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To choose the appropriate resources for their healthcare needs (primary care (GP) or emergency department

(ED)), patients seeking acute care must self-triage based on their own assessments of symptoms and severity.

However, as patients typically lack sufficient medical knowledge, self-triage decisions can often be inaccurate.

In response, healthcare and technology companies have been developing and deploying AI-powered virtual

triage tools designed to help patients make better self-triage decisions. To date, however, the operational

implications of such tools have not been assessed. This paper therefore develops a queueing game model

to investigate the impact of virtual triage in the acute care setting and potential policies to maximize its

efficacy. We find that, due to its decentralized nature, when virtual triage excessively recommends emergency

(primary) care, it counterintuitively brings about a decrease in ED (GP) visits. Another important finding

is that in an unregulated environment, the adoption of informative virtual triage can worsen system perfor-

mance, even when the virtual triage recommendation is reasonably accurate. Building on these insights, we

identify two sources of inefficiency and propose associated policy actions that can help unlock the potential

operational benefits of virtual triage.
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1. Introduction

As populations continue to grow and age, acute care services around the world face increasing

demand pressure from patients presenting with life-threatening emergencies, acute complications

of chronic conditions, and routine illnesses that require prompt attention (Hirshon et al. 2013).

Driven by this growth in demand, the value of the global acute care market is expected to expand

from USD 2.4 trillion in 2018 to USD 4.0 trillion by 2026, with a compound annual growth rate

(CAGR) of 6.7% (Grand View Research 2019). Growing revenue streams along with the increasing

volume and diversity of demand have fostered the expansion and comprehensiveness of acute care

systems. Consequently, a variety of options have become available to patients to satisfy their acute

care needs, including primary and emergency care delivered in varied settings such as primary care

practices (also known as general practices (GPs)), hospital-based emergency departments (EDs),

and freestanding EDs (Kocher and Ayanian 2016).

This complex range of acute care options creates both opportunities and challenges for patients

seeking the appropriate level and location of acute care. Patients with emergency care needs (e.g.,
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road traffic accident victims) will typically attend a nearby ED where they can receive timely and

prioritized access to experienced emergency practitioners, advanced diagnostic tools, and surgical

facilities, if required. To preserve capacity for patients requiring emergency care in EDs, it is

normally recommended that patients with less urgent and complex care needs (e.g., patients with

flu symptoms or mild pain) instead seek care in a primary care setting, where access to care is

typically slower but costs are also lower. However, a patient’s choice of the appropriate setting

for their healthcare needs critically depends on their ability to self-triage. Yet patients, who lack

professional medical knowledge, are charged with determining the urgency and severity of their

acute illness or injuries at a time when they may also be experiencing heightened emotions, which

can lead to inaccurate disposition decisions (Trivedi et al. 2017).

When patients are unable to self-triage accurately, a mismatch can be created between the supply

and demand of acute care resources. On one hand, when patients requiring primary care self-triage

wrongly, they may seek care at an ED, incurring unnecessary costs and worsening the overcrowding

problem at the ED. The arrivals of these patients in EDs are in fact known to be one of the primary

drivers of ED overcrowding. For example, studies have shown that the percentage of primary care

patients receiving treatment in EDs worldwide ranges from 9% to 60% (Lega and Mengoni 2008).

While ED triage (i.e., the prioritization of treatment of patients requiring emergency care, who

can preempt other patients if necessary) has been employed as one tool to counteract this problem

(Iserson and Moskop 2007), ED treatment of patients who only require primary care nevertheless

wastes costly emergency care resources. Moreover, triage provided by nurses and physicians further

consumes limited ED resources that might otherwise be used to improve diagnosis and treatment,

potentially impacting the quality of care provided (Corl 2019).

On the other hand, a patient requiring emergency care who self-triages wrongly may initially seek

care in a primary care setting. If the general practitioner is unable to diagnose or treat the patient,

they are then referred to secondary care (e.g., an ED if presenting symptoms are acute, or an

outpatient specialist otherwise). In this case, an unnecessary cost is incurred at the GP and patients

also experience treatment delay. While the prevalence of this problem has received relatively less

attention than the prevalence of ED overcrowding, studies have found that patients are generally

less likely to underestimate than overestimate their severity (Trivedi et al. 2017). Nevertheless,

GPs anecdotally report seeing a non-trivial number of patients who require immediate transfer to

an ED (Coyle 2017), with treatment delay having potentially serious and adverse consequences for

these patients.

This mismatch in the supply and demand of acute care resources can be alleviated by improving

the accuracy of patients’ upstream self-triage decisions. As long ago as the 1970s, phone triage ser-

vices have been used to help patients self-triage (Coons and DuMoulin 2000). When calling a triage
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nurse, the patient provides information about their symptoms and receives a triage recommen-

dation. However, phone triage services have longstanding accessibility issues due to the inherent

responsiveness-cost trade-off: given high service demand and limited service capability, a call to

phone triage typically involves long waiting times, which discourages patients from accessing these

services. For example, during the COVID-19 pandemic, people with coronavirus symptoms in the

UK struggled to get through on the National Health Service (NHS) 111 phone triage service, with

many reporting that they were kept on hold for up to three hours or simply cut off (Dalton 2020).

Recent advances in digital technologies, such as artificial intelligence (AI), offer another solution

to improve patient self-triage accuracy and could fundamentally resolve the responsiveness-cost

conundrum. In particular, the integration of digital technologies into the management of healthcare

operations has been growing steadily, reshaping how care is delivered to patients (Boute and Van

Mieghem 2020). Computer-aided diagnosis, telemedicine, wearable medical devices, blockchain-

based electronic health records, and computer-assisted drug discovery are a few concrete examples

of the digital transformation in healthcare. Meanwhile, to enable more accurate and efficient self-

triage, healthcare and tech companies worldwide have been developing and deploying AI-powered

virtual triage tools in the form of websites and mobile applications. By asking a sequence of ques-

tions relating to patients’ personal information and presenting symptoms, virtual triage can give

patients immediate triage recommendations before they seek care. As the triage recommendations

are provided by pre-trained classification algorithms, virtual triage has a significant cost advantage

over traditional phone triage services. Since actual triage nurses are not required, triage service

operators find that virtual triage is highly scalable with low marginal operating cost. For patients,

virtual triage is highly responsive, meaning they can get instantaneous triage recommendations

without delay. Moreover, AI-powered virtual triage enjoys a unique advantage in that triage accu-

racy improves over time with more training data and better classification algorithms.

Given the potential benefits, virtual triage firms have been partnering with major health

providers to increase adoption of the technology. For example, in 2017, Babylon in the UK part-

nered with the NHS to provide a virtual triage service that, on average, requires 12 text messages

and takes about one and a half minutes to complete (Lovett 2018). In the US, Buoy Health offered

an AI-powered virtual triage tool to Froedtert & The Medical College of Wisconsin via Froedtert’s

website (see Figure 1 for the website and a sample virtual triage recommendation). Adoption has

been supported by early empirical evidence that has demonstrated the effectiveness of virtual triage

in modifying users’ care-seeking behavior. For example, a recent study of Buoy Health’s virtual

triage chatbot showed that 32% of its users reduced their intended level of care (Winn et al. 2019).

Such virtual triage technologies may be especially helpful when patients are suffering with ill-

nesses for which their self-triage accuracy is poor. During the COVID-19 pandemic, for example,
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Figure 1 Sample triage recommendation from Buoy Health’s AI-powered virtual triage tool on Froedtert’s web-

site. Source: https://froedtert.buoyhealth.com/symptom-checker/

patients have struggled to determine the level of care that they require, as both the coronavirus and

influenza virus cause respiratory disease that presents as a wide range of similar symptoms. Due

to highly infectious nature of the coronavirus, self-triage inaccuracy in this case is extraordinarily

dangerous, as it unnecessarily exposes patients and healthcare workers to the risk of cross infec-

tion. To ease the burden on healthcare systems and reduce the risk of infection, hospitals and tech

firms have developed virtual triage tools to help manage the pandemic (Hao 2020). For example,

San Francisco-based tech company GYANT developed the COVID-19 Screener and Emergency

Response Assistant, which is a virtual triage tool that has been made accessible to patients on

participating hospitals’ websites (Blue Shield of California 2020). Furthermore, in China, Tencent

built and open-sourced a COVID-19 self-triage assistant with AI technology to “help users with

symptoms such as fevers and coughing to conduct a preliminary self-evaluation of their illnesses

quickly and seek medical care appropriately” (Tencent 2020).

While virtual triage tools are being developed and deployed worldwide, enabled by advances in

AI and expedited by COVID-19, there is at present, however, little understanding of the impact

of their use on the healthcare system. In fact, recent efforts to deploy medical AI have found that

a lack of understanding of the specific clinical constraints and operational challenges can lead to

poor performance in real-world settings, even for medical AI with high accuracy in a lab (Heaven

2020). In particular, multiple studies have shown that virtual triage tends to encourage users to

https://froedtert.buoyhealth.com/symptom-checker/
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seek emergency care despite the fact that such care may exceed their needs (Semigran et al. 2015,

Chambers et al. 2019). This has invoked widespread concern that the adoption of virtual triage

may lead to an increase in ED visits by the so-called “worried-well,” thereby worsening the ED

overcrowding problem.

With these concerns in mind, this paper develops a queueing game model to explore the opera-

tional impact and policy implications of virtual triage adoption by considering a number of practi-

cally relevant and related problems. To understand whether excessively recommending emergency

care does indeed lead to an increase in ED visits, we first study (1) how virtual triage modifies

patient care-seeking behavior. Due to the decentralized nature of the technology, patients may not

necessarily follow virtual triage recommendations, particularly when they contradict patients’ self-

triage decisions. Meanwhile, if and when virtual triage does modify patient care-seeking behavior,

one can also ask (2) what is the impact on social cost? Could the adoption of virtual triage lead

to a worse outcome with higher equilibrium social cost than before (i.e., in the absence of virtual

triage)? If so, (3) how does patient self-triage accuracy moderate the impact of virtual triage? Is

the adoption of virtual triage more likely to lead to higher equilibrium social cost when patients

have higher or lower self-triage accuracy?

From a policy perspective, our paper also analyzes different policy actions that unlock the oper-

ational benefits of virtual triage. It is the unique capability to continuously learn and improve

accuracy that underlies the potential benefit of AI-powered virtual triage. However, this advantage

of AI also poses a regulatory challenge: (4) is more accurate virtual triage always better? After

evaluating a virtual triage tool and deeming it effective, should the regulator limit its authorization

to only the current version or also authorize subsequent versions (assumed to have higher accu-

racy) without re-evaluation (Babic et al. 2019)? Meanwhile, the triage capability of virtual triage

can be characterized by the associated receiver operating characteristic (ROC) curve. By vary-

ing the discrimination threshold, a particular accuracy (i.e., virtual over-triage and under-triage

probability1) can be chosen subject to the constraint of the ROC curve. Hence, a question that

naturally arises is, (5) for a given virtual triage tool, how should the accuracy, or equivalently, the

discrimination threshold, be determined? Moreover, how should the choice of accuracy change as

the triage capability of the algorithm improves over time? Lastly, (6) how should the current acute

care system respond to the introduction of virtual triage to fully realize its operational benefit?

To answer these questions, in Section 3, a benchmark model is first developed for patients’ self-

triage and choice of care in the absence of virtual triage. We then present a model of virtual triage in

Section 4 and discuss its three unique features: the accuracy trade-off as characterized by an ROC

curve, the learning effect of AI algorithms, and the cost advantages of virtual triage technology. In

Section 5 and 6, we next investigate the impact of introducing virtual triage into the current acute
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care system and show, critically, that näıvely doing so may actually lead to a deterioration in system

performance. To resolve the problem, we identify two sources of inefficiency of the equilibrium

outcomes in Section 7, i.e., the suboptimality of current GP/ED fees and decisions on virtual triage

accuracy subjective to a given ROC curve. We end by proposing policy actions that can help ensure

that the operational benefits of virtual triage are realized.

Overall, this paper demonstrates the potential for virtual triage to improve the performance

of acute care systems, so long as their implementation and use are properly regulated and the

operational implications are carefully considered.

2. Related Literature

Given the focus on acute care, triage, information, and technology adoption, our work contributes

to multiple streams of literature relating to healthcare and operations management.

2.1. ED Overcrowding and Triage

The ED overcrowding problem has attracted considerable interest within the operations and health-

care management literature. In this context, a number of papers explore potential triage mech-

anisms to improve the operational efficiency and responsiveness of EDs. Using a combination of

analytical and simulation models, Saghafian et al. (2012) suggest that streaming patients into dif-

ferent groups at the triage stage based on their likelihood of hospital discharge or admission could

reduce ED overcrowding in certain situations. Zayas-Cabán et al. (2014) analyze a multi-server

two-stage tandem queueing model for a hospital’s ED triage and treatment process and identify

the optimal control policies. Huang et al. (2012) also study the allocation of physician capacity in

EDs, where physicians must choose between serving patients immediately after triage or serving

patients whose treatment is already underway. Using a steady-state many server fluid approxi-

mation, Kamali et al. (2019) characterize the operational and financial conditions under which

provider triage should be applied in addition to traditional nurse triage.

Despite the use of ED triage to prioritize treatment of patients requiring emergency care, the

arrival of patients who only require primary care to the ED nevertheless wastes costly resources.

ED resources are further stretched as nurses and physicians must provide triage for these patients,

while diverting resources away from direct patient care in this way may act to reduce the overall

quality of care provided (Corl 2019). In contrast with this traditional ED triage, virtual triage

seeks to prevent patients who only require primary care from making unnecessary ED visits in the

first place, thus preserving expensive resources for patients with the highest need and reducing the

costs associated with providing care that is excessive to patients’ needs. Our research contributes to

the body of work on triage processes by studying the impact of an upstream decentralized virtual

triage service on the ED overcrowding problem.
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2.2. Two-Tier Services

An important feature of acute care systems is that patients can typically choose whether to be

treated at a GP (tier 1) or an ED (tier 2). As more costly and advanced diagnostic/treatment

resources are typically located in the ED, treatment at a GP is normally cheaper but also potentially

less effective at resolving a patient’s health concerns. Thus, it is typically better for the system if

patients requiring primary care visit a GP, thereby reserving expensive tier 2 resources for patients

requiring emergency care who stand to benefit from them the most. However, if a patient requiring

emergency care arrives at a GP, they will then need to be referred to an ED.

One stream of literature relating to two-tier service considers a system where a tier 1 server

(e.g., a generalist) acts as a gatekeeper to a downstream tier 2 server (e.g., a specialist). In these

settings, all customers must first be assessed by the tier 1 gatekeeper, who decides whether to

serve the customer themselves or, if the customer’s service request is too complex, to refer the

customer to a downstream specialist. The study of such gatekeeping systems in operations man-

agement dates back to Shumsky and Pinker (2003), who derive the optimal referral rate of a tier 1

gatekeeper given a deterministic customer arrival rate and service rate, then analyze the optimal

incentive structure in a principal-agent framework. Hasija et al. (2005) extend this framework in a

stochastic setting. Lee et al. (2012) analyze a two-tier service system where one or both tiers can be

outsourced to a third-party profit-maximizing vendor. Freeman et al. (2017) present an integrated

empirical validation of the workload-independence assumption between tier 1 and tier 2 servers,

while Freeman et al. (2020) study the accuracy of referral decisions in the ED.

This existing literature focuses on the strategic behavior of service providers, while assuming

customers are nonstrategic in the sense that they all initially arrive at a tier 1 server. However,

in settings like acute care, depending on their self-assessment of their healthcare requirements,

patients can choose to visit a GP first or an ED directly, at their discretion. One recent paper that

studies customers’ strategic behavior in such a two-tier service setting is Sharma et al. (2019). By

modeling patients’ choice problem as a network queueing game, they analytically characterize the

equilibrium outcomes and design novel incentive mechanisms to align equilibrium patient flow to

the social optimum. Building upon their modeling framework, our paper contributes to the two-tier

service literature by introducing an additional informative signal from virtual triage and assessing

its impact on patient care-seeking behavior and system performance.

