8. Practical implementation

While the sensor we have proposed is ambitious in its scope, there does not appear to be any fundamental
or insurmountable obstacle to its creation using current and near future technologies. Furthermore, we are
primarily looking to show its ‘in principle’ feasibility by presenting an example scheme for realising the
interferometer. For the remainder of this article we will outline the techniques which can be employed to
create such an interferometer. We will discuss the primary sources of decoherence which act to destroy the
superposition as well as consider the primary sources of noises in the phase output signal. This will be used
to put limits on the tolerable noise and fluctuations of the experimental parameters such as mass
fluctuations from one particle to the next and timings. On top of the constraints and methods discussed
below, the creation of this interferometer will require further work to ensure excellent surface termination
to reduce dangling bonds, motional decoupling and a method for the creation of a beam of flying diamond
among further experimental advances on which work is ongoing [69] in the relatively new field of large
mass interferometry.

To realise the proposed interferometer a magnetic field gradient (∂xB) is used to create the spatial
superposition of size Δx = aτ 2

1 with a = gNVμB∂xB/m where gNV is the Landé g factor and μB is the Bohr
magneton [18]. For large mass interferometry to carry advantage over atoms, Δx must be kept ∼ 1 m even
while m increases. To this end, if we are to keep τ 1 ≈ 0.73 s as is required to achieve our maximum GW
sensitivity (see figure 3) a magnetic field gradient, ∂xB of 106 Tm−1 is needed. Such a large magnetic field
gradient could be created using a current carrying wire. We however propose the use of dual overhead
wires. This allows for a more uniform magnetic field gradient to be maintained while increasing the
distance between the interferometric particles and the wires, so reducing spurious forces. These wires would
have to arranged in many small horizontal sections such that they approximately follow the path of the
non-zero spin interferometer arm, as shown in figure 1. This allows it to always remain proximal to the
non-zero spin interferometer arm, generating a sufficiently large magnetic field gradient without also
requiring an unreasonably large magnetic field. This requires a large current, which will necessitate the use
of carbon nanotube-metal composites, which can support a current density of up to ρI = 1013 Am−2 [70].
The magnetic field gradient amplitude from a single wire is

B =
μ0I

2πD

∂xB =
μ0I

2πD2
=

μ0ρI r̃2

2(̃r + Λ)2 ≈ μ0ρI

8
∼ 106 Tm−1 (19)

where here D is the distance between the centre of the wire and the point at which the magnetic field
strength is measured, r̃ is the radius of the wire, Λ is the distance from the surface of the wire and we have
taken (Λ = r̃). In this way, the primary concern to creating the large magnetic field gradients necessary are
the current stability and the distance Λ required to eliminate other interactions, such as the patch potential
and Casimir interactions, importantly this distance simply sets the thickness required, and does not limit
the theoretical possibility of achieving the required magnetic field gradient. To generate a sufficiently
uniform magnetic field gradient we propose many small pairs of overhead wires are used which modifies
the experienced magnetic field gradient slightly. However, for clarity and as this is a simple proof of concept
argument being presented, a simpler (single bent wire) set-up will be discussed in detail below as numbers
wise, the gradient strength, noise and decoherence are effectively the same.

8.1. Decoherence
The primary sources of decoherence for the spatial superposition states will be scattering of air molecules
and black-body emission giving ‘which path’ information. The spatial coherence can offer a huge window
using low pressure ∼ 10−14 Pa (with lower achieved previously in cryogenically cooled systems [71]) and
low internal temperature ∼ 50 mK. This is achievable, for example, in a dilution fridge [72] or using laser
cooling [62, 63]. For a mass of ∼ 10−17 kg and 100 nm radius, using the results of [73], scattering rates are
calculated to be 0.006 Hz due to scattering of air molecules and 0.06 Hz due to black-body photon emission.
The electron spin coherence at 10 mK can also reach 1 s with dynamical decoupling [74, 75] (partially
present here due to spin flipping pulses, and further extendable by applying pulses to the spin bath [76].
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The scale of the superpositions considered here are consistent with stochastic GW induced decoherence as
we use mesoscopic objects [77].

The proposed set-up brings together state of the art magnetic field gradient, pressure and internal
temperature, all having been realized individually. Sending nanodiamonds through low pressure is still
being developed, as well as combining free flight with cryogenics [72].

8.2. Gravitational signals as noise
By construction, our interferometric signal only depends on the relative phase between the two arms and
thereby is immune to thermal and seismic noise in |ψ(0)〉. Thus for the most sensitive proposed
interferometer (for GWs), the phases due to frame dragging and Newtonian potential type sources
(including gravity gradients [78]) are the primary noise. There can also be further noise sources due to the
implementation, for example particle–particle and particle–magnet Casimir, patch potential and
gravitational interactions.

In the following, we will consider the most challenging to detect signals (GWs) for which the highest
strain sensitivity of h+ ∼ 10−17 occurs for single masses of ∼ 10−17 kg, each traversing the interferometer
one at a time. We can stretch this to h+ ∼ 10−18 by considering N = 400 masses traversing the
interferometer in series over the duration of the interferometer (τ 3), one after another. This can be achieved
by successively cooling [59–63] and injecting one particle every ∼ 10 ms. This then sets the signal strength
which all noises must be kept below (we will discuss below how this can be met). Further, for low frequency
GW detection, say for GWs of frequency ∼ 10 mHz one can do ∼ 100 repeats of this interference during
the period of the gravitational wave. This will improve the sensitivity by an order of magnitude so as to
bring the detector into the range of detection of massive binaries at the above frequency [79]. One can
further improve sensitivity by another factor of 1/

√
N by using N interferometers in parallel. This also

corresponds to the most ambitious setting for the sensor, with a mass m = 10−17 kg, time τ 1 = 0.73 s,
vx = aτ 1 = 1.35ms−1.

Firstly, a simple source of noise in any signal, GW signals included, is due to parameter fluctuations
from one run to the next. With this in mind it is only necessary to consider the largest phase effect (the
Newtonian potential) as it will magnify any uncertainty the most It should be noted that, although not
immediately obvious from 5 or 8, the first order Newtonian phase is independent of the particles mass, this
is due to the inverse scaling of the superposition size with the mass. Furthermore these noises can be
suppressed by orientating the interferometer to be perpendicular to the Newtonian potential gradient
(parallel with the ground). This gives a phase uncertainty δφ due to mass (δm), distance (δR),
superposition size (δ(Δx)) and timing (δτ 1) uncertainty of approximately

δφ ≈ 23δmMG sin(α)

15�R3
Δx2τ1 +

2mMG sin(α)

�R2

(
−2δR

R
Δxτ1 + δ(Δx)τ1 +Δxδτ1

)
(20)

where α = 0 when the interferometer is exactly perpendicular to the local Newtonian potential gradient.
This was derived from equation (8) allowing for variations in the experimental parameters and orientating
the interferometer relative to the local Newtonian gravitational potential. Given that an orientation
uncertainty � 1 pRad is measurable [80], thus |sin (α)| � 10−12 is achievable, the mass, distance, separation
and timing fluctuation would have to be kept below δm � 10−18 kg, δR � 0.1 m δ(Δx) � 10 nm and
δτ 1 � 1 ns respectively to ensure δφ is kept below the detectable limit, that is, to ensure δφ � 0.1.
Variations in otherwise known (systematic) phases can be countered through a careful characterisation of
system parameters and/or modifications of the interferometric setup.

We can note that some noises can be identified due to the unique functional dependences (specifically
how they scale with a, vy and τ 1) of the 5 identified signals (5–7) the individual types of signals could be
identified separately by a network of interferometers allowing them the signal to be filtered out from them.
Of specific note is that by setting vy = 0, 6 becomes zero. Doing so however will limit the ability to
introduce more then one particle into the interferometer at a time, making the sensitivity (and noise
ceiling) Δφ = 1 for a single run of a single interferometer. Furthermore, certain external noises can be
actively cancelled. First order signals can be detected and cancelled by a symmetric detector (using an initial
spin superposition 1√

2

[
|+ 1〉+ | − 1〉

]
) insensitive to second order effects and GWs. Here by first order

signals we are referring to terms in 5 and 6 which are a function of a single derivative. This can be done as
these are the only terms which a symmetric interferometer is sensitive to (the ∝ a2 terms cancel when the
difference is calculated), as such, these noises can be treated as signals which can be subtracted from the
total phase output. The second order Newtonian potential term can also be approximated by the use of
slightly displaced symmetric interferometers. These would again be insensitive to GWs and would result in
third order effects being left in the noise. This method of active cancelation is also only an approximation.
For example consider a source located a distance R from the primary detector, with secondary, symmetric
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interferometers located at R ± s from the source. The signal at the central asymmetric interferometer would
be approximately the average of signal at each symmetric interferometer either side of it. This approximate
signal can be used to cancel the phase noise, thus reducing it by a factor ε(1) which encompasses how close
the approximation is. To determine ε(1) we can expand the signal in orders of s