2.3. Information in Decentralized Systems

Our paper is closely related to the stream of literature on information in decentralized systems. In

the queueing literature, existing work has analyzed how customers’ queue-joining behavior depends
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on their private information about service quality (Veeraraghavan and Debo 2009, Debo et al.

2012), service rate (Cui and Veeraraghavan 2016), and real-time delay (Hu et al. 2018). Studies

within the social learning literature have analyzed firms’ pricing (Papanastasiou et al. 2015) and

information provision (Papanastasiou et al. 2018) decisions in a context where customers observe

the available reviews and update their beliefs regarding product quality. These existing studies on

information in decentralized systems focus on system information such as product quality, service

rate, or queue length, the realizations of which do not vary based on the customers. However, in

acute care services, due to the necessity for patients to self-triage before seeking care and to their

lack of medical knowledge, customer-specific personal information gives rise to a major uncertainty:

heterogeneous patients self-triage as one of two types (requiring primary or emergency care) based

on their presenting symptoms, with certain probabilities of mis-triage.

Applicable insights from the literature on decentralized systems generally underscore the value

of information obfuscation: due to agents’ self-interested behavior and the impact of (negative)

information externality, full information could lead to suboptimal outcomes, and therefore the

optimum is achieved with less or less accurate information. Cui and Veeraraghavan (2016) show

that revealing service information to customers may destroy consumer welfare or social welfare.

Hu et al. (2018) find that some amount of information heterogeneity in the population can lead to

more efficient outcomes than full information. Papanastasiou et al. (2015) illustrate that scarcity

strategies can be profitable for a firm when consumers learn according to a quasi-Bayesian rule.

Papanastasiou et al. (2018) demonstrate that consumer surplus is nonmonotone in the accuracy of

the platform designer’s information-provision policy.

While this existing work provides a helpful foundation, since we focus on personal information

rather than system information, our findings differ from those of previous studies and are twofold.

On one hand, contrary to the existing literature, we find that in our model, full information is

strictly preferred because it perfectly reveals a patient’s type; they can then seek the appropriate

level of care with no uncertainty. On the other hand, we demonstrate that an additional informative

signal could either improve or degrade system performance, depending on the signal quality, while

a more accurate signal could lead to either better or worse outcomes, depending on the equilibrium

regimes. Hence, our findings imply that for the adoption of virtual triage, information obfuscation

is preferred conditionally, i.e., only when (more accurate) virtual triage leads to worse outcomes.

2.4. Learning of Personal Information

In diagnostic services, customers are heterogeneous and belong to one of a given set of types. To

determine a customer’s type, the service provider performs a sequence of imperfect tests. Multiple

studies have considered such scenarios. For instance, Alizamir et al. (2013) analyze a congested
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system where the diagnostic service provider needs to weigh the benefit of running additional

tests to improve diagnosis accuracy against the cost of delaying other customers in the system.

In contrast with Alizamir et al. (2013), Sun et al. (2018) examine a scenario where the diagnostic

process consists of only a single test, while the subsequent service process is explicitly modeled.

Hence, they capture the trade-off between the time spent on diagnosis and time spent on service.

Levi et al. (2019) study a similar trade-off where the service provider has to dynamically allocate

resources between diagnosing and processing jobs with multiple classes of customers.

In this stream of literature, learning of personal information is centralized, i.e., a single service

provider conducts diagnostic tests for arriving customers, and therefore providers face the same

information/delay trade-off: while running additional tests could improve diagnosis accuracy, it

also delays service for other customers in the system. In such cases, it is clear that more information

could be detrimental. However, in our setting, learning of personal information is decentralized,

i.e., patients use virtual triage to receive an informative signal about the type of their healthcare

needs before seeking care. More importantly, as virtual triage is provided by algorithms, additional

information is obtained instantaneously. Hence, in our model, the information/delay trade-off no

longer exists and it is initially unclear whether more information could make system performance

worse. As we show in later sections, when learning of personal information is decentralized and

costless, more information can in fact still degrade system performance.

Our paper also differs from existing work in terms of information control policy. In the exist-

ing literature, because of the information/delay trade-off, the objective of service providers is to

determine the optimal number of tests to perform. Meanwhile, diagnostic accuracy is assumed to

be exogenous. By contrast, in our paper, the diagnostic accuracy can be endogenized subject to a

given ROC curve.

2.5. Telemedicine

Our focus on virtual triage is also related to the literature on telemedicine. Rajan et al. (2019)

analyze the operational and economic impact of telemedicine technology on a specialist serving

a heterogeneous patient population suffering from chronic conditions. Bavafa et al. (2018, 2019)

study the impact of telemedicine in a primary care setting. Recent work by Liu et al. (2018) and

Savin et al. (2019) analyzes the delivery of telemedicine through on-demand healthcare service

platforms. Most similar to our work in this stream of literature is Çakıcı and Mills (2020), who

analyze the impact of traditional teletriage provided by nurse-staffed phone lines on healthcare

demand management.

Given the focus on AI-powered virtual triage, our study differs from the aforementioned studies

in multiple dimensions. First, virtual triage differs from telemedicine in that the technology does
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not remotely deliver care to patients. Instead, its main purpose is to assist patients in triaging to

the appropriate level of care. Second, virtual triage has a significant cost advantage over traditional

nurse line triage. With virtual triage, recommendations are provided by algorithms and no medical

professional is required. Third, for patients, virtual triage is more convenient as they can get

instantaneous triage recommendations with no delay, compared with traditional nurse lines where

long waiting time could be expected given high service demand and limited service capacity. Fourth,

the accuracy of virtual triage can be endogenized along the ROC curve and improved over time

with more training data and better classification algorithms, while the accuracy of nurse line triage

is typically fixed given the training and clinical guidelines the nurses receive. We explore these

unique characteristics of virtual triage in this paper.

2.6. Virtual Triage

To the best of our knowledge, the only paper in the literature that also studies virtual triage

analytically is Singh et al. (2020). They propose an integral approach where the classifier of virtual

triage and/or the queueing system at an ED are jointly optimized to minimize expected waiting

cost in the ED. Our paper instead studies virtual triage as a decision support tool for patients who

must choose to seek care from a GP or an ED.

Outside of the operations literature, there is a growing interest from the medical community

in empirically evaluating the accuracy and effect of virtual triage on users’ care-seeking behavior.

Verzantvoort et al. (2018) investigate a particular virtual triage smartphone application “Should

I see a doctor?” by focusing on app usage, user satisfaction and compliance. Meyer et al. (2020)

conduct a cross-sectional survey study of Isabel, an AI-assisted virtual triage tool, and show that

a large patient-user group perceives the tool as useful. Semigran et al. (2015) evaluate the triage

accuracy of 23 virtual triage tools. They find that triage advice from these tools generally encour-

ages users to seek emergency care. Chambers et al. (2019) review 27 studies on virtual triage and

also find that virtual triage tends to recommend emergency care. However, patient compliance

with virtual triage in this case is limited: while there is generally good agreement between virtual

triage recommendation and patients’ intended action, those who the system advises to go to an

ED are more likely to seek advice from primary care. This in fact leads to delayed emergency care

seeking and a decrease in ED visits. Our paper provides an analytical explanation that reconciles

and rationalizes these two seemingly conflicting empirical observations (i.e., for virtual triage to

excessively recommend emergency care, but for fewer patients to visit EDs), which is driven by the

informativeness of virtual triage recommendations.
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3. Modeling Patients’ Self-Triage and Choice of Care

In this section, we first establish and analyze a benchmark model in which patients self-triage and

choose a level of care (GP or ED) in the absence of virtual triage, building upon the modeling

framework from Sharma et al. (2019).

3.1. Model Setting

We consider an acute care system consisting of a number of GPs and an ED serving a patient base.

Among the set of patients seeking acute care, some are non-strategic. In particular, patients in

highly acute situations or requiring immediate life-saving interventions (e.g., cardiac arrest, major

trauma) will visit the ED with certainty, often arriving by ambulance, and will receive prioritized

care in the ED. Meanwhile, those patients experiencing a low-acuity illness will, depending on the

complexity of their condition, almost certainly visit either a GP or a specialist. These patients

typically do not require a same-day acute care appointment and can instead wait for an available

appointment on some future date. For these two patient types, we can thus assume that the choice

of care location remains unaffected by the introduction of virtual triage technology.

On the other hand, many patients experiencing moderate acute conditions (e.g., chest pain,

shortness of breath) are strategic: they have uncertainty regarding the nature of their illness and

are therefore unsure whether they should visit a GP first or go directly to the ED. In this case,

an additional signal from the virtual triage algorithm about the appropriate location of care for

their condition can help reduce their level of self-triage uncertainty and potentially change their

care-seeking behavior. The focus of our analysis in this paper is thus on this subset of strategic

patients. (Henceforth, we use the terms “strategic patients” and “patients” interchangeably.)

We assume that strategic patients are either of GP-type, denoted by L, or ED-type, denoted by

H, and we denote the arrival rate of L patients by λL and the arrival rate of H patients by λH .

While L patients can get treated at either a GP (at a lower cost) or an ED (at a higher cost),

H patients require emergency care resources and can only be treated effectively at an ED. Hence,

when H patients visit a GP first, they must subsequently be referred to an ED.

Patient self-triage. In deciding whether to visit a GP first or ED directly, strategic patients

need to self-triage and determine their type based on their symptoms and medical knowledge. We

denote self-triaged GP-type patients by L̂, and self-triaged ED-type patients by Ĥ. The arrival

rate of L̂ patients is denoted by λL̂, while the arrival rate of Ĥ patients is denoted by λĤ .

To model self-triage inaccuracy, we assume that a L̂ patient has a probability bL̂ of being H,

while a Ĥ patient has a probability 1− bĤ of being L. In other words, bL̂ and bĤ are the prior

beliefs of being ED-type for self-triaged GP-type and self-triaged ED-type patients, respectively.
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We assume bL̂ < bĤ , i.e., L̂ patients are less likely than Ĥ patients to be H. The values of bL̂ and

bĤ effectively capture the extent of self-triage inaccuracy. When L̂ and Ĥ patients have distinct

symptoms, bL̂ tends to be small and bĤ tends to be large. On the other hand, when L̂ and Ĥ

patients share a wide range of similar symptoms, patients tend to have low self-triage accuracy

with bL̂ being close to bĤ .

Disutility of waiting. We denote strategic patients’ disutility of waiting per unit time by w.

Unlike non-strategic patients requiring immediate life-saving interventions, who are highly sensitive

to delay, or those experiencing routine illness, who are relatively insensitive to delay, the delay

sensitivity of strategic patients experiencing moderate acute conditions is mild and similar. In

particular, these patients can be thought of as those who require care within 24 hours and are

trying to choose between a same-day GP consultation or a trip to the ED. Given this, we assume

that both L and H patients have similar delay sensitivity.2

Consistent with much of the literature on healthcare system, we denote the expected waiting

time at a GP by a constant QG (Zorc et al. 2017, Çakıcı and Mills 2020). This follows from the

observation that strategic patients seeking acute care only account for a small fraction of all patients

accessing GP services. In particular, GPs manage various types of illness, including the delivery

of chronic care, treatment of acute non-life-threatening diseases, early detection and referral of

patients with urgent serious diseases, health education, immunization, etc. Moreover, to ensure that

acute care patients can receive timely prioritized care despite this varied caseload, GPs typically

reserve capacity each day for acute care appointments (Gupta and Wang 2008). They also have the

ability to reallocate resources between chronic and acute care services and adjust the amount of

capacity reserved for acute care appointments, thereby ensuring that waiting times are relatively

stable regardless of the arrival rate of strategic patients at a GP, λG.

On the other hand, we denote the expected ED waiting time of strategic patients by QE(λE),

where QE(λE) is assumed to be strictly increasing and convex in the arrival rate of strategic patients

to the ED, λE. Unlike a GP, the ED specializes in emergency medicine and is dedicated to acute

care. Hence, strategic patients’ experiences at EDs, particularly the expected waiting time, critically

depend on the care-seeking behaviors of others. From a modeling perspective, the monotonicity

and convexity of QE(λE) are satisfied by common queueing models, including M/M/c and M/G/1

under a first-in-first-out discipline. Practically, the convexity assumption captures the stochasticity

of both the patient arrival process (ED visits are unscheduled, without prior appointments) and

treatment process (patients of different characteristics will follow different care pathways) at the

ED. The term wQE(λE) thus captures the fact that patients’ disutility at the ED increases as more

patients visit the ED, due to the growing expected waiting time.
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Acute care system operating cost. We assume the expected rates of GP and ED operating

costs caused by the arrivals of strategic patients, denoted by SG(λG) and SE(λE), are increasing

and linear in λG and λE, with SG(λG) = aGλG and SE(λE) = aEλE. Hence, aG and aE denote the

expected marginal operating cost per strategic patient arrival to the GP and ED, respectively.

Clearly, it is less costly to have an H patient visit the ED directly than visit a GP first, as H

patients can only get treated at the ED. Meanwhile, to ensure that it is less costly to have an L

patient visit a GP than visit the ED, we assume aG +wQG ≤ aE +wQE(λH).

Choice of care. After self-triage, strategic patients compare the expected cost (i.e., the sum of

monetary payment and disutility of waiting) of visiting a GP first with the expected cost of going to

the ED directly, and they choose the option with a lower cost. Patients incur a monetary payment

every time they visit a GP or the ED, denoted by the expected GP fee pG and expected ED fee pE.

Hence, a L̂ patient decides to visit a GP first if pG +wQG + bL̂[pE +wQE(λE)]≤ pE +wQE(λE)

holds, or visit the ED directly otherwise. Similarly, a Ĥ patient decides to visit a GP first if

pG +wQG + bĤ [pE +wQE(λE)]≤ pE +wQE(λE) holds, or visit the ED directly otherwise.

Let ME(λE) denote the marginal cost incurred by an additional ED arrival when the ED arrival

rate is λE. We therefore have ME(λE) = aE + wQE(λE) + λEw
∂QE(λE)

∂λE
. The ED overcrowding

problem is captured by the term ME(λE): when a patient arrives at the ED, in addition to the

expected service cost aE generated, the patient experiences a disutility of waiting wQE(λE) that is

caused by the presence of other patients at the ED, while other patients at the ED experience an

additional marginal disutility of waiting λEw
∂QE(λE)

∂λE
that is caused by the arrival of this patient.

We now make the following assumption.

Assumption 1.

(i) aG +wQG + bL̂ME(λH)≤ME(λH);

(ii) aG +wQG + bĤME(bL̂λL̂ +λĤ)≥ME(bL̂λL̂ +λĤ).

Assumption 1 captures the practical conditions of patient self-triage accuracy and acute care

cost parameters. Specifically, Assumption 1 implies that, from a social planner’s perspective, it is

less costly to have L̂ patients go to a GP first, as L̂ patients can be treated at a GP with a high

probability at a much lower cost than at the ED. Meanwhile, it is less costly to have Ĥ patients

visit the ED directly, as Ĥ patients have a high probability of being H, in which case going to a GP

first incurs unnecessary disutility of waiting and service cost, as well as delaying their treatment.
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3.2. Social Cost of the Acute Care System

We define social cost Cs(fL̂, fĤ) as the sum of strategic patients’ disutility of waiting and the service

costs of GP and ED operations, where fL̂ and fĤ denote the probability of L̂ and Ĥ patients going

to ED directly. Then, Cs(fL̂, fĤ) can be expressed as follows,3

Cs(fL̂, fĤ) =
∑

l∈{G,E}

λl(fL̂, fĤ)wQl(λl(fL̂, fĤ)) +Sl(λl(fL̂, fĤ)) (1)

where 0≤ fL̂, fĤ ≤ 1, λG(fL̂, fĤ) =
∑

T̂∈{L̂,Ĥ}(1−fT̂ )λT̂ , and λE(fL̂, fĤ) =
∑

T̂∈{L̂,Ĥ}(1−fT̂ )bT̂λT̂ +

fT̂λT̂ .

We characterize the social cost function and the associated optimal patient flow by the following

proposition.

Proposition 1. Cs(fL̂, fĤ) is jointly convex in fL̂ and fĤ . In addition, the unique minimum is

achieved by f∗
L̂

= 0, f∗
Ĥ

= 1.

In other words, Proposition 1 indicates that in order to achieve social optimum, patients should

follow their self-triage decisions despite the uncertainty. This is because, as captured by Assumption

1, having L̂ patients at the ED will very likely waste the costly and valuable medical resources and

worsen the ED overcrowding problem, while if there are Ĥ patients at a GP, they tend to incur

unnecessary disutility of waiting, service costs and delays in their treatment.

3.3. Incentivizing Optimal Patient Flow

We now study the pricing decisions that induce socially optimal patient flow as determined in

Proposition 1. In practice, GP and ED fees cannot be too low because GPs and EDs need to recover

operating costs; meanwhile, they cannot be too high due to regulation, competition, and patients’

outside options. To capture the joint effect of operating cost, regulation and competition, we focus

on the minimum GP and ED fees that can both recover GP/ED operating costs and guarantee

optimal patient flow, denoted by p̂∗G and p̂∗E.4 We characterize the nonatomic Nash equilibrium

(Schmeidler 1973) patient flow, f e
L̂

and f e
Ĥ

, as well as p̂∗G and p̂∗E by the following proposition.5

Proposition 2. For any pG, pE ≥ 0, there exists a unique equilibrium patient flow. In addition,

to induce socially optimal patient flow, i.e., f e
L̂

= f∗
L̂

= 0 and f e
Ĥ

= f∗
Ĥ

= 1, GPs and EDs should

charge the following fees: p̂∗G = aG, p̂
∗
E = aE + [λHw

∂QE(λE)

∂λE

∣∣∣∣
λH

+ wQE(λH)− wQE(bL̂λL̂ + λĤ)]+,

where [d]+ = max{0, d}.

Proposition 2 shows that in order to induce optimal patient flow, GPs should charge the expected

service cost per patient, while the ED needs to charge a fee that may be higher than the expected



Ding, Freeman, Hasija: Can AI Help Improve Acute Care Operations? 15

service cost to prevent L̂ patients from going to the ED directly. This result is in line with a

recent trend of increasing ED fees, which not only recovers operating costs but also prevents people

with (self-triaged) non-emergency conditions from visiting EDs “so that a hospital’s emergency

department can be focused on those who really need emergency services” (Khalik 2014).

3.4. The Incentive Mechanism Conundrum

Due to the inherent self-triage inaccuracy, we still have H patients going to GPs first at rate bL̂λL̂

and L patients visiting the ED directly at rate (1− bĤ)λĤ even under optimal patient flow. The

problem is more salient when patients’ self-triage accuracy is poor, that is, bL̂ is close to bĤ .

If the priority is to further alleviate the ED overcrowding problem, the ED may choose to set

a fee higher than p̂∗E so that even Ĥ patients have a positive probability of going to a GP first.

However, a large number of H patients will then visit a GP first, leading to a potentially serious

treatment delay problem. On the other hand, if the priority is to further reduce treatment delay

for H patients, the ED may set a fee lower than p̂∗E so that L̂ patients have a positive probability

of going to the ED directly. This will lead to a large number of L patients presenting at the ED,

worsening the ED overcrowding problem. More importantly, both measures will lead to equilibrium

patient flows that deviate from the optimal one characterized by Proposition 1, and will therefore

increase social cost.

This conundrum can only be addressed by improving the self-triage accuracy of patients. With

the advances in AI technology, virtual triage tools today can provide patients with an immediate

triage recommendation before seeking care and so improve self-triage accuracy. In the next section,

we present a model of virtual triage.

4. Modeling Virtual Triage

Virtual triage essentially solves a binary classification problem: given the information gathered

from the user about their profiles and symptoms, the classification algorithm can triage the user

as either GP-type, denoted by L̃, or ED-type, denoted by H̃, and recommend that they visit a

GP or an ED accordingly. Specifically, the output of the underlying classification algorithm is a

probability s, i.e., the predicted probability of a particular user being H. We assume that s is

unbiased. A user with a probability s below (above) a chosen threshold will then be virtual triaged

as L̃ (H̃) and recommended to visit a GP (ED).

To characterize the efficacy of the classification algorithm of a given virtual triage tool, let g(s)

denote the probability density distribution of the predicted probabilities of all the virtual triage

users, with
∫ 1

0
sg(s)ds=

b
L̂
λ
L̂

+b
Ĥ
λ
Ĥ

λ
L̂

+λ
Ĥ

, i.e., the fraction of H patients in the patient base. We assume

g(s) is continuous in s ∈ [0,1]. The function g(s) captures the triage capability of virtual triage.
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For instance, if g(s) is distributed towards s= 0 and s= 1, virtual triage is highly effective as it

can predict the types of users’ conditions correctly with a high probability. On the other hand, if

g(s) is centered around s =
b
L̂
λ
L̂

+b
Ĥ
λ
Ĥ

λ
L̂

+λ
Ĥ

, virtual triage is less informative as it cannot distinguish

between L and H patients given the input information.

For a given virtual triage tool characterized by the associated g(s), it is then the virtual triage

provider’s decision to choose a discrimination threshold probability s̄∈ [0,1], such that when s > s̄,

the patient is virtual triaged as H̃ and recommended to visit the ED, and when s≤ s̄, the patient

is virtual triaged as L̃ and recommended to visit a GP. This threshold s̄ is typically chosen with

the objective of maximizing or minimizing some scoring function (Gneiting 2011). For instance,

the virtual triage provider may assign certain weights to under-triaged and over-triaged cases and

then seek to minimize their weighted sum. We next show how the accuracy of virtual triage is

determined by the decision on s̄.

4.1. The Accuracy Trade-Off of Virtual Triage

For a given g(s), any discrimination threshold probability s̄ has an associated (virtual) under-triage

probability α(s̄) = Prob(L̃|H) =
∫ s̄
0 sg(s)ds∫ 1
0 sg(s)ds

and (virtual) over-triage probability β(s̄) = Prob(H̃|L) =∫ 1
s̄ (1−s)g(s)ds∫ 1
0 (1−s)g(s)ds

. As s̄ varies, α(s̄) and β(s̄) vary accordingly. (Note that there is a one-to-one mapping

between s̄ and the pair of α and β. To simplify the exposition, we work with α and β explicitly

(and therefore s̄ implicitly), and omit the dependence of α and β on s̄ for the rest of the paper.)

We characterize the implicit dependence of α on β by the following lemma.

Lemma 1. The under-triage probability α is a decreasing and convex function in the over-triage

probability β, denoted by α= r(β), with r(0) = 1, r(1) = 0.

Lemma 1 highlights the underlying accuracy trade-off faced by the virtual triage provider.6

When s̄ = 0, virtual triage recommends that all patients seek emergency care, in which case we

have under-triage probability α= 0 and over-triage probability β = 1. As s̄ increases, H patients

are more likely to be under-triaged as L̃, while L patients are less likely to be over-triaged as H̃.

When s̄ = 1, we reach another extreme case where virtual triage recommends that all patients

seek primary care, and we have α = 1 and β = 0. For binary classification models, this accuracy

trade-off is commonly captured by a ROC curve, which is defined by plotting sensitivity, i.e., 1−α,

against 1− specificity, i.e., β, at various thresholds s̄ ∈ [0,1]. To facilitate the exposition, rather

than working with the ROC curve, we introduce the function α= r(β) in Lemma 1 and refer to it

as the inverted receiver operating characteristic (IROC) curve.7

We now demonstrate the informational effect of virtual triage. For a patient with a prior belief

b of being H, let bL̃ denote their posterior belief if the virtual triage recommendation is to see a
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GP (i.e., the patient is virtual triaged as L̃). Similarly, let bH̃ denote their posterior belief if the

virtual triage recommendation is to visit an ED (i.e., the patient is virtual triaged as H̃). We then

have the following corollary.

Corollary 1. For any virtual triage tool, we have α≥ 0, β ≥ 0, α+ β ≤ 1, and therefore virtual

triage is informative, i.e., bL̃ ≤ b≤ bH̃ .

Corollary 1 highlights the informational benefit of virtual triage: patients are better informed

of their type after virtual triage recommendations. In particular, when the virtual triage recom-

mendation is L̃, patients’ posterior beliefs of being H are lower than their prior beliefs; when the

virtual triage recommendation is H̃, patients’ posterior beliefs of being H are higher than their

prior beliefs.

4.2. The Learning Effect of Virtual Triage

One unique characteristic of AI-powered virtual triage is its capability to improve accuracy over

time with more training data and better learning algorithms. Specifically, g(s) will be distributed

more towards s = 0 and s = 1 over time, achieving a higher triage capability. We formalize the

learning effect of virtual triage with the following lemma.

Lemma 2. Let g1(s) and g2(s) denote two probability density distributions of the probabilities of

being H for all the users of the virtual triage tool. Suppose ∀ s̄1, s̄2 ∈ [0,1] s.t.
∫ 1

s̄1
(1− s)g1(s)ds=∫ 1

s̄2
(1− s)g2(s)ds, we have

∫ s̄1
0
sg1(s)ds≥

∫ s̄2
0
sg2(s)ds. Let r1(β) and r2(β) be the associated IROC

curves for g1(s) and g2(s). We then have r2(β)≤ r1(β), ∀ β ∈ [0,1].

Lemma 2 shows that as the virtual triage tool improves its triage capability, we can have a new

IROC curve that lies below the original one. Consequently, we can achieve a higher virtual triage

accuracy with lower under-triage and over-triage probabilities. However, as discussed in Babic et al.

(2019), this key advantage of AI poses a regulatory challenge: after evaluating a virtual triage tool

with a specific pair of under-triage and over-triage probabilities and deeming it effective, should the

regulatory authorization be limited to only the current version or also extended to future versions

(with presumed higher accuracy) without re-evaluation? To answer this question, we analyze the

impact of virtual triage, specifically the learning effect, in Sections 5 and 6.

4.3. The Cost Advantages of Virtual Triage

In addition to the benefits discussed above, another key advantage of virtual triage is the instan-

taneity of its recommendation: as the virtual triage recommendation is provided by underlying

classification algorithms, patients can get instantaneous triage advice with no delay before seeking

care. Additionally, virtual triage is highly scalable, with low marginal operating cost and, unlike
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traditional phone triage services, does not require triage nurses. An instantaneous, costless and

informative (by Corollary 1) virtual triage service may therefore appear to be an obvious win-win

for both patients and acute care systems. We investigate this intuition further by studying the

operational impact of virtual triage in the next section.

5. The Impact of Virtual Triage on Patient Care-Seeking Behavior

While many virtual triage tools have been implemented, there is no evidence as to how the current

acute care system will be affected by or respond to the introduction of virtual triage. Hence, we

first study the impact of virtual triage on the current acute care system, as described in Section 3.

Note that we assume the virtual triage service is provided free of charge, which reflects the current

practice. Moreover, this assumption allows us to focus on understanding the informational effect

of virtual triage on patients’ care-seeking behavior and social cost.

5.1. Patient Composition

In the virtual triage context, there are four types of patients: L̂L̃, L̂H̃, ĤL̃, and ĤH̃, where

the first letter denotes a patient’s self-triage decision and the second denotes the virtual triage

recommendation.8 For instance, L̂L̃ patients are those who self-triage as L̂ and are virtual triaged

as L̃. For a given virtual triage accuracy α and β, patients’ posterior probabilities of being H are

bT̂ L̃ =
αb

T̂
αb

T̂
+(1−β)(1−b

T̂
)

and bT̂ H̃ =
(1−α)b

T̂
(1−α)b

T̂
+β(1−b

T̂
)
, and the associated arrival rates of each type of

patients are λT̂ L̃ = [αbT̂ +(1−β)(1−bT̂ )]λT̂ and λT̂ H̃ = [(1−α)bT̂ +β(1−bT̂ )]λT̂ , where T̂ ∈ {L̂, Ĥ}.

The following lemma characterizes the learning effect of virtual triage on patient composition, i.e.,

posterior probability and arrival rate, for each type of patients.

Lemma 3.

(i)
∂b

T̂ L̃
∂α

> 0,
∂b

T̂ H̃
∂α

< 0, T̂ ∈ {L̂, Ĥ}.

(ii)
∂b

T̂ L̃
∂β

> 0,
∂b

T̂ H̃
∂β

< 0, T̂ ∈ {L̂, Ĥ}.

(iii)
∂λ

T̂ L̃
∂α

> 0,
∂λ

T̂ H̃
∂α

< 0, T̂ ∈ {L̂, Ĥ}.

(iv)
∂λ

T̂ L̃
∂β

< 0,
∂λ

T̂ H̃
∂β

> 0, T̂ ∈ {L̂, Ĥ}.

Lemma 3 (i) and (ii) follow from the fact that when the under-triage probability α or over-triage

probability β decreases, the virtual triage recommendation is more informative: patients who are

virtual triaged as L̃ (H̃) are more likely to be L (H), and therefore their posterior beliefs of being

H decrease (increase). Lemma 3 (iii) and (iv) capture the effect of virtual triage accuracy on the

arrival rate of each type of patients. Specifically, a decrease in α leads to fewer H patients being

under-triaged, reducing the arrival rate of L̃ patients and increasing the arrival rate of H̃ patients.

Meanwhile, a decrease in β leads to fewer L patients being over-triaged and therefore increases the

arrival rate of L̃ patients and reduces the arrival rate of H̃ patients.
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As virtual triage is informative by Corollary 1, we have bL̂L̃ ≤ bL̂H̃ and bĤL̃ ≤ bĤH̃ : among patients

with the same self-triage decision, those who are virtual triaged as H̃ have a higher posterior

probability of being H than those who are virtual triaged as L̃. In addition, as bL̂ < bĤ and the

posterior probability is monotonically increasing in the prior for any given α and β, we have

bL̂L̃ ≤ bĤL̃ and bL̂H̃ ≤ bĤH̃ : among patients who receive the same virtual triage recommendation,

those who self-triage as Ĥ have a higher posterior probability of being H than those who self-triage

as L̂. However, the order of bL̂H̃ and bĤL̃ is uncertain and depends on the value of α and β. We

introduce the following definition to characterize the order of posterior probabilities.

Definition 1 (Triage Dominance - Virtual Triage Accuracy). For a given accuracy of

virtual triage, α and β, the accuracy is of self-triage dominance if bL̂L̃ ≤ bL̂H̃ < bĤL̃ ≤ bĤH̃ ; the

accuracy is of virtual triage dominance if bL̂L̃ ≤ bĤL̃ ≤ bL̂H̃ ≤ bĤH̃ .

If virtual triage accuracy is of self-triage dominance, patients self-triaged as Ĥ have higher poste-

rior probabilities than patients self-triaged as L̂, regardless of the virtual triage recommendations.

On the other hand, if virtual triage accuracy is of virtual triage dominance, patients virtual triaged

as H̃ have higher posterior probabilities than patients virtual triaged as L̃, regardless of their

self-triage decisions.

5.2. Patient Flow in Equilibrium

It is important to note that the triage dominance of virtual triage accuracy put forth in Definition

1 does not necessarily imply the dominance of patient care-seeking behavior. Thus, we now analyze

the impact of virtual triage on equilibrium patient flow given the expected GP fee p̂∗G and expected

ED fee p̂∗E. Let f e
L̂L̃
, f e
L̂H̃
, f e
ĤL̃
, f e
ĤH̃

denote the probability of patients of each type visiting the ED

directly in equilibrium. In particular, we introduce the following definition to characterize the

equilibrium patient flow.