R from the central,
asymmetric interferometer giving

ε(1) =
δφ(1) (R) − 1

2

(
δφ(1) (R + s) + δφ(1) (R − s)

)
δφ(1) (R)

= 1 − 1

2

((
1 +

s

R

)1/2
+
(

1 − s

R

)1/2
)

≈ 1 − 1

2

(
1 +

s

2R
− s2

8R2
+ 1 − s

2R
− s2

8R2

)

= − s2

8R2
. (21)

Take for example the movement of a 1 kg mass, a distance of 1 m away from the sensor and aligned with the
interferometers x axis (the direction it is sensitive in). If we consider the primary interferometer as having a
symmetric interferometer above and below it at a distance of s = 1 cm then by 11 its movement would have
to be less than d = 10−10 m without any active cancelation, however, with cancelation this becomes
d = 10−5 m, a still significant, but far less difficult value.

8.3. Gravity gradient noise
Distant Newtonian potential fluctuations are known as Gravity gradient noise (GGN) [81, 82]. This is
known to be one of the primary noise sources which limit GW detections in present day GW antennas,
particularly at the low frequencies. Gravity gradient noise is due to seismic waves causing variations in the
local gravitational field. These seismic waves are not as dramatic as earthquakes, but stochastic fluctuations
in the local density and surface fluctuations in the surrounding ground. It is difficult to say anything too
specific about gravity gradient amplitudes as these are known to be highly location dependent [83]. We will
be following closely the analysis performed in [84, 85], combined with measured gravity gradient
accelerations [86, 87] as well as consider how well we could hope to cancel such effects.

Consider the effect of a fluctuation in the atmospheric or ground density Δρ of some volume V, where
for the example of ground based fluctuations of wavelength λ and height ξ, V = λ2ξ, at some distance r
from our interferometer. This will yield an anomalous acceleration of magnitude

a =
GΔρV

r2
cos (β) sin (γ) (22)

where β and γ are the polar coordinates of the disturbance with the coordinate origin located at the
detector. This was derived by considering the standard formula for acceleration due to the Newtonian
gravitational interaction and that the interferometer is sensitive in only a single direction. Thus the
trigonometric dependences are due to the directional sensitivity of the detector. To simplify the analysis we
will consider all regions of fluctuation as independent and so consider the joint effect by adding the squared
acceleration. We will also consider a minimum distance, r0, that is our interferometer to be within a cavity
in which there are no density fluctuations. Considering initially an interferometer located at the surface of
the Earth, then the square of the expected acceleration will be

a2 ≈ G2Δρ2V2

∫ π
2

0

∫ π

−π

∫ ∞

r0

1

r4
cos2 (β) sin2 (γ) r2 sin (γ) dr dβ dγ (23)

→ a ≈
√

2π

3

GΔρV√
r0

. (24)

Now if the interferometer is placed underground at a depth d this becomes

a2 ≈ G2Δρ2V2

∫ π
2

0

∫ π

−π

∫ ∞

d/ cos(γ)

1

r2
cos2 (β) sin3 (γ) dr dβ dγ (25)

→ au ≈ 0.6
a
√

r0√
d
. (26)
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and so we can estimate the phase noise in our underground sensor. Using the measured median results in
[86, 87] of asurface = 3 × 10−11ms−2 for fluctuations occurring at 1 mHz we can estimate the underground
phase noise due to a stochastically varying local acceleration assuming r0 = 1 m and d = 100 m as

δφ(1) ∼ 2 m

�

(
0.6

a
√

r0√
d

)
Δxτ1 (27)

∼ 2 × 105 (28)

which is clearly quite significant. It is also worth noting that ‘quiet’ (low GGN noise) sites can have noise
values two orders of magnitude smaller [84]. There will also be second order effects (δφ(2)) where the local
gravity varies across the interferometer which will be approximately a factor of Δx

λ ∼ 0.001 smaller for
typical fluctuation wavelengths λ = 1 km [83] giving δφ(2) ∼ 2 × 102 at 1 mHz.