Definition 2 (Triage Dominance - Equilibrium Patient Flow). For a given equilibrium

patient flow (f e
L̂L̃
, f e
L̂H̃
, f e
ĤL̃
, f e
ĤH̃

), it is of self-triage dominance if f e
L̂L̃

= f e
L̂H̃

= 0 and f e
ĤL̃

= f e
ĤH̃

= 1;

it is of virtual triage dominance if f e
L̂L̃

= f e
ĤL̃

= 0 and f e
L̂H̃

= f e
ĤH̃

= 1; it is of GP-type dominance if

f e
L̂L̃

= f e
L̂H̃

= f e
ĤL̃

= 0 and f e
ĤH̃

= 1; it is of ED-type dominance if f e
L̂L̃

= 0 and f e
L̂H̃

= f e
ĤL̃

= f e
ĤH̃

= 1.

The equilibrium patient flow is of self-triage dominance if patients still follow their self-triage

decisions regardless of virtual triage recommendations. Similarly, the equilibrium patient flow is

of virtual triage dominance if patients follow virtual triage recommendations and disregard their

self-triage decisions. On the other hand, the equilibrium patient flow is of GP-type (ED-type)

dominance if patients always go to a GP (ED) unless they are ĤH̃ (L̂L̃). The following proposition

proves the uniqueness of equilibrium patient flow and characterizes the equilibrium regimes under

different values of α and β.
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Figure 2 Eight equilibrium regimes of patient flow.
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Proposition 3. Suppose the expected GP fee is p̂∗G and expected ED fee is p̂∗E. For any α,β, there

exists a unique equilibrium patient flow (f e
L̂L̃
, f e
L̂H̃
, f e
ĤL̃
, f e
ĤH̃

), and we have f e
L̂L̃

= 0 and f e
ĤH̃

= 1 in

equilibrium. In addition, depending on the values of α and β, there are eight different equilibrium

regimes, characterized by the values of f e
L̂H̃

and f e
ĤL̃

.

Pure strategy equilibrium regimes:

(1) Re
0,1 : f e

L̂H̃
= 0, f e

ĤL̃
= 1;

(2) Re
1,1 : f e

L̂H̃
= 1, f e

ĤL̃
= 1;

(3) Re
0,0 : f e

L̂H̃
= 0, f e

ĤL̃
= 0;

(4) Re
1,0 : f e

L̂H̃
= 1, f e

ĤL̃
= 0;

Mixed strategy equilibrium regimes:

(5) Re
(0,1),1 : f e

L̂H̃
∈ (0,1), f e

ĤL̃
= 1;

(6) Re
(0,1),0 : f e

L̂H̃
∈ (0,1), f e

ĤL̃
= 0;

(7) Re
0,(0,1) : f e

L̂H̃
= 0, f e

ĤL̃
∈ (0,1);

(8) Re
1,(0,1) : f e

L̂H̃
= 1, f e

ĤL̃
∈ (0,1).

The relative position of each regime is shown in Figure 2.9

First, we observe based on Proposition 3 that when virtual triage recommendations confirm self-

triage decisions, patients always follow virtual triage recommendations in equilibrium regardless of

their accuracy. In this case, these patients enjoy the informational benefits of virtual triage: while

their choices of care locations remain the same as they would have been in the absence of virtual

triage, their mis-triage probabilities are now lower as bL̂L̃ ≤ bL̂ and bĤH̃ ≥ bĤ . On the other hand,

when the virtual triage recommendation contradicts the self-triage decision, patients may follow

their self-triage decision, the virtual triage recommendation, or a mixed strategy, depending on the

values of α and β.

The intuition of the relative positions of the eight equilibrium regimes is as follows. When

the accuracy of virtual triage is low, i.e., both the under-triage probability α and over-triage

probability β are relatively large, patients’ posterior probabilities of being H center around their
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prior probabilities. In this case, despite patients’ being better informed about their healthcare

needs, the equilibrium patient flow is of self-triage dominance and patients still follow their self-

triage decisions, resulting in the equilibrium regime Re
0,1. If α remains relatively large but β gets

smaller, L̂H̃ patients will have a higher posterior probability (i.e., bL̂H̃ increases) and so they will

start to visit the ED directly with a positive probability, resulting in the equilibrium regime Re
(0,1),1.

If β gets very small, L̂H̃ patients will have a posterior probability close to 1 and therefore all of

them will follow the virtual triage recommendations instead of their self-triage decisions, resulting

in the equilibrium regime Re
1,1. Meanwhile, if β instead remains relatively large but α gets smaller,

ĤL̃ patients will have a lower posterior probability (i.e., bĤL̃ decreases) and so they will start to

visit a GP first with a positive probability, leading to the equilibrium regimes Re
0,(0,1) and Re

0,0.

On the other hand, when both α and β are close to 0, patients simply follow the virtual triage

recommendations in equilibrium regardless of their self-triage decisions. This leads to the equilib-

rium regime Re
1,0. If α remains small but β grows larger, L̂H̃ patients will have a lower posterior

probability and will start to go to a GP first with a positive probability, resulting in the equilibrium

regimes Re
(0,1),0 and Re

0,0. Meanwhile, if β instead remains relatively small, the increase in α will

lead to a higher posterior probability for ĤL̃ patients, who will start to visit the ED directly with

a positive probability, resulting in the equilibrium regimes Re
1,(0,1) and Re

1,1.

We note that the medical community is increasingly interested in empirically evaluating the accu-

racy of virtual triage and patients’ compliance with virtual triage recommendations. As discussed

in Section 2.6, Semigran et al. (2015) and Chambers et al. (2019) have conducted extensive studies

and found that virtual triage recommendations tend to encourage patients to seek emergency care.

This problem has prompted widespread concern that the adoption of virtual triage could lead to

an increase in ED visits, worsening the ED overcrowding problem. However, interestingly, Cham-

bers et al. (2019) also found that while there is generally good agreement between virtual triage

recommendations and patients’ intended actions, patients who are recommended to go to an ED

are more likely to seek primary care. This tendency in fact leads to delayed emergency care seeking

and a decrease in ED visits.

Our model provides an explanation that reconciles and rationalizes these two seemingly conflict-

ing empirical findings. When virtual triage excessively recommends emergency care, it leads to high

λL̂H̃ and λĤH̃ , with corresponding small value of α and large β, as implied by Lemma 3 (iii) and

(iv). Consequently, according to Proposition 3, this will lead to the equilibrium regime Re
0,0 (i.e.,

Region (3) of Figure 2). In this case, notice that there is indeed good agreement between virtual

triage recommendations and patients’ choice of care: three out of the four types of patients, i.e.,

L̂L̃, ĤL̃ and ĤH̃ patients, tend to follow virtual triage recommendations. Meanwhile, consistent
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with the empirical evidence, the direct arrival rate to the ED actually decreases from λĤ to λĤH̃ ,

despite virtual triage recommending a high proportion of patients to visit the ED.

These findings highlight a significant way in which virtual triage differs from traditional ED

triage: due to its decentralized nature, patients may not necessarily follow virtual triage recommen-

dations. In fact, when virtual triage excessively recommends emergency care, an ED recommenda-

tion made by virtual triage carries little information, while a recommendation to see a GP is highly

informative. As a result, patients who are recommended to seek primary care will follow the vir-

tual triage recommendation and visit a GP. Meanwhile, patients who are recommended to visit an

ED will tend to ignore the recommendations, and many will follow their prior self-triage decisions

and instead visit a GP first. Similar arguments hold when virtual triage excessively recommends

primary care, which will lead to a decrease in GP visits.

5.3. Learning Effect of Virtual Triage on Patient Strategy in Equilibrium

Next, we study how the learning effect of virtual triage affects patients’ strategies in each equilib-

rium regime. In pure strategy equilibrium regimes, a change of virtual triage accuracy only affects

patient composition as characterized by Lemma 3, while the strategies remain the same. In contrast

with pure strategy equilibrium regimes, in mixed strategy equilibrium regimes, a change in virtual

triage accuracy affects not only patient composition but also the equilibrium strategies for those

patients that adopt mixed strategies. In particular, the effect of virtual triage accuracy on patients’

mixed strategies in equilibrium is characterized by the following lemma.

Lemma 4.

(i) In Re
(0,1),1 and Re

(0,1),0,
∂fe

L̂H̃
∂α

< 0,
∂fe

L̂H̃
∂β

< 0.

(ii) In Re
0,(0,1) and Re

1,(0,1),
∂fe

ĤL̃
∂α

> 0.

There are two channels through which virtual triage accuracy affects the care choices of patients

who adopt mixed strategies. First, virtual triage accuracy has a direct effect on their posterior

beliefs. Second, it has an indirect effect by changing the ED arrival rate of other types of patients

who adopt pure strategies, which in turn affects the expected ED waiting time. Lemma 4 follows

from considering the impact of these two effects on patient flow.

In particular, in Re
(0,1),1 and Re

(0,1),0, where a mixed strategy is adopted by L̂H̃ patients, more

accurate virtual triage increases their probability of going to the ED directly. As α or β decreases,

based on Lemma 3 (i) and (ii), L̂H̃ patients have a higher posterior belief of being H and they are

therefore more likely find it beneficial to go to the ED directly. In addition to the higher posterior

belief, in Re
(0,1),0, lower β also leads to lower λĤH̃ , based on Lemma 3 (iv). This reduces the expected

ED waiting time, further increasing the probability of L̂H̃ patients visiting the ED directly. By
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contrast, in Re
0,(0,1) and Re

1,(0,1), where ĤL̃ patients adopt a mixed strategy, lower α reduces their

probability of going to the ED directly. As α becomes lower, ĤL̃ patients have a lower posterior

belief of being H, and they are therefore less likely to go to ED directly. However, while lower β

leads to lower posterior belief among ĤL̃ patients, it also reduces λL̂H̃ and λĤH̃ , thereby reducing

the expected waiting time at the ED. As a result, lower β could either increase or decrease the

probability of ĤL̃ patients visiting the ED directly.

6. The Impact of Virtual Triage on Social Cost

We now analyze the impact of virtual triage on social cost in equilibrium, given an exogenous

accuracy α and β.

6.1. Learning Effect of Virtual Triage on Equilibrium Social Cost

Let Ce
s (α,β) denote the equilibrium social cost as a function of the virtual triage accuracy under

p̂∗G and p̂∗E. We first characterize how the learning effect of virtual triage affects social cost in

equilibrium by the following proposition.

Proposition 4.

(i) In Re
0,1, we have ∂Ce

s (α,β)

∂α
= ∂Ce

s (α,β)

∂β
= 0.

(ii) In Re
1,1,R

e
0,0 and Re

1,0, we have ∂Ce
s (α,β)

∂α
> 0, ∂C

e
s (α,β)

∂β
> 0.

(iii) In Re
(0,1),1 and Re

(0,1),0, we have ∂Ce
s (α,β)

∂β
< 0.

(iv) In Re
0,(0,1) and Re

1,(0,1), we have ∂Ce
s (α,β)

∂α
> 0.

Proposition 4 (i) directly follows from the fact that patients follow their self-triage decisions

in Re
0,1. For Proposition 4 (ii), in pure strategy equilibrium regimes Re

1,1,R
e
0,0 and Re

1,0, patients

follow either their self-triage decisions or virtual triage recommendations with certainty. In this

case, lower α reduces λG, while λE is independent of α (as patients who are under-triaged will go

to the ED regardless, either directly or referred by a GP). Hence Ce
s (α,β) decreases with lower α.

On the other hand, if β is lower, fewer patients will be over-triaged and go to the ED directly. This

will reduce the total ED arrival rate and increase the GP arrival rate by the same amount. Since

a patient visit to a GP is less costly than a visit to the ED, Ce
s (α,β) decreases with lower β.

The learning effect of virtual triage on equilibrium social cost for mixed strategy equilibrium

regimes is more complicated. The key implication highlighted by Proposition 4 (iii) and (iv) is

patients’ inability to internalize the information externality of their behavior under mixed strategy

equilibrium regimes, which dominates the change of equilibrium social cost. In particular, when L̂H̃

patients adopt mixed strategies, lower β will increase their posterior belief that they are H, and

they are therefore more likely to go directly to the ED. However, their behavior does not internalize
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the negative information externality (i.e., longer waiting times) exerted on other patients at the

ED. As a result, the negative information externality dominates the changes in equilibrium social

cost, and therefore Ce
s (α,β) increases with lower β in Re

(0,1),1 and Re
(0,1),0. On the other hand,

when ĤL̃ patients adopt mixed strategies, lower α will decrease their posterior belief that they

are H, and they are therefore less likely to go directly to the ED. Similarly, their behavior does

not internalize the positive information externality (i.e., shorter waiting times) exerted on other

patients at the ED. As a result, Ce
s (α,β) decreases with lower α in Re

0,(0,1) and Re
1,(0,1).

6.2. Benchmarking the Impact of Virtual Triage on Equilibrium Social Cost

Since equilibrium social cost is nonmonotone in virtual triage accuracy as shown by Proposition

4, an important question follows: can the adoption of virtual triage lead to an equilibrium social

cost that is higher than before (i.e., in the absence of virtual triage), even though virtual triage is

informative? The following proposition establishes the existence of such equilibria.

Proposition 5. There exists α,β s.t. Ce
s (α,β)>Cs(fL̂ = 0, fĤ = 1).

Given the results showing that (1) virtual triage could lead to a higher equilibrium social cost,

by Proposition 5, (2) lower β leads to higher equilibrium social cost when L̂H̃ patients adopt

mixed strategies, by Proposition 4, and (3) the relative positions of equilibrium regimes Re
(0,1),1 and

Re
(0,1),0 as shown in Figure 2, we would expect equilibrium outcomes that are worse than before to

be achieved under relatively small (but not especially small) values of β. Figure 3 visualizes the

impact of virtual triage on equilibrium social cost.10 Region S is where virtual triage has no impact

on equilibrium social cost; Regions B and B′ are where virtual triage reduces equilibrium social

cost; and Region W is where virtual triage leads to higher equilibrium social cost.

When α is relatively large and β is relatively small, we have the upper Region W: L̂H̃ patients

have relatively but not especially high bL̂H̃ , and in equilibrium, many of them find it beneficial

to go to the ED directly. Each such visit will, with a high probability, waste costly ED resources

and generate a negative externality on other patients at the ED, therefore leading to a higher

equilibrium social cost. Meanwhile, as α becomes smaller and β remains relatively small, we have

the bottom Region W: although bL̂H̃ gets higher with smaller α by Lemma 3 (i), λL̂H̃ also gets

higher by Lemma 3 (iii). As a result, while each direct visit to the ED from L̂H̃ patients is less

likely to waste ED resources and generate a negative externality on other ED patients, the volume

effect of higher λL̂H̃ could still lead to a higher equilibrium social cost. We notice that even with

α= 0, i.e., all H patients are perfectly revealed and therefore the treatment delay problem at GPs

is eliminated, a relatively small β could still lead to a worse equilibrium outcome.