These can however be measured and cancelled using symmetric implementations of the interferometer
as discussed above, hence the phase noise will then be δφ(1) → ε(1)105 ∼ 10−4 for s = 0.01 m which is
sufficient to allow detections in this frequency spectrum. There is still the issue of the second order phase
variations (δφ(2)). These can similarly be approximated, this time by two symmetric interferometers, now
spread in the ‘x’ direction, and taking the difference between them divided by the distance between them.
As the two interferometers would have to be spread further apart to make room for the original
interferometer then before they will only accurately measure linear change in g across the interferometer.
This suggest the error in the phase due to GGN after both methods of cancellations are used will be
effectively the third order GGN effect, which will be a further Δx

λ
smaller than the second order effect,

giving δφ(3) ∼ 10−1 at 1 mHz frequency. This is still significant and as such gravity gradient noise will
create an effective noise floor to the sensitivity of our detector. To determine how it effects our sensitivity
at other frequencies we use the scaling provided in [84] of 1/

√
f to generate the noise floor after

cancelling δφ(1) and δφ(2) as discussed above, for all relevant frequencies. The resulting GGN signal is
then

δφ(3) ∼
(
Δx

λ

)2 2 m

�

(
0.6

√
r0√
d
× 3 × 10−11√

f /1 mHz

)
Δxτ1 (29)

≈ 8 × 10−3√
f /1 Hz

(30)

for the m = 10−17 kg interferometer used in figure 3, this also shows that the optimal sensitivity here is in
the 0.04–3 Hz range. Note this also matches closely with the median GGN spectra given in [86].

This is a somewhat crude model, treating both ground and atmospheric fluctuations at once, assuming
uncorrelated fluctuations and integrating over each cell rather than summing. However as we are using
actual measured results for asurface and in effect only concerned with the scaling with r and d, we are unlikely
to be lead astray by our model. Also we are using the measured median GGN spectra and as such likely over
estimating the noise as it would actually effect our interferometer as we would intend for it to be placed at a
‘quiet’ site with low GGN. Furthermore we can note that such a method of measuring and cancelling noise
can be applied to other GW sensors, potentially extending the ground based observable frequencies in all
GW sensors.

8.4. Heisenberg uncertainty noise
Another key noise source in standard GW detectors is the fundamental noise due to the Heisenberg
uncertainty limit. For simplicity we will consider the mass to be in a coherent state saturating the
uncertainty principle, that is,

σxσp =
�

2
(31)

σp =

√
mω�

2
≈ 7 × 10−24 kg ms−1 (32)

σx =

√
�

2 mω
≈ 7 × 10−12 m. (33)

where the particle is assumed to be released from a 100 kHz trap. Beginning with position uncertainty there
are two potential manners in which this could impact the final result, the first is uncertainty in the initial
position giving
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δ (Δφ (h00)) ≈
(

2mMG

�
aτ 3

1

)(
1

(R)2 − 1

(R + σx)2

)
sin (α) (34)

≈
(

4mMGσx

�R4
aτ 3

1

)
sin (α) ∼ 10−7 sin (α) (35)

where again α is the angle between the interferometer’s x axis and the local plane of constant Newtonian
potential. The second manner in which position uncertainty due to HUP could manifest as noise is by
impacting the overlap between the particle. However it is known [18] that this cannot effect the result as the
phase difference is independent of the initial spacial state.

Along similar lines we can consider how the initial momentum HUP uncertainty results in phase
uncertainty. This gives

δ
(
Δφh00

)
≈ 8MGσpaτ 4

1

�R3
sin (α) ∼ 105 sin (α) (36)

as such provided α � 10−5 this is also not an issue. As it is anticipated α ∼ 10−12 [80] the HUP is not
anticipated to be a limiting factor.