There are two separate regions (Regions B and B′) where equilibrium social cost is lower than it

was in the absence of virtual triage. Region B′ is driven by the alleviation of the ED overcrowding
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Figure 3 Impact of virtual triage on equilibrium social cost. Region S is where virtual triage has no impact on

equilibrium social cost; Regions B and B′ are where virtual triage reduces equilibrium social cost; Region

W is where virtual triage increases equilibrium social cost.
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problem: with small α and large β, the posteriors of ĤL̃ patients are considerably lower than their

priors, while the posteriors of L̂H̃ patients are close to their priors. As a result, ĤL̃ patients will

go to a GP first with a positive probability in equilibrium, while L̂H̃ patients still follow their

self-triage decisions. This will reduce direct arrivals to the ED, thereby alleviating the overcrowding

problem. On the other hand, Region B is primarily driven by the alleviation of the treatment delay

problem at GPs: with sufficiently small β, bL̂H̃ is sufficiently high and all L̂H̃ patients go to the

ED directly in equilibrium. Consequently, the benefit of alleviating the potential treatment delay

problem for L̂H̃ patients outweighs the negative externality at the ED. Moreover, if both α and

β are sufficiently small, patients simply disregard their self-triage decisions and follow the virtual

triage recommendations in equilibrium. Hence, we could achieve an equilibrium patient flow that

alleviates both treatment delay at GPs and ED overcrowding, which corresponds to the bottom of

Region B.

We provide further insight into how the impact of virtual triage on the equilibrium social cost is

moderated by self-triage accuracy. When patient self-triage accuracy is lower, the optimal patient

flow in the absence of virtual triage suffers from a higher level of inefficiency: more ED-type patients

visit a GP first and more GP-type patients go to the ED directly. In this case, less accurate virtual

triage should be able to achieve an equilibrium social cost that is lower than before, resulting in

Regions B and B′ having a larger area. By comparing Figure 3 (a) and (b), we can see that when

patient self-triage accuracy is lower, Regions B and B′ do indeed have a larger area.
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These findings also shed light on our discussion of the regulatory challenges surrounding medical

AI, particularly given AI’s ability to become more accurate over time. We show that, in an unregu-

lated environment, the adoption of informative virtual triage with reasonably high accuracy could

still lead to a deterioration in system performance if the scoring function and the associated virtual

triage accuracy are chosen näıvely. Furthermore, as the accuracy of virtual triage increases, so too

might the equilibrium social cost. Consequently, updating a virtual triage algorithm to a more

accurate version without re-evaluation and additional regulatory approval may actually reverse

any previously demonstrated benefit.

7. Unlocking the Operational Benefits of Virtual Triage

The inefficiency of equilibrium outcomes as characterized in Sections 5 and 6 has two sources.

First, for the healthcare provider, the current GP and ED fees, which induce optimal patient flow

in the absence of virtual triage, may be suboptimal after the adoption of virtual triage. Second,

for the virtual triage technology provider, their chosen scoring function and decision on virtual

triage accuracy subject to a given IROC curve may be suboptimal in terms of the minimization

of social cost (Gneiting 2011). In this section, then, we explore associated policy actions to enable

healthcare systems to reap the operational benefit of virtual triage.

7.1. Optimizing Over Patient Flow Under Exogenous Virtual Triage Accuracy

For a given virtual triage accuracy of α and β, let f∗
L̂L̃
, f∗
L̂H̃
, f∗
ĤL̃
, f∗
ĤH̃

denote the optimal patient flow

and C∗s (α,β) denote the associated minimum social cost. We then have the following proposition.

Proposition 6. For any α,β, we have f∗
L̂L̃

= 0, f∗
ĤH̃

= 1. In addition, we have ∂C∗s (α,β)

∂α
≥ 0 and

∂C∗s (α,β)

∂β
≥ 0, and therefore C∗s (α,β)≤Cs(fL̂ = 0, fĤ = 1).

Two points of Proposition 6 are worth discussing. First, we always have f e
L̂L̃

= f∗
L̂L̃

= 0 and

f e
ĤH̃

= f∗
ĤH̃

= 1 under both equilibrium patient flow and optimal patient flow. This observation

highlights the effectiveness of virtual triage when it confirms patients’ self-triage decision under

equilibrium patient flow. Hence, the inefficiency of equilibrium patient flow is due to those cases

where the virtual triage recommendations contradict patients’ self-triage decisions. In the case of

these patients, the current acute care system (with expected GP fee p̂∗G and ED fee p̂∗E) may fail

to incentivize them to behave optimally. Second, we notice that, not surprisingly, more accurate

virtual triage always leads to lower social cost under coordinated optimal patient flow. In this case,

the informational benefit of virtual triage is fully realized.

GP and ED fees may therefore need to be adjusted to induce optimal patient flow after the

adoption of virtual triage. The minimum GP and ED fees that can both recover acute care system

operating cost and induce optimal patient flow, which we denote by p̃∗G(α,β) and p̃∗E(α,β), are

characterized by the following proposition.
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Proposition 7. For any α,β, we have p̃∗G(α,β) = p̂∗G. In addition, for any α,β s.t. f∗
L̂H̃
∈ (0,1)

or f∗
ĤL̃
∈ (0,1), we have p̃∗E(α,β)> p̂∗E.

Proposition 7 shows that in order to induce optimal patient flow, the ED fee may need to be

increased while the GP fee remains unchanged. However, adjusting the ED fee to induce optimal

patient flow has two major downsides. First, given virtual triage’s capability to improve in accuracy

over time, the ED fee will have to be adjusted dynamically, which may be difficult to achieve in

practice due to regulation and competition. In addition, a higher ED fee will further add to the

cost burden of patients seeking emergency care.

7.2. Optimizing Over IROC Curves Under Current GP and ED Fees

Given the potential limitations of dynamic fee adjustment in this context, we now study the second

source of inefficiency, which is the virtual triage provider’s decision regarding accuracy. Note that

the accuracy decision is subject to the constraint that α = r(β), β ∈ [0,1], while we assume that

the GP and ED fees remain unchanged at p̂∗G and p̂∗E, respectively.

Clearly, compared with the minimum social cost in the absence of virtual triage, equilibrium

social cost after the adoption of virtual triage will not be increased by endogenizing β: s̄ can be

set to either 0 or 1, in which case we have r(β) + β = 1, and patients’ posteriors remain the same

as their priors. More importantly, we would like to minimize the equilibrium social cost. This is

equivalent to using the equilibrium social cost as the scoring function to determine the optimal

over-triage probability β∗ and under-triage probability α∗ = r(β∗) for a given IROC curve. As there

are multiple equilibrium regimes, as shown by Proposition 3, and as the IROC curve can intersect

with different equilibrium regimes, explicit analytical characterization of α∗ and β∗ is infeasible.

Hence, we perform numerical analysis to study this problem.

For the numerical analysis, we assume the IROC curve α = r(β) takes the implicit functional

form (1 − α)(1 − β)2−k = αβ,k ∈ [0,∞). It is easy to verify that α is a decreasing and convex

function of β, with r(0) = 1 and r(1) = 0. The parameter k effectively captures the triage capability

of virtual triage, as shown in Figure 4 (left). As k increases, a higher triage capability is achieved.

Figure 4 (right) shows the optimal virtual triage accuracy α∗ and β∗ that minimize the equi-

librium social cost, and how the optimal accuracy changes as k increases.11 We notice that there

are four regions characterized by the equilibrium patient flow: equilibrium patient flow of self-

triage dominance (SD), GP-type dominance (LD), ED-type dominance (HD), and virtual-triage

dominance (VD). When k is small, the triage capability of the virtual triage algorithm remains

low. Therefore, despite being better informed of the true nature of their healthcare needs after

using the technology, patients’ posteriors still center around their priors. Consequently, for any
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Figure 4 (Left) IROC curves associated with virtual triage algorithms with different triage capabilities, and

(right) the corresponding optimal β∗ and α∗ = r(β∗) to minimize equilibrium social cost under expected

GP fee p̂∗G and expected ED fee p̂∗E .
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β ∈ [0,1], α= r(β), patients still follow their self-triage decisions in equilibrium. Hence, any virtual

triage accuracy along the IROC curve is in fact optimal and will induce an equilibrium patient

flow of self-triage dominance. Without loss of generality, we plot α∗ = 0, β∗ = 1 in Region SD.

As k increases and the triage capability of virtual triage becomes higher, equilibrium patient flow

of lower social cost can be achieved with a sufficiently small α∗ at the cost of relatively large β∗. In

particular, the optimum is achieved with both L̂H̃ and ĤL̃ patients going to a GP first, thereby

generating an equilibrium patient flow of GP-type dominance which alleviates the ED overcrowding

problem. As k further increases, the optimum is achieved under an equilibrium patient flow of ED-

type dominance, which requires a sufficiently small β∗ at the cost of relatively large α∗. Finally, as

the triage capability of virtual triage technology becomes sufficiently high, the optimum is achieved

under an equilibrium patient flow of virtual triage dominance, with both small α∗ and small β∗.

We note that in Region LD, as k increases, α∗ increases while β∗ decreases. This is despite the

fact that with larger k there exists virtual triage accuracy along the IROC curve for which both

α and β can be reduced. The increase in α∗ can be explained, however, by observing that as k

increases, the IROC curve becomes flatter in regions with large β. Consequently, it is possible to

shift along the IROC curve to a new point with a significantly smaller β∗ at the cost of only a

slight increase in α∗. In other words, by slightly worsening the treatment delay problem, the ED

overcrowding problem can be significantly alleviated. Similarly, in Region HD where optimal virtual

triage accuracy is achieved with small β∗, as k increases, it is possible to reduce α∗ significantly

with a slight increase in β∗. Hence, by slightly increasing ED overcrowding, the treatment delay

problem at GPs can be significantly alleviated. We also observe in Figure 4 (right) that the rate of

increase of β∗ with respect to k in Region HD is smaller than the rate of increase of α∗ in Region
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LD. This can explained by the large negative information externality at the ED, meaning that the

cost of a larger over-triage probability in Region HD is higher than the cost of a larger under-triage

probability in Region LD.

In contrast with what we observe in Regions LD and HD, in Region VD we see that when the

triage capability of the virtual triage tool becomes sufficiently high, optimal accuracy is achieved

with both small α∗ and small β∗. In this region, as k increases, both α∗ and β∗ are reduced under

optimal virtual triage accuracy. In other words, the treatment delay problem at GPs and the

ED overcrowding problem can be jointly alleviated as the algorithm continues to improve. As k

approaches ∞ in Region VD, both α∗ and β∗ decrease monotonically and approach 0.

Overall, our results show that, critically, the optimal decision regarding virtual triage accuracy

subjective to a given IROC curve is nuanced by and nonmonotone in its triage capability. Specif-

ically, the optimal under-triage or over-triage probability may increase as the triage capability

improves. Moreover, when the triage capability is not sufficiently high, it may be optimal to have

rather large under-triage or over-triage probability.

7.3. Mismatch Costs Under Different Scoring Functions

Next, we consider the impact of different scoring functions chosen by the virtual triage provider

on equilibrium social cost. To characterize the inefficiency of equilibrium patient flow, we define

the mismatch cost as the increase in social cost that results from L patients going to the ED and

H patients visiting a GP. We denote this mismatch cost under optimal patient flow in the absence

of virtual triage by Cm. After the introduction of virtual triage, we consider how this mismatch

cost changes under four alternative scoring functions. The first seeks to minimize the equilibrium

social cost by optimizing over the IROC curve under current GP and ED fees (i.e., as described

in Section 7.2 and in accordance with Figure 4 (right)). The second to the forth assign certain

weights to under-triage and over-triage probabilities and seek to minimize the weighted sum of

both. In particular, the second assigns equal weights to under-triage and over-triage probabilities,

i.e., β = r(β); the third (forth) assigns a higher weight of 0.75 to the over-triage (under-triage)

probability, with a weight of 0.25 assigned to the under-triage (over-triage) probability. For these

four scoring functions, let Cm∗
k ,Cm=

k ,Cm<
k and Cm>

k denote the mismatch cost associated with a

triage capability k under current GP and ED fees, respectively. Line (1) to Line (4) in Figure 5 plot

Cm∗
k /Cm,Cm=

k /Cm,Cm<
k /Cm, and Cm>

k /Cm, respectively, i.e., the relative mismatch cost under

these four scoring functions.

Line (1) in Figure 5 shows that when the triage capability is relatively low, the minimum equilib-

rium social cost from optimizing over the IROC curve alone remains the same as in the absence of

virtual triage. As k increases, we can achieve a minimum equilibrium social cost that is lower, with



30 Ding, Freeman, Hasija: Can AI Help Improve Acute Care Operations?

Figure 5 The relative mismatch cost associated with equilibrium patient flow after the introduction of virtual

triage. Line (1) has a scoring function which minimizes equilibrium social cost by optimizing over the

IROC curve under current GP and ED fees; Lines (2), (3) and (4) use a scoring function which, under

current GP and ED fees, assigns weights of 0.5, 0.75 and 0.25 to the over-triage probability and 0.5,

0.25 and 0.75 to the under-triage probability, respectively; Line (5) has the same scoring function as

Line (1), but jointly optimizes over both the IROC curve and patient flow.
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the relative mismatch cost decreasing monotonically as k increases. Line (2) to Line (4) highlight

the problem with simple scoring functions, i.e., näıvely assigning fixed weights to the under-triage

and over-triage probabilities. We can see that to achieve a relative mismatch cost lower than 100%,

these scoring functions will require a virtual triage algorithm of a higher triage capability (i.e.,

with a larger k). More importantly, due to the nonmonotonicity of the equilibrium social cost in

virtual triage accuracy (as shown by Proposition 4), a higher triage capability can actually increase

the mismatch cost when a scoring function is chosen such that it does not have the objective of

minimizing the equilibrium social cost. Lastly, note that when the triage capability of the virtual

triage technology is sufficiently high, even a näıvely set scoring function can reduce the mismatch

cost: the gap between Line (1) and Line (2) to Line (4) will decrease and approach to 0 as k

increases and approaches ∞.

We further examine a variant on the first scoring function (which minimizes the equilibrium

social cost), where we not only optimize over the IROC curve but also patient flow (by potentially

adjusting the ED fee, as characterized by Proposition 7). Letting Cm∗∗
k denote the associated

mismatch cost, Line (5) in Figure 5 plots the relative mismatch cost (i.e., Cm∗∗
k /Cm) in this case.

Interestingly, we notice that the relative mismatch costs given by Line (1) and Line (5) are very

similar. This suggests that optimizing over the IROC curve alone (and leaving GP and ED fees

unchanged) already achieves first-best in most cases.12
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8. Conclusion and Policy Implications

Acute care systems and patients have long suffered from the mismatch between supply and demand

of acute care resources: when GP-type patients seek care at an ED, they use costly medical resources

unnecessarily and worsen the ED overcrowding problem; when ED-type patients visit GPs, they

need to be referred to an ED, incurring additional costs at the GP and experiencing treatment

delay. While acute care systems have implemented incentive mechanisms (e.g., fees, priority queues)

so that self-triaged GP-type patients do not go straight to an ED and self-triaged ED-type patients

do not head to a GP first, such measures cannot address the fundamental inefficiency resulting

from self-triage inaccuracy. Capitalizing on advances in AI technology, virtual triage tools are being

developed and deployed worldwide to help improve patient self-triage by providing instantaneous

and costless triage recommendations before patients seek care. However, up to this point, the

operational implications of adopting virtual triage have not been explored. In this paper, we have

sought to fill this gap by studying the impact of virtual triage.

We show that virtual triage has an unintended effect on the care-seeking behavior of patients:

due to the decentralized nature of virtual triage technology, systems that excessively recommend

emergency (primary) care counterintuitively lead to a decrease in ED (GP) visits. Moreover, virtual

triage of higher accuracy might increase the equilibrium social cost. Consequently, we show that

the adoption of informative virtual triage can lead to a higher equilibrium social cost than before,

i.e., in the absence of virtual triage, even when the triage algorithm has reasonably good accuracy.

Our analysis therefore suggests that, when evaluating a virtual triage tool, regulators should be

aware of the potential unintended consequences and carefully assess the impact of the technology on

patient care-seeking behavior and equilibrium social cost prior to implementation. Furthermore, as

automatically updating a virtual triage algorithm to a more accurate version without re-evaluation

and additional regulatory approval may reverse any previously demonstrated benefit, regulators

may require a system for certifying these technologies with each new iteration.