8.5. Particle–particle interactions
Any electrostatic interactions can be eliminated as the particle charge can be measured and modified down
to the single electron level [58]. The more concerning interactions will be particle–particle and
particle–magnet interactions. The particle–particle interactions are kept in check by ensuring the particle
flux is low where here the flux is defined as the number of particles through the interferometer per second.
The phase uncertainty it introduces is primarily due to the inter-particle Casimir interaction. It however can
be minimised by ensuring a large enough vy, for example, considering the effective Casimir potential (UC)
between two diamond (ε = 5.7) spheres of radius R̄ a distance d apart as

UC =
23�cR̄6

4πd

(
ε− 1

ε+ 2

)2

(37)

then provided vy = 10 ms−1 then a flux N = 1000 will lead to a phase uncertainty of approximately 0.002
rad with a phase sensitivity to the 0.03 radian level. When vy = 1 ms−1 the highest allowable flux is about
N = 90 which gives a phase uncertainty of approximately 0.05 rad with sensitivity of approximately 0.1 rad.
To this end we have considered N = 400 with vy = 10 ms−1 as sufficient to ensure the particle–particle
interactions are negligible while also gaining phase sensitivity, with larger fluxes yielding phase sensitivity
which would likely lost to other noises discussed above. Note that such large values for vy can be
achieved for a polarizable particle (e.g. nanodiamond) using rapid acceleration in a pulsed optical field
[88].

8.6. Magnetic field fluctuations
Fluctuations of the magnetic field and its gradient will effect the interferometer in a number of differing
ways: modify Δx, stop the interferometer closing perfectly and through the phase fluctuation associated
with variations in the magnetic potential energy.

The source of the magnetic field fluctuations will be due to variations in the current through the wire
taking I → I + δI. Such fluctuations will translate to variations in the applied acceleration δa given by

δa

a
=

δI

I
. (38)

Now if such fluctuations occur at time spans similar to the total interferometry time (τ 3 = 4τ 1) than
they will automatically be cancelled to the alternating direction of the acceleration. Similarly if they occur
much faster than again they will on average cancel throughout the interferometry process. As such the most
significant position fluctuations occur if the sign of δI changes at times t = τ 1 and then again at t = τ 2

suggesting a characteristic time span of 2τ 1 such that its contribution to the acceleration never cancels. In
this instance we have
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δ(Δx)

Δx
=

δa

a
=

δI

I
(39)

although, if multiple particles are traversing the interferometer in series then for a later particle this effect
would smaller or cancel completely, a detail we will neglect here so that we are not underestimating the
noise. In the context of the Newtonian potential variations from one run to the next we found that we
require δ(Δx) � 10 nm (cf section 8.2), which, given the maximum superposition size is Δx = 1 m, sets a
limit to the current variation δI = 10−8I over a time-scale of 2τ 1 ≈ 1.5 s. Now the ensure this is not
exceeded the experimentalists would simply have to monitor the current with an ammeter to ensure drift is
kept below this level.

Furthermore we can consider the current fluctuation due to thermal effects within the conducting wire
by considering Johnson–Niquist noise which gives the current noise through the wire as

δI =

√
4kBTΔf

R
(40)

where kB is Boltzmann’s constant, T the temperature of the wire, Δf ∼ 1 Hz the bandwidth for noise and
R ∼ 22 kΩ is the resistance of the wire [89]. This gives a current noise of δI ∼ 10−12 A if the wire is
maintained at room temperature. This is likely to be well below the required noise floor, even with the wire
heating up well above room temperature.

This will also then lead to the particles overlapping only up to the bound given approximately by δ (Δx).
However using the results derived below we can conclude δ (Δx) ∼ 10−15 m, far below the assumed
wavepacket spread due to Heisenberg uncertainty of σx ∼ 10−11 m and so is not of significant concern.

Finally we can consider the phase fluctuation due to the magnetic field coupling. This phase due to the
coupling between an electronic spin and an aligned magnetic field is given by

φ�B =
�μ · �Bt

�
= − egS

2me�

μ0I

2πD
t (41)

where e and me are the charge and mass of an electron, g ≈ 2 is the gyromagnetic ratio and S is the spin
angular momentum. Now as the spin state is reversed throughout the interferometer, the total phase will
effectively unwind itself, up to the stability in both the mean magnetic field strength and timing accuracy. In
this way the phase difference will be Δφ�B = 0 up to some stochastic fluctuations given by

δ
(
Δφ�B

)
=

eg�

2me�
× μ0δI

2πD
τ3 +

eg�

2me�
× μ0ρIπD2

2πD
δt

∼ 10−7 m

D
+ 1017 m−1 s−1 Dδt. (42)

Now the first term implies a restriction on the distance between the centre of the wire and the particle of
D � 1μm while the second term implies a limit on the timing uncertainty of δt � 1017D m−1 s. So, taking
D = 2 × 10−5 m, thus requiring a current of I ≈ 2000 A and magnetic field magnitude of B = 40 T, a
timing uncertainty of δt � 10−13 s is required. This is certainly a difficult requirement, but does not seem
completely unreasonable given the historical achievement of pico-second (10−12 s) timings with microwave
lasers [90] with femto-second also achieved more recently [91].

Each small section of current carrying wire pair will have to be controlled independently and thus will
have an independent current fluctuating stochastically about the intended value I. Therefore, there is no
independent noise at frequencies lower than that which corresponds to the time each wire pair controls the
particle-noise at such frequencies essentially corresponds to the sum of noises from blocks of consecutive
wires. Thus we do not need to consider them separately; considering the noise at the frequency
corresponding to the time each wire pair controls the particle suffices. In this case, the wire pair controls the
motion of the particle for typically twire = 7μs to ensure the particle sees a uniform, linear magnetic field
gradient throughout the interferometry process. This corresponds to a noise frequency of fwire ∼ 1.4 ×
105 Hz. Over the total time of the experiment ∼ 1 s, the uncertain part of the Zeeman phase accumulated
will be a summative random walk type phase. Here each wire interval is responsible for a step in the
random walk. For this to be negligible, we require the random part of the magnetic field magnitude at the
frequency fwire to be δB(fwire) < �

μB

√
fwire ∼ 4 nT (alternatively, simply keeping track of the magnetic field

fluctuations to this accuracy will suffice). This corresponds to a current uncertainty of δI(fwire) < 20μA at

the frequency of fwire. For frequencies f > fwire, the constraint on δB(f ) � 4
√

f /fwire nT will only be easier
to satisfy. Additionally, the fluctuation in the gradient will also cause an uncertainty in the particle’s
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position of

δ (Δx) =
δIt2

wireΔx

Iτ 2
1

≈ δI × 10−10

I
(43)

which, by requiring δ (Δx) � σx, bounds the high frequency (MHz) magnetic field fluctuations δI to
δI � 20 A. This can be extrapolated to give a general bound, frequency dependent bound of

δI(f ) � 2 × 103A Hz−1/2√
f

. (44)

8.7. Particle–magnet Casimir interaction
To model the particle–magnet Casimir induced phase fluctuations we can note that, as the particle radius is
R̄ ∼ 10−7 m and the particle–magnet surface distance is kept at Λ = 10−5 m, the particle–magnet system
can be considered to be in the long range limit, the path phase difference of [92]

ΔφCasimir =
23cR̄3

4πΛ4 τ3 ∼ 106 rad (45)

where c is the speed of light and τ 3 is the total interferometry time as shown in figure 1. While this is
significant, it is a constant phase provided the separation distance is also kept constant it can be normalised
for in the output. This however requires certainty in the particle–magnet separation to be ∼ 10−11 m while
the aforementioned timing stability is sufficient here. This also leads to a maximum path displacement of
∼ 10−3 m over the length of the interferometer leading to the two state not overlapping without also
adjusting the spin-0 arm of the interferometer. This displacement will be stable to the same level as the
phase however and so should not limit the ability to completely overlap the two.

Patch potentials refer to electrostatic interactions between regions of non-zero charge on a globally
charge neutral object. The patch potential interactions can largely be dealt with by using single crystal
particles as the interferometry masses. The particle–magnet patch potential interaction will be further
minimised by the geometry of the system. The patch potential force [93] scales as

F ∝ R̄eΛ/a

sinh(Λ/a)
(46)

where again R̄ ∼ 10−7 m is the particle radius, Λ ∼ 10−4 m is the particle–magnet separation and here
a < R̄ is the size of the patch potential. This exponential suppression means that the patch potential is
effectively negligible. Furthermore since the particle can me moves along the magnet, and by initialising the
particles as physically spinning any patch potential interactions can be further averaged out. Finally if the
particle is constructed out of a single crystal these patch potential effects would negligible.