To resolve the problems associated with virtual triage and allow healthcare systems to access its

operational benefits, we identify two sources of inefficiency in equilibrium outcomes, and propose

associated policy actions to alleviate the inefficiency. First, for healthcare providers, we find that

current GP and ED fees, which induce optimal patient flow in the absence of virtual triage, may

fail to induce corresponding optimal patient flow after the adoption of virtual triage. Second, we

characterize technology providers’ optimal decisions on virtual triage accuracy subject to a given

IROC curve. We show that the optimal accuracy critically depends on and is nonmonotone in the

triage capability of virtual triage. In fact, it may be optimal to have rather large under-triage or

over-triage probability unless the triage capability is sufficiently high. Hence, we recommend that
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regulators, healthcare providers, and technology companies work closely together to choose the

accuracy of the virtual triage algorithm.

In this paper we have abstracted away from the specific parameter values to show, in a general

way, how the acute care system’s performance may be affected by the introduction of a virtual

triage technology. In practice, however, it may be difficult to estimate several of these parameters,

making it challenging to optimize over the IROC curve as described in Section 7.2. Instead, virtual

triage providers may choose a scoring function following certain heuristics. As noted above, this

could actually lead to worse system performance than in the absence of virtual triage. When the

triage capability of the virtual triage algorithm is sufficiently high, however, we have seen in Section

7.3 that these potential adverse effects disappear. Hence, our findings suggest that implementing

a virtual triage tool may not always be advisable, especially if estimating the system parameters

is difficult, or if the triage capability of virtual triage is not particularly high.

In sum, our paper provides a theoretical analysis of the impact of virtual triage and policy actions

to optimize its operational benefits. We emphasize decentralized behavior, incentive alignment,

and decision on accuracy subject to a given IROC curve to facilitate the adoption of predictive

technology to better deliver care to patients. On a broader level, our work highlights the importance

of studying nuanced operational details to realize the intended benefits of emerging technologies.

Endnotes

1. Virtual over-triage (under-triage) probability is defined as the probability of a patient requiring primary

(emergency) care being recommended to the ED (GP) by virtual triage. Throughout the paper, we omit

“virtual” and refer to them as over-triage and under-triage probabilities.

2. Our model can be readily extended to the case where disutilities of waiting per unit time vary across

different locations of care, namely, wG at a GP and wE at an ED. All of the results will remain unchanged.

3. Note that we do not explicitly include the social cost of non-strategic patients in Cs(fL̂, fĤ). This is

because the care-seeking behavior and social cost of non-strategic patients are not affected by the introduction

of virtual triage or by the behavior of strategic patients. In particular, for the non-strategic patients at the

ED, i.e., patients in high-risk situations or requiring immediate life-saving interventions, the disutility of

waiting remains the same: upon arrival at the ED, they will be assigned an Emergency Severity Index (ESI)

level of 1 or 2, which prioritizes their treatment over that of patients with moderate acute conditions who

will be assigned an ESI level of 3, 4, or 5 (Gilboy et al. 2020). Studies have shown patients with moderate

acute conditions have clinically negligible effect on the waiting time of patients of ESI level 1 or 2 (Schull

et al. 2007, Zane 2007). Meanwhile, a low-acuity patient visiting a GP will rarely be allocated to same-day

capacity that is reserved for acute care patients and instead will typically have to schedule their appointment

in advance of their visit. Hence, effectively, the social cost of non-strategic patients remains unchanged,

regardless of the introduction of virtual triage or the behavior of strategic patients.
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4. Equivalently, we assume that the reservation prices of GP and ED are equal to their marginal operating

costs. Our analysis can be readily extended to the case in which reservation prices are higher than operating

costs.

5. For simplicity, we refer to the nonatomic Nash equilibrium patient flow as equilibrium patient flow for

the rest of the paper.

6. We note that Webb and Mills (2019) capture a similar trade-off in a centralized setting; in this paper, we

explore the effect of such an accuracy trade-off on patients’ care-seeking behavior in a decentralized setting.

7. Note that the original ROC curve can be trivially recovered by vertically reflecting the IROC curve over

the line α= 0.5.

8. We define self-triage decision as the patient’s choice of care in the absence of virtual triage, as charac-

terized in Section 3.

9. While Figure 2 is generated from a specific set of system parameter values, the eight equilibrium regimes

and their relative positions are robust to different sets of system parameter values.

10. Parameter values for Figure 3: bL̂ = 0.20, bĤ = 0.75 under low self-triage accuracy; bL̂ = 0.15, bĤ = 0.80

under high self-triage accuracy; λL̂ = 30, λĤ = 7; aG = 40, aE = 100; w= 7; QG = 12,QE = 0.05λ2
E.

11. Parameter values for Figure 4 (right) and Figure 5: bL̂ = 0.20, bĤ = 0.75; λL̂ = 30, λĤ = 7; aG = 40, aE =

100; w= 7; QG = 12,QE = 0.05λ2
E.

12. The intuition behind follows from the observation in Figure 4 (right) that by optimizing over IROC

curve alone with GP and ED fees unchanged, the equilibrium patient flow tends to be pure strategy, which

does not suffer from the potential inefficiency of mixed strategy equilibria. In this case, jointly optimizing

over IROC curve and patient flow does not require adjusting the ED fee.
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Online Technical Appendix

In this e-companion we provide technical results that are required for our analysis, as well as

detailed proofs of all the mathematical results in the paper.

EC.1. Characterization of Optimal and Equilibrium Patient Flow

Suppose that there are n types of patients seeking acute care. Patients of type i have an arrival

rate λi, with a probability bi of being ED-type. WLOG, we assume b1 < b2 < ... < bn. Suppose the

expected GP fee per visit is pG, and the expected ED fee per visit is pE. Let fi ∈ [0,1] denote the

probability of type i patients visiting the ED directly.

EC.1.1. Optimal Patient Flow

Let Cs(f) denote the social cost, where f = (f1, f2, ..., fn), and it can be expressed as follows:

Cs(f) = λG(f)wQG +λE(f)wQE(λE(f)) +SG(λG(f)) +SE(λE(f)) (EC.1)

where patient arrival rate to GP λG(f) =
∑n

i=1(1− fi)λi, and patient arrival rate to ED λE(f) =∑n

i=1(bi(1− fi)λi + fiλi).

Lemma EC.1. Cs(f) is jointly convex in f1, f2, ..., fn.

Proof of Lemma EC.1 We first have λG(f) =
∑n

i=1(1− fi)λi and λE(f) =
∑n

i=1(bi(1− fi)λi +

fiλi) being linear functions in f1, f2, ..., fn. Now we consider the term λE(f)wQE(λE(f)) in Equa-

tion EC.1. The first-order partial derivative w.r.t λE(f) is

∂λE(f)wQE(λE(f))

∂λE(f)
=wQE(λE(f)) +λE(f)w

∂QE(λE(f))

∂λE(f)
> 0

while the second-order partial derivative is

∂2λE(f)wQE(λE(f))

∂λE(f)2
= 2w

∂QE(λE(f))

∂λE(f)
+λE(f)w

∂2QE(λE(f))

∂λE(f)2
> 0

Hence, λE(f)wQE(λE(f)) is convex in λE(f). As λE(f) is linear in f1, f2, ..., fn, by preservation of

convexity, λE(f)wQE(λE(f)) is jointly convex in f1, f2, ..., fn. As the remaining terms in Equation

EC.1 are linear in f1, f2, ..., fn, Cs(f) is jointly convex in f1, f2, ..., fn. �

Let f∗ = (f∗1 , f
∗
2 , ..., f

∗
n) denote the unique solution to the following problem:

min
0≤f1,f2,...,fn≤1

Cs(f) (EC.2)

Lemma EC.2. f∗ satisfies the following structural property: ∃ i ∈ {1,2, ..., n} s.t. f∗i ∈ [0,1], f∗j =

0,∀ j < i, and f∗k = 1,∀ k > i.
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Proof of Lemma EC.2 Case 1: Suppose ∃ i∈ {1,2, ..., n} s.t. f∗i ∈ (0,1). Then we have

∂Cs(f)

∂fi

∣∣∣∣
f∗

=−(aG +wQG)λi + aE(1− bi)λi + (1− bi)λiwQE(λE(f∗))

+λE(f∗)w(1− bi)λi
∂QE(λE(f))

∂λE(f)

∣∣∣∣
f∗

= 0

We have bj < bi,∀ j < i, and therefore

∂Cs(f)

∂fj

∣∣∣∣
f∗

=−(aG +wQG)λj + aE(1− bj)λj + (1− bj)λjwQE(λE(f∗))

+λE(f∗)w(1− bj)λj
∂QE(λE(f))

∂λE(f)

∣∣∣∣
f∗
> 0

Hence, we have f∗j = 0,∀ j < i. Similarly, we have bk > bi,∀ k > i, and therefore

∂Cs(f)

∂fk

∣∣∣∣
f∗

=−(aG +wQG)λk + aE(1− bk)λk + (1− bk)λkwQE(λE(f∗))

+λE(f∗)w(1− bk)λk
∂QE(λE(f))

∂λE(f)

∣∣∣∣
f∗
< 0

Hence, we have f∗k = 1,∀ k > i.
Case 2: Suppose @ i∈ {1,2, ..., n} s.t. f∗i ∈ (0,1). ∀ i s.t. f∗i = 0, we have

∂Cs(f)

∂fi

∣∣∣∣
f∗

=−(aG +wQG)λi + aE(1− bi)λi + (1− bi)λiwQE(λE(f∗))

+λE(f∗)w(1− bi)λi
∂QE(λE(f))

∂λE(f)

∣∣∣∣
f∗
≥ 0

We have bj < bi,∀ j < i, and therefore

∂Cs(f)

∂fj

∣∣∣∣
f∗

=−(aG +wQG)λj + aE(1− bj)λj + (1− bj)λjwQE(λE(f∗))

+λE(f∗)w(1− bj)λj
∂QE(λE(f))

∂λE(f)

∣∣∣∣
f∗
> 0

Hence, we have f∗j = 0,∀ j < i. Similarly, ∀ i s.t. f∗i = 1, we have

∂Cs(f)

∂fi

∣∣∣∣
f∗

=−(aG +wQG)λi + aE(1− bi)λi + (1− bi)λiwQE(λE(f∗))

+λE(f∗)w(1− bi)λi
∂QE(λE(f))

∂λE(f)

∣∣∣∣
f∗
≤ 0

We have bk > bi,∀ k > i, and therefore

∂Cs(f)

∂fk

∣∣∣∣
f∗

=−(aG +wQG)λk + aE(1− bk)λk + (1− bk)λkwQE(λE(f∗))

+λE(f∗)w(1− bk)λk
∂QE(λE(f))

∂λE(f)

∣∣∣∣
f∗
< 0

Hence, we have f∗k = 1,∀ k > i. �
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EC.1.2. Equilibrium Patient Flow

Lemma EC.3. ∀ pG, pE ≥ 0, there exists a unique patient flow in equilibrium.

Proof of Lemma EC.3 We define the following potential function (Roughgarden 2007), Φ(f),

for our nonatomic game:

Φ(f) =

∫ λG(f)

0

wQGdx+

∫ λE(f)

0

wQE(x)dx+λG(f)pG +λE(f)pE (EC.3)

Let fe = (f e1 , f
e
2 , ..., f

e
n) denote equilibrium patient flow, which is the solution to the following

problem:

min
0≤f1,f2,...,fn≤1

Φ(f) (EC.4)

The first-order partial derivative of
∫ λE(f)

0
wQE(x)dx w.r.t λE(f) is

∂(
∫ λE(f)

0
wQE(x)dx)

∂λE(f)
=wQE(λE(f))> 0

while the second-order partial derivative is

∂2(
∫ λE(f)

0
wQE(x)dx)

∂λE(f)2
=w

∂QE(λE(f))

∂λE(f)
> 0

Hence
∫ λE(f)

0
wQE(x)dx is convex in λE(f). As λE(f) is linear in f1, f2, ..., fn, by preservation of

convexity,
∫ λE(f)

0
wQE(x)dx is jointly convex in f1, f2, ..., fn. As the remaining terms in Equation

EC.3 are linear in f1, f2, ..., fn, Φ(f) is jointly convex in f1, f2, ..., fn. Hence, there is a unique

solution to the problem EC.4. �

Lemma EC.4. fe satisfies the following structural property: ∃ i ∈ {1,2, ..., n} s.t. f ei ∈ [0,1], f ej =

0,∀ j < i, and f ek = 1,∀ k > i.

Proof of Lemma EC.4 Case 1: Suppose ∃ i∈ {1,2, ..., n} s.t. f ei ∈ (0,1). Then we have

∂Φ(f)

∂fi

∣∣∣∣
fe

=−(pG +wQG)λi + (1− bi)λi(pE +wQE(λE(fe))) = 0

We have bj < bi,∀ j < i, and therefore

∂Φ(f)

∂fj

∣∣∣∣
fe

=−(pG +wQG)λj + (1− bj)λj(pE +wQE(λE(fe)))> 0

Hence, we have f ej = 0,∀ j < i. Similarly, we have bk > bi,∀ k > i, and therefore

∂Φ(f)

∂fk

∣∣∣∣
fe

=−(pG +wQG)λk + (1− bk)λk(pE +wQE(λE(fe)))< 0

Hence, we have f ek = 1,∀ k > i.
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Case 2: Suppose @ i∈ {1,2, ..., n} s.t. f ei ∈ (0,1). ∀ i s.t. f ei = 0, we have

∂Φ(f)

∂fi

∣∣∣∣
fe

=−(pG +wQG)λi + (1− bi)λi(pE +wQE(λE(fe)))≥ 0

We have bj < bi,∀ j < i, and therefore

∂Φ(f)

∂fj

∣∣∣∣
fe

=−(pG +wQG)λj + (1− bj)λj(pE +wQE(λE(fe)))> 0

Hence, we have f ej = 0,∀ j < i. Similarly, ∀ i s.t. f ei = 1, we have

∂Φ(f)

∂fi

∣∣∣∣
fe

=−(pG +wQG)λi + (1− bi)λi(pE +wQE(λE(fe)))≤ 0

We have bk > bi,∀ k > i, and therefore

∂Φ(f)

∂fk

∣∣∣∣
fe

=−(pG +wQG)λk + (1− bk)λk(pE +wQE(λE(fe)))< 0

Hence, we have f ek = 1,∀ k > i. �

Lemma EC.5. Let pG1 be the expected GP fee and pE1 be the associated minimum expected ED

fee that induce a specific equilibrium patient flow fe. Let pG2 be another expected GP fee and pE2

be the associated minimum expected ED fee that induce the same equilibrium patient flow fe. If

pG2 > pG1, we have pE2 > pE1.

Proof of Lemma EC.5 Case 1: Suppose ∃ i ∈ {1,2, ..., n} s.t. f ei ∈ (0,1). Then for a given pG1,

the associated pE1 is given by the solution of

∂Φ(f)

∂fi

∣∣∣∣
fe

=−(pG1 +wQG)λi + (1− bi)λi(pE1 +wQE(λE(fe))) = 0

Similarly, for a given pG2, the associated pE2 is given by the solution of

∂Φ(f)

∂fi

∣∣∣∣
fe

=−(pG2 +wQG)λi + (1− bi)λi(pE2 +wQE(λE(fe))) = 0

It is clear that if pG2 > pG1, we have pE2 > pE1.

Case 2: Suppose @ i∈ {1,2, ..., n} s.t. f ei ∈ (0,1). Suppose f ej = 0 and f ej+1 = 1. We then have

∂Φ(f)

∂fj

∣∣∣∣
fe

=−(pG +wQG)λj + (1− bj)λj(pE +wQE(λE(fe)))≥ 0

∂Φ(f)

∂fj+1

∣∣∣∣
fe

=−(pG +wQG)λj+1 + (1− bj+1)λj+1(pE +wQE(λE(fe)))≤ 0

Then for a given pG1, the associated pE1 is given by the solution of

∂Φ(f)

∂fj

∣∣∣∣
fe

=−(pG1 +wQG)λj + (1− bj)λj(pE1 +wQE(λE(fe))) = 0

Similarly, for a given pG2, the associated pE2 is given by the solution of

∂Φ(f)

∂fj

∣∣∣∣
fe

=−(pG2 +wQG)λj + (1− bj)λj(pE2 +wQE(λE(fe))) = 0

It is clear that if pG2 > pG1, we have pE2 > pE1. �
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EC.2. Proofs

This section provides detailed proofs of all the mathematical results in the paper.

EC.2.1. Proofs for Section 3

Proof of Proposition 1 Cs(fL̂, fĤ) is jointly convex in fL̂ and fĤ by Lemma EC.1 with n= 2.

In addition, by Lemma EC.2, the unique fL̂ and fĤ that minimize Cs(fL̂, fĤ), f∗
L̂

and f∗
Ĥ

, take

one of the following forms: (1) f∗
L̂

= 0, f∗
Ĥ

= 0; (2) f∗
L̂

= 0, f∗
Ĥ
∈ (0,1); (3) f∗

L̂
= 0, f∗

Ĥ
= 1; (4) f∗

L̂
∈

(0,1), f∗
Ĥ

= 1; (5) f∗
L̂

= 1, f∗
Ĥ

= 1. The necessary and sufficient conditions for f∗
L̂

= 0 and f∗
Ĥ

= 1 are

∂Cs(fL̂, fĤ)

∂fL̂

∣∣∣∣
f
L̂

=0,f
Ĥ

=1

=−(aG +wQG)λL̂ + (1− bL̂)λL̂ME(bL̂λL̂ +λĤ)≥ 0

⇔ (1− bL̂)ME(bL̂λL̂ +λĤ)≥ aG +wQG

⇐ (1− bL̂)ME(λH)≥ aG +wQG

which is implied by Assumption 1 (i), and

∂Cs(fL̂, fĤ)

∂fĤ

∣∣∣∣
f
L̂

=0,f
Ĥ

=1

=−(aG +wQG)λĤ + (1− bĤ)λĤME(bL̂λL̂ +λĤ)≤ 0

⇔ (1− bĤ)ME(bL̂λL̂ +λĤ)≤ aG +wQG

which is implied by Assumption 1 (ii). Hence, the unique minimum social cost is given by f∗
L̂

= 0

and f∗
Ĥ

= 1. �

Proof of Proposition 2 The existence and uniqueness of equilibrium patient flow under any

pG, pE ≥ 0 directly follow from Lemma EC.3 with n= 2. We now show that p̂∗G and p̂∗E align the

equilibrium patient flow with the optimal patient flow, i.e., f e
L̂

= f∗
L̂

= 0 and f e
Ĥ

= f∗
Ĥ

= 1.

Case 1: Suppose we have λHw
∂QE(λE)

∂λE

∣∣∣∣
λH

+wQE(λH)−wQE(bL̂λL̂+λĤ)≤ 0. Then under p̂∗G = aG

and p̂∗E = aE, we have

∂Φ(fL̂, fĤ)

∂fL̂

∣∣∣∣
f
L̂

=0,f
Ĥ

=1

=−(p̂∗G +wQG)λL̂ + (1− bL̂)λL̂[p̂∗E +wQE(bL̂λL̂ +λĤ)]≥ 0

⇔ (1− bL̂)[aE +wQE(bL̂λL̂ +λĤ)]≥ aG +wQG

⇐ (1− bL̂)[aE +λHw
∂QE(λE)

∂λE

∣∣∣∣
λH

+wQE(λH)]≥ aG +wQG

⇔ (1− bL̂)ME(λH)≥ aG +wQG

which is implied by Assumption 1 (i), and

∂Φ(fL̂, fĤ)

∂fĤ

∣∣∣∣
f
L̂

=0,f
Ĥ

=1

=−(p̂∗G +wQG)λĤ + (1− bĤ)λĤ [p̂∗E +wQE(bL̂λL̂ +λĤ)]≤ 0

⇔ (1− bĤ)[aE +wQE(bL̂λL̂ +λĤ)]≤ aG +wQG

⇐ (1− bĤ)ME(bL̂λL̂ +λĤ)≤ aG +wQG
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which is implied by Assumption 1 (ii). Hence, p̂∗G = aG and p̂∗E = aE are the minimum expected

GP and ED fees that can recover GP/ED operating costs and induce optimal patient flow with

f e
L̂

= f∗
L̂

= 0 and f e
Ĥ

= f∗
Ĥ

= 1.

Case 2: Suppose we have λHw
∂QE(λE)

∂λE

∣∣∣∣
λH

+wQE(λH)−wQE(bL̂λL̂+λĤ)> 0. Then under p̂∗G = aG

and p̂∗E = aE +λHw
∂QE(λE)

∂λE

∣∣∣∣
λH

+wQE(λH)−wQE(bL̂λL̂ +λĤ), we have

∂Φ(fL̂, fĤ)

∂fL̂

∣∣∣∣
f
L̂

=0,f
Ĥ

=1

=−(p̂∗G +wQG)λL̂ + (1− bL̂)λL̂[p̂∗E +wQE(bL̂λL̂ +λĤ)]≥ 0

⇔ (1− bL̂)[aE +λHw
∂QE(λE)

∂λE

∣∣∣∣
λH

+wQE(λH)]≥ aG +wQG

⇔ (1− bL̂)ME(λH)≥ aG +wQG

which is implied by Assumption 1 (i), and

∂Φ(fL̂, fĤ)

∂fĤ

∣∣∣∣
f
L̂

=0,f
Ĥ

=1

=−(p̂∗G +wQG)λĤ + (1− bĤ)λĤ [p̂∗E +wQE(bL̂λL̂ +λĤ)]≤ 0

⇔ (1− bĤ)[aE +λHw
∂QE(λE)

∂λE

∣∣∣∣
λH

+wQE(λH)]≤ aG +wQG

⇐ (1− bĤ)ME(bL̂λL̂ +λĤ)≤ aG +wQG

which is implied by Assumption 1 (ii). In addition, under p̂∗G = aG, an expected ED fee lower than

p̂∗E = aE + λHw
∂QE(λE)

∂λE

∣∣∣∣
λH

+wQE(λH)−wQE(bL̂λL̂ + λĤ) could violate Assumption 1 (i). Hence,

p̂∗E = aE + λHw
∂QE(λE)

∂λE

∣∣∣∣
λH

+ wQE(λH) − wQE(bL̂λL̂ + λĤ) is the associated minimum expected

ED fee for p̂∗G = aG that induces optimal patient flow. Then, by Lemma EC.5, p̂∗G = aG and p̂∗E =

aE + λHw
∂QE(λE)

∂λE

∣∣∣∣
λH

+wQE(λH)−wQE(bL̂λL̂ + λĤ) are the minimum expected GP and ED fees

that can recover GP/ED operating costs and induce optimal patient flow with f e
L̂

= f∗
L̂

= 0 and

f e
Ĥ

= f∗
Ĥ

= 1. �

EC.2.2. Proofs for Section 4

Proof of Lemma 1. Let pH =
∫ 1

0
sg(s)ds denote the fraction of H patients in the patient base

and pL = 1− pH denote the fraction of L patients. We have the under-triage probability

α(s̄) = Prob(L̃|H) =

∫ s̄
0
sg(s)ds

pH
(EC.5)

and the over-triage probability

β(s̄) = Prob(H̃|L) =

∫ 1

s̄
(1− s)g(s)ds

pL
= 1−

∫ s̄
0

(1− s)g(s)ds

pL
(EC.6)
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Clearly when s̄= 0, we have α(s̄) = 0, β(s̄) = 1; when s̄= 1, we have α(s̄) = 1, β(s̄) = 0. In addition,

we have

∂α

∂β
=
∂α

∂s̄

∂s̄

∂β
=
s̄g(s̄)

pH
(− pL

(1− s̄)g(s̄)
) =− pL

pH

s̄

(1− s̄)
≤ 0

and

∂2α

∂β2
=− pL

pH

∂[s̄/(1− s̄)]
∂β

=− pL
pH

∂[s̄/(1− s̄)]
∂s̄

∂s̄

∂β
=

p2
L

pH(1− s̄)3g(s̄)
≥ 0

Hence, α= r(β) is a decreasing and convex function in β, with r(0) = 1, r(1) = 0. �

Proof of Corollary 1. ∀ b∈ [0,1], we have

bL̃ =
αb

αb+ (1−β)(1− b)
(EC.7a)

bH̃ =
(1−α)b

(1−α)b+β(1− b)
(EC.7b)

and therefore

bL̃− b=
b(1− b)(α+β− 1)

αb+ (1−β)(1− b)
≤ 0 (EC.8a)

bH̃ − b=
(1−α−β)b(1− b)
(1−α)b+β(1− b)

≥ 0 (EC.8b)

as by Lemma 1, we have α+β ≤ 1.

�

Proof of Lemma 2. ∀ s̄1, s̄2 ∈ [0,1] s.t.∫ 1

s̄1
(1− s)g1(s)ds

pL
=

∫ 1

s̄2
(1− s)g2(s)ds

pL

we have ∫ s̄1
0
sg1(s)ds

pH
≥
∫ s̄2

0
sg2(s)ds

pH

Hence, ∀ s̄1, s̄2 ∈ [0,1] s.t. β(s̄1) = β(s̄2), we have α(s̄1)≥ α(s̄2). This implies r1(β)≥ r2(β), ∀ β ∈

[0,1]. �

EC.2.3. Proofs for Section 5

Proof of Lemma 3. (i)
∂b

T̂ L̃
∂α

=
b
T̂

(1−β)(1−b
T̂

)

[αb
T̂

+(1−β)(1−b
T̂

)]2
> 0,

∂b
T̂ H̃
∂α

=
−b

T̂
β(1−b

T̂
)

[(1−α)b
T̂

+β(1−b
T̂

)]2
< 0, T̂ ∈ {L̂, Ĥ}.

(ii)
∂b

ĤL̃
∂β

=
α(1−b

Ĥ
)

[αb
Ĥ

+(1−β)(1−b
Ĥ

)]2
> 0,

∂b
ĤH̃
∂β

=
−(1−α)b

Ĥ
(1−b

Ĥ
[(1−α)b

Ĥ
+β(1−b

Ĥ
)]2
< 0, T̂ ∈ {L̂, Ĥ}.

(iii)
∂λ

T̂ L̃
∂α

= bT̂λT̂ > 0,
∂λ

T̂ H̃
∂α

=−bT̂λT̂ < 0, T̂ ∈ {L̂, Ĥ}.

(iv)
∂λ

T̂ L̃
∂β

=−(1− bT̂ )λT̂ < 0,
∂λ

T̂ H̃
∂β

= (1− bT̂ )λT̂ > 0, T̂ ∈ {L̂, Ĥ}. �
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Proof of Proposition 3. The uniqueness of equilibrium patient flow follows directly from Lemma

EC.3 with n= 4. We then show that ∀ α,β s.t. α≥ 0, β ≥ 0, α+β ≤ 1, we have f e
L̂L̃

= 0 and f e
ĤH̃

= 1

in equilibrium. We prove by contradiction. Let Ct,l(fL̂L̃, fL̂H̃ , fĤL̃, fĤH̃) denote the patient cost of

a type t patient going to l under patient flow (fL̂L̃, fL̂H̃ , fĤL̃, fĤH̃), where t ∈ {L̂L̃, L̂H̃, ĤL̃, ĤH̃}

and l ∈ {G,E}.

Suppose ∃ α,β s.t. α≥ 0, β ≥ 0, α+β ≤ 1, and f e
L̂L̃
> 0, i.e., L̂L̃ patients go to ED directly with

a positive probability in equilibrium. This means that

CL̂L̃,E(fL̂L̃ = 0, fL̂H̃ = 1, fĤL̃ = 1, fĤH̃ = 1)<CL̂L̃,G(fL̂L̃ = 0, fL̂H̃ = 1, fĤL̃ = 1, fĤH̃ = 1)

⇔wQE(bL̂L̃λL̂L̃ +λL̂H̃ +λĤ) + p̂∗E <wQG + p̂∗G + bL̂L̃[wQE(bL̂L̃λL̂L̃ +λL̂H̃ +λĤ) + p̂∗E]

⇒wQE(bL̂λL̂ +λĤ) + p̂∗E <wQG + p̂∗G + bL̂L̃[wQE(bL̂λL̂ +λĤ) + p̂∗E]

⇒wQE(bL̂λL̂ +λĤ) + p̂∗E <wQG + p̂∗G + bL̂[wQE(bL̂λL̂ +λĤ) + p̂∗E]

⇒ME(λH)<wQG + aG + bL̂ME(λH)

which contradicts Assumption 1 (i). Similarly, suppose ∃ α,β s.t. α ≥ 0, β ≥ 0, α + β ≤ 1 and

f e
ĤH̃

< 1, i.e., ĤH̃ patients go to GP first with a positive probability in equilibrium. This means

that

CĤH̃,E(fL̂L̃ = 0, fL̂H̃ = 0, fĤL̃ = 0, fĤH̃ = 1)>CĤH̃,G(fL̂L̃ = 0, fL̂H̃ = 0, fĤL̃ = 0, fĤH̃ = 1)

⇔wQE(bL̂λL̂ + bĤL̃λĤL̃ +λĤH̃) + p̂∗E >wQG + p̂∗G + bĤH̃ [wQE(bL̂λL̂ + bĤL̃λĤL̃ +λĤH̃) + p̂∗E]

⇒wQE(bL̂λL̂ +λĤ) + p̂∗E >wQG + p̂∗G + bĤH̃ [wQE(bL̂λL̂ +λĤ) + p̂∗E]

⇒wQE(bL̂λL̂ +λĤ) + p̂∗E >wQG + p̂∗G + bĤ [wQE(bL̂λL̂ +λĤ) + p̂∗E]

⇒ME(bL̂λL̂ +λĤ)>wQG + aG + bĤME(bL̂λL̂ +λĤ)

which contradicts Assumption 1 (ii). Hence, we have f e
L̂L̃

= 0 and f e
ĤH̃

= 1 in equilibrium, ∀ α,β

s.t. α≥ 0, β ≥ 0, α+β ≤ 1.

By contrast, the values of f e
L̂H̃

and f e
ĤL̃

depend on α and β. Let Re
a,b denote the equilibrium

regime, where a = f e
L̂H̃
, b = f e

ĤL̃
. In particular, when f e

L̂H̃
∈ {0,1} and f e

ĤL̃
∈ {0,1}, we have four

different pure strategy equilibrium regimes: Re
0,1,R

e
1,1,R

e
0,0,R

e
1,0; when f e

L̂H̃
∈ (0,1) or f e

ĤL̃
∈ (0,1),

we have four different mixed strategy equilibrium regimes: Re
(0,1),1,R

e
(0,1),0,R

e
0,(0,1),R

e
1,(0,1). We char-

acterize the relative position of each regime by characterizing their boundaries.

(1) Re
0,1: The pure strategy equilibrium regime Re

0,1 is achieved with α and β s.t.

CL̂H̃,E(fL̂L̃ = 0, fL̂H̃ = 0, fĤL̃ = 1, fĤH̃ = 1)≥CL̂H̃,G(fL̂L̃ = 0, fL̂H̃ = 0, fĤL̃ = 1, fĤH̃ = 1)

⇔ (1− bL̂H̃)[wQE(bL̂λL̂ +λĤ) + p̂∗E]≥wQG + p̂∗G
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and

CĤL̃,E(fL̂L̃ = 0, fL̂H̃ = 0, fĤL̃ = 1, fĤH̃ = 1)≤CĤL̃,G(fL̂L̃ = 0, fL̂H̃ = 0, fĤL̃ = 1, fĤH̃ = 1)

⇔ (1− bĤL̃)[wQE(bL̂λL̂ +λĤ) + p̂∗E]≤wQG + p̂∗G

(2) Re
1,1: The pure strategy equilibrium regime Re

1,1 is achieved with α and β s.t.