9. Conclusion

We have presented the possibility of using the interferometry of mesoscopic objects (say, objects of mass
∼ 10−17 kg) to detect both first and second order derivatives of the space-time metric in a compact setup.
We have found that for mesoscopic masses, such interferometry is not only sensitive to the Newtonian
potential, Earth’s frame dragging, but also extremely weak signals such as mid frequency GWs for a ground
based detector, and low frequency GWs for a space based detector. We have presented an example form for
such a mesoscopic mass interferometer and presented the expected sensitivity for our device. In designing
our example detector, we have identified the requirements which must be met to mitigate the known
sources of noise, such as GGN, uncertainty principle, Casimir and patch-potential interactions. The SG
principle of the specific interferometer design implies that simply by changing the orientation of a magnet,
the whole interferometer is re-oriented to both identify the angular origin of sources and couple to different
components of the metric tensor. Furthermore, the manner in which the phase difference accumulated due
to the Newtonian potential and GW signals scale with the experimental parameters a and τ 1 points to an
important and fundamental difference between this type of interferometer and light based interferometers.
This difference provides an avenue to further improve GW sensitivity while reducing many noise sources,
including GGN. The compactness means that whole GW sensitive interferometers can be put in a single
vibrational isolation platform [67] and large networks of interferometers can be built to identify and cancel
noise. Less demanding values for ∂x�B and the coherence times suffice to detect the less demanding
components such as h00 or for accelerometry (e.g. ∂x�B = 104 Tm−1, τ 1 ∼ 70 ms, 10−18 kgs and Δx =

1 mm can already detect both the Newtonian curvature and the Earth’s frame dragging). Attempts to build
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the most ambitious limit of the interferometers, namely, for GW detection with superpositions of 10−17 kg
masses as discussed here will also push the limits of macroscopicity of superpositions as defined in [94] to
μ ≈ 26 (where atomic and macromolecular interferometry have achieved μ ≈ 11 [95] and μ ≈ 14.5 [96]
respectively, with an actual Schroedinger cat experiment corresponding to μ ≈ 57). This will constrain
intrinsic collapse models [20, 95] to an electron coherence time τ e ∼ ×1026 s at a critical length scale
�/σq ∼ 1 m. We may be able to test short distance modifications of gravity [97, 98], and the gravitational
self-localization of wavefunctions [99, 100].
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[91] Kim J, Cox J A, Chen J and Kärtner F X 2008 Drift-free femtosecond timing synchronization of remote optical and microwave

sources Nat. Photon. 2 733–6
[92] Ford L H 1998 Casimir force between a dielectric sphere and a wall: a model for amplification of vacuum fluctuations Phys. Rev.

A 58 4279–86
[93] Speake C C and Trenkel C 2003 Forces between conducting surfaces due to spatial variations of surface potential Phys. Rev. Lett.

90 160403
[94] Nimmrichter S and Hornberger K 2013 Macroscopicity of mechanical quantum superposition states Phys. Rev. Lett. 110 160403
[95] Kovachy T, Asenbaum P, Overstreet C, Donnelly C A, Dickerson S M, Sugarbaker A, Hogan J M and Kasevich M A 2015

Quantum superposition at the half-metre scale Nature 528 530
[96] Nimmrichter S, Hornberger K, Haslinger P and Arndt M 2011 Testing spontaneous localization theories with matter-wave

interferometry Phys. Rev. A 83 043621
[97] Biswas T, Gerwick E, Koivisto T and Mazumdar A 2012 Towards singularity and ghost free theories of gravity Phys. Rev. Lett. 108

031101
[98] Biswas T, Mazumdar A and Siegel W 2006 Bouncing universes in string-inspired gravity J. Cosmol. Astropart. Phys. 2006 009
[99] Buoninfante L, Lambiase G and Mazumdar A 2018 Quantum solitonic wave-packet of a meso-scopic system in singularity free

gravity Nucl. Phys. B 931 250–61
[100] Buoninfante L, Lambiase G and Mazumdar A 2018 Quantum spreading of a self-gravitating wave-packet in singularity free

gravity Eur. Phys. J C 78 73

18

https://doi.org/10.1103/physrevd.97.059901
https://doi.org/10.1103/physrevd.97.059901
https://doi.org/10.1103/physrevd.97.059901
https://doi.org/10.1103/physrevd.97.059901
https://arxiv.org/abs/1809.08242
https://arxiv.org/abs/1906.00835
https://doi.org/10.1038/ncomms3202
https://doi.org/10.1038/ncomms3202
https://doi.org/10.1038/ncomms3202
https://doi.org/10.1038/ncomms3202
https://doi.org/10.1088/0953-4075/49/6/064001
https://doi.org/10.1088/0953-4075/49/6/064001
https://arxiv.org/abs/1810.07045
https://doi.org/10.1103/physreva.84.052121
https://doi.org/10.1103/physreva.84.052121
https://doi.org/10.1038/ncomms2771
https://doi.org/10.1038/ncomms2771
https://doi.org/10.1038/s41467-018-04916-z
https://doi.org/10.1038/s41467-018-04916-z
https://doi.org/10.1038/nmat3805
https://doi.org/10.1038/nmat3805
https://doi.org/10.1016/j.physleta.2017.08.044
https://doi.org/10.1016/j.physleta.2017.08.044
https://doi.org/10.1016/j.physleta.2017.08.044
https://doi.org/10.1016/j.physleta.2017.08.044
https://doi.org/10.1103/physrevd.58.122002
https://doi.org/10.1103/physrevd.58.122002
https://doi.org/10.1088/0264-9381/32/1/015014
https://doi.org/10.1088/0264-9381/32/1/015014
https://doi.org/10.1364/ol.36.001698
https://doi.org/10.1364/ol.36.001698
https://doi.org/10.1364/ol.36.001698
https://doi.org/10.1364/ol.36.001698
https://doi.org/10.1103/physrevd.88.122003
https://doi.org/10.1103/physrevd.88.122003
https://doi.org/10.1103/physrevd.93.021101
https://doi.org/10.1103/physrevd.93.021101
https://doi.org/10.1103/physrevd.80.122001
https://doi.org/10.1103/physrevd.80.122001
https://doi.org/10.1103/physrevd.30.732
https://doi.org/10.1103/physrevd.30.732
https://doi.org/10.12942/lrr-2011-5
https://doi.org/10.12942/lrr-2011-5
https://doi.org/10.1007/lrr-2015-3
https://doi.org/10.1007/lrr-2015-3
https://doi.org/10.2183/pjab.93.026
https://doi.org/10.2183/pjab.93.026
https://doi.org/10.2183/pjab.93.026
https://doi.org/10.2183/pjab.93.026
https://doi.org/10.1038/nphoton.2012.87
https://doi.org/10.1038/nphoton.2012.87
https://doi.org/10.1063/1.4818619
https://doi.org/10.1063/1.4818619
https://doi.org/10.1063/1.92407
https://doi.org/10.1063/1.92407
https://doi.org/10.1063/1.92407
https://doi.org/10.1063/1.92407
https://doi.org/10.1038/nphoton.2008.225
https://doi.org/10.1038/nphoton.2008.225
https://doi.org/10.1038/nphoton.2008.225
https://doi.org/10.1038/nphoton.2008.225
https://doi.org/10.1103/physreva.58.4279
https://doi.org/10.1103/physreva.58.4279
https://doi.org/10.1103/physreva.58.4279
https://doi.org/10.1103/physreva.58.4279
https://doi.org/10.1103/physrevlett.90.160403
https://doi.org/10.1103/physrevlett.90.160403
https://doi.org/10.1103/physrevlett.110.160403
https://doi.org/10.1103/physrevlett.110.160403
https://doi.org/10.1038/nature16155
https://doi.org/10.1038/nature16155
https://doi.org/10.1103/physreva.83.043621
https://doi.org/10.1103/physreva.83.043621
https://doi.org/10.1103/physrevlett.108.031101
https://doi.org/10.1103/physrevlett.108.031101
https://doi.org/10.1088/1475-7516/2006/03/009
https://doi.org/10.1088/1475-7516/2006/03/009
https://doi.org/10.1016/j.nuclphysb.2018.04.012
https://doi.org/10.1016/j.nuclphysb.2018.04.012
https://doi.org/10.1016/j.nuclphysb.2018.04.012
https://doi.org/10.1016/j.nuclphysb.2018.04.012
https://doi.org/10.1140/epjc/s10052-018-5535-4
https://doi.org/10.1140/epjc/s10052-018-5535-4

	Mesoscopic interference for metric and curvature & gravitational wave detection
	1.  Introduction
	2.  Non-relativistic action
	3.  Interferometric setup
	4.  Observable components of space-time metric
	5.  Newtonian potential
	6.  Frame dragging
	7.  Gravitational waves
	8.  Practical implementation
	8.1.  Decoherence
	8.2.  Gravitational signals as noise
	8.3.  Gravity gradient noise
	8.4.  Heisenberg uncertainty noise
	8.5.  Particle–particle interactions
	8.6. Magnetic field fluctuations
	8.7.  Particle–magnet Casimir interaction

	9.  Conclusion
	Acknowledgments
	ORCID iDs
	References