CL̂H̃,E(fL̂L̃ = 0, fL̂H̃ = 1, fĤL̃ = 1, fĤH̃ = 1)≤CL̂H̃,G(fL̂L̃ = 0, fL̂H̃ = 1, fĤL̃ = 1, fĤH̃ = 1)

⇔ (1− bL̂H̃)[wQE((bL̂ +β(1− bL̂))λL̂ +λĤ) + p̂∗E]≤wQG + p̂∗G

and

CĤL̃,E(fL̂L̃ = 0, fL̂H̃ = 1, fĤL̃ = 1, fĤH̃ = 1)≤CĤL̃,G(fL̂L̃ = 0, fL̂H̃ = 1, fĤL̃ = 1, fĤH̃ = 1)

⇔ (1− bĤL̃)[wQE((bL̂ +β(1− bL̂))λL̂ +λĤ) + p̂∗E]≤wQG + p̂∗G

(3) Re
0,0: The pure strategy equilibrium regime Re

0,0 is achieved with α and β s.t.

CĤL̃,E(fL̂L̃ = 0, fL̂H̃ = 0, fĤL̃ = 0, fĤH̃ = 1)≥CĤL̃,G(fL̂L̃ = 0, fL̂H̃ = 0, fĤL̃ = 0, fĤH̃ = 1)

⇔ (1− bĤL̃)[wQE(bL̂λL̂ + bĤλĤ +β(1− bĤ)λĤ) + p̂∗E]≥wQG + p̂∗G

and

CL̂H̃,E(fL̂L̃ = 0, fL̂H̃ = 0, fĤL̃ = 0, fĤH̃ = 1)≥CL̂H̃,G(fL̂L̃ = 0, fL̂H̃ = 0, fĤL̃ = 0, fĤH̃ = 1)

⇔ (1− bL̂H̃)[wQE(bL̂λL̂ + bĤλĤ +β(1− bĤ)λĤ) + p̂∗E]≥wQG + p̂∗G

(4) Re
1,0: The pure strategy equilibrium regime Re

1,0 is achieved with α and β s.t.

CĤL̃,E(fL̂L̃ = 0, fL̂H̃ = 1, fĤL̃ = 0, fĤH̃ = 1)≥CĤL̃,G(fL̂L̃ = 0, fL̂H̃ = 1, fĤL̃ = 0, fĤH̃ = 1)

⇔ (1− bĤL̃)[wQE(bL̂λL̂ + bĤλĤ +β(1− bL̂)λL̂ +β(1− bĤ)λĤ) + p̂∗E]≥wQG + p̂∗G

and

CL̂H̃,E(fL̂L̃ = 0, fL̂H̃ = 1, fĤL̃ = 0, fĤH̃ = 1)≤CL̂H̃,G(fL̂L̃ = 0, fL̂H̃ = 1, fĤL̃ = 0, fĤH̃ = 1)

⇔ (1− bL̂H̃)[wQE(bL̂λL̂ + bĤλĤ +β(1− bL̂)λL̂ +β(1− bĤ)λĤ) + p̂∗E]≤wQG + p̂∗G

(5) Re
(0,1),1: The mixed strategy equilibrium regime Re

(0,1),1 is achieved with α and β s.t.

CL̂H̃,E(fL̂L̃ = 0, fL̂H̃ = 0, fĤL̃ = 1, fĤH̃ = 1)<CL̂H̃,G(fL̂L̃ = 0, fL̂H̃ = 0, fĤL̃ = 1, fĤH̃ = 1)

⇔ (1− bL̂H̃)[wQE(bL̂λL̂ +λĤ) + p̂∗E]<wQG + p̂∗G
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and

CL̂H̃,E(fL̂L̃ = 0, fL̂H̃ = 1, fĤL̃ = 1, fĤH̃ = 1)>CL̂H̃,G(fL̂L̃ = 0, fL̂H̃ = 1, fĤL̃ = 1, fĤH̃ = 1)

⇔ (1− bL̂H̃)[wQE((bL̂ +β(1− bL̂))λL̂ +λĤ) + p̂∗E]>wQG + p̂∗G

(6) Re
(0,1),0: The mixed strategy equilibrium regime Re

(0,1),0 is achieved with α and β s.t.

CL̂H̃,E(fL̂L̃ = 0, fL̂H̃ = 1, fĤL̃ = 0, fĤH̃ = 1)>CL̂H̃,G(fL̂L̃ = 0, fL̂H̃ = 1, fĤL̃ = 0, fĤH̃ = 1)

⇔ (1− bL̂H̃)[wQE(bL̂λL̂ + bĤλĤ +β(1− bL̂)λL̂ +β(1− bĤ)λĤ) + p̂∗E]>wQG + p̂∗G

and

CL̂H̃,E(fL̂L̃ = 0, fL̂H̃ = 0, fĤL̃ = 0, fĤH̃ = 1)<CL̂H̃,G(fL̂L̃ = 0, fL̂H̃ = 0, fĤL̃ = 0, fĤH̃ = 1)

⇔ (1− bL̂H̃)[wQE(bL̂λL̂ + bĤλĤ +β(1− bĤ)λĤ) + p̂∗E]<wQG + p̂∗G

(7) Re
0,(0,1): The mixed strategy equilibrium regime Re

0,(0,1) is achieved with α and β s.t.

CĤL̃,E(fL̂L̃ = 0, fL̂H̃ = 0, fĤL̃ = 1, fĤH̃ = 1)>CĤL̃,G(fL̂L̃ = 0, fL̂H̃ = 0, fĤL̃ = 1, fĤH̃ = 1)

⇔ (1− bĤL̃)[wQE(bL̂λL̂ +λĤ) + p̂∗E]>wQG + p̂∗G

and

CĤL̃,E(fL̂L̃ = 0, fL̂H̃ = 0, fĤL̃ = 0, fĤH̃ = 1)<CĤL̃,G(fL̂L̃ = 0, fL̂H̃ = 0, fĤL̃ = 0, fĤH̃ = 1)

⇔ (1− bĤL̃)[wQE(bL̂λL̂ + bĤλĤ +β(1− bĤ)λĤ) + p̂∗E]<wQG + p̂∗G

(8) Re
1,(0,1): The mixed strategy equilibrium regime Re

1,(0,1) is achieved with α and β s.t.

CĤL̃,E(fL̂L̃ = 0, fL̂H̃ = 1, fĤL̃ = 0, fĤH̃ = 1)<CĤL̃,G(fL̂L̃ = 0, fL̂H̃ = 1, fĤL̃ = 0, fĤH̃ = 1)

⇔ (1− bĤL̃)[wQE(bL̂λL̂ + bĤλĤ +β(1− bL̂)λL̂ +β(1− bĤ)λĤ) + p̂∗E]<wQG + p̂∗G

and

CĤL̃,E(fL̂L̃ = 0, fL̂H̃ = 1, fĤL̃ = 1, fĤH̃ = 1)>CĤL̃,G(fL̂L̃ = 0, fL̂H̃ = 1, fĤL̃ = 1, fĤH̃ = 1)

⇔ (1− bĤL̃)[wQE((bL̂ +β(1− bL̂))λL̂ +λĤ) + p̂∗E]>wQG + p̂∗G

The relative position of each regime follows from the inequalities above, as shown in Figure 2.

�
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Proof of Lemma 4. (i) In equilibrium regime Re
(0,1),1 and Re

(0,1),0, for a given α and β s.t. we

have f e
L̂H̃
∈ (0,1), f e

L̂H̃
is determined by solving the following problem:

min
0<f

L̂H̃
<1

Φ(fL̂H̃) =

∫ λG

0

wQGdx+

∫ λE

0

wQE(x)dx+λGp̂
∗
G +λE p̂

∗
E (EC.9)

where f e
L̂H̃

is given by the following FOC of EC.9:

∂Φ(f e
L̂H̃

)

∂f e
L̂H̃

=−[(1−α)bL̂ +β(1− bL̂)]λL̂(p̂∗G +wQG) +β(1− bL̂)λL̂[p̂∗E +wQE(λE)] = 0 (EC.10)

In Re
(0,1),1, we have

λG = λL̂L̃ + (1− f e
L̂H̃

)λL̂H̃ = λL̂− f eL̂H̃ [(1−α)bL̂ +β(1− bL̂)]λL̂

λE = bL̂L̃λL̂L̃ + (1− f e
L̂H̃

)bL̂H̃λL̂H̃ + f e
L̂H̃
λL̂H̃ +λĤ = bL̂λL̂ + f e

L̂H̃
β(1− bL̂)λL̂ +λĤ

By implicit function theorem, we have

∂f e
L̂H̃

∂α
=−

∂2Φ(f e
L̂H̃

)

∂f e
L̂H̃
∂α

/
∂2Φ(f e

L̂H̃
)

∂f e2
L̂H̃

< 0 (EC.11)

as
∂2Φ(f e

L̂H̃
)

∂f e2
L̂H̃

= [β(1− bL̂)λL̂]2w
∂QE(λE)

∂λE
> 0 (EC.12)

and
∂2Φ(f e

L̂H̃
)

∂f e
L̂H̃
∂α

= bL̂λL̂(p̂∗G +wQG)> 0 (EC.13)

Similarly, we have
∂f e

L̂H̃

∂β
=−

∂2Φ(f e
L̂H̃

)

∂f e
L̂H̃
∂β

/
∂2Φ(f e

L̂H̃
)

∂f e2
L̂H̃

< 0 (EC.14)

as

∂2Φ(f e
L̂H̃

)

∂f e
L̂H̃
∂β

= (1− bL̂)λL̂[−p̂∗G−wQG + p̂∗E +wQE(λE) +βf e
L̂H̃

(1− bL̂)λL̂w
∂QE(λE)

∂λE
]

> (1− bL̂)λL̂[−p̂∗G−wQG + p̂∗E +wQE(λE)]

> (1− bL̂)λL̂[−p̂∗G−wQG + p̂∗E +wQE(λH)]

> (1− bL̂)λL̂[−aG−wQG + aE +wQE(λH)]

> 0

(EC.15)

In Re
(0,1),0, we have

λG = λL̂L̃ +λĤL̃(1− f e
L̂H̃

)λL̂H̃ = λL̂− f eL̂H̃ [(1−α)bL̂ +β(1− bL̂)]λL̂ + [αbĤ + (1−β)(1− bĤ)]λĤ

λE = bL̂L̃λL̂L̃ + bĤL̃λĤL̃ + (1− f e
L̂H̃

)bL̂H̃λL̂H̃ + f e
L̂H̃
λL̂H̃ +λĤH̃

= bL̂λL̂ + bĤλĤ +β[f e
L̂H̃

(1− bL̂)λL̂ + (1− bĤ)λĤ ]
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By implicit function theorem, we have

∂f e
L̂H̃

∂α
=−

∂2Φ(f e
L̂H̃

)

∂f e
L̂H̃
∂α

/
∂2Φ(f e

L̂H̃
)

∂f e2
L̂H̃

< 0 (EC.16)

as
∂2Φ(f e

L̂H̃
)

∂f e2
L̂H̃

= [β(1− bL̂)λL̂]2w
∂QE(λE)

∂λE
> 0 (EC.17)

and
∂2Φ(f e

L̂H̃
)

∂f e
L̂H̃
∂α

= bL̂λL̂(p̂∗G +wQG)> 0 (EC.18)

Similarly, we have
∂f e

L̂H̃

∂β
=−

∂2Φ(f e
L̂H̃

)

∂f e
L̂H̃
∂β

/
∂2Φ(f e

L̂H̃
)

∂f e2
L̂H̃

< 0 (EC.19)

as

∂2Φ(f e
L̂H̃

)

∂f e
L̂H̃
∂β

= (1− bL̂)λL̂[−p̂∗G−wQG + p̂∗E +wQE(λE) +β(f e
L̂H̃

(1− bL̂)λL̂ + (1− bĤ)λĤ)w
∂QE(λE)

∂λE
]

> (1− bL̂)λL̂[−p̂∗G−wQG + p̂∗E +wQE(λE)]

> (1− bL̂)λL̂[−aG−wQG + aE +wQE(λH)]

> 0
(EC.20)

(ii) In equilibrium regime Re
0,(0,1) and Re

1,(0,1), for a given α and β s.t. we have f e
ĤL̃
∈ (0,1), f e

ĤL̃

is determined by solving the following problem:

min
0<f

ĤL̃
<1

Φ(fĤL̃) =

∫ λG

0

wQGdx+

∫ λE

0

wQE(x)dx+λGp̂
∗
G +λE p̂

∗
E (EC.21)

where f e
ĤL̃

is given by the following FOC of EC.21:

∂Φ(f e
L̂H̃

)

∂f e
L̂H̃

=−[αbĤ + (1−β)(1− bĤ)]λĤ(p̂∗G +wQG) + (1−β)(1− bĤ)λĤ [p̂∗E +wQE(λE)] = 0

(EC.22)

In Re
0,(0,1), we have

λG = λL̂ + (1− f e
ĤL̃

)λĤL̃ = λL̂ + (1− f e
ĤL̃

)[αbĤ + (1−β)(1− bĤ)]λĤ

λE = bL̂λL̂ + (1− f e
ĤL̃

)bĤL̃λĤL̃ + f e
ĤL̃
λĤL̃ +λĤH̃

= bL̂λL̂ + f e
ĤL̃

(1−β)(1− bĤ)λĤ + [bĤ +β(1− bĤ)]λĤ

By implicit function theorem, we have

∂f e
ĤL̃

∂α
=−

∂2Φ(f e
ĤL̃

)

∂f e
ĤL̃
∂α

/
∂2Φ(f e

ĤL̃
)

∂f e2
ĤL̃

> 0 (EC.23)
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as
∂2Φ(f e

ĤL̃
)

∂f e2
ĤL̃

= [(1−β)(1− bĤ)λĤ ]2w
∂QE(λE)

∂λE
> 0 (EC.24)

and
∂2Φ(f e

ĤL̃
)

∂f e
ĤL̃
∂α

=−bĤλĤ(p̂∗G +wQG)< 0 (EC.25)

In Re
1,(0,1), we have

λG = λL̂L̃ + (1− f e
ĤL̃

)λĤL̃ = [αbL̂ + (1−β)(1− bL̂]λL̂ + (1− f e
ĤL̃

)[αbĤ + (1−β)(1− bĤ)]λĤ

λE = bL̂L̃λL̂L̃ + (1− f e
ĤL̃

)bĤL̃λĤL̃ + f e
ĤL̃
λĤL̃ +λL̂H̃ +λĤH̃

= [bL̂ +β(1− bL̂)]λL̂ + f e
ĤL̃

(1−β)(1− bĤ)λĤ + [bĤ +β(1− bĤ)]λĤ

By implicit function theorem, we have

∂f e
ĤL̃

∂α
=−

∂2Φ(f e
ĤL̃

)

∂f e
ĤL̃
∂α

/
∂2Φ(f e

ĤL̃
)

∂f e2
ĤL̃

> 0 (EC.26)

as
∂2Φ(f e

ĤL̃
)

∂f e2
ĤL̃

= [(1−β)(1− bĤ)λĤ ]2w
∂QE(λE)

∂λE
> 0 (EC.27)

and
∂2Φ(f e

ĤL̃
)

∂f e
ĤL̃
∂α

=−bĤλĤ(p̂∗G +wQG)< 0 (EC.28)

�

EC.2.4. Proofs for Section 6

Proof of Proposition 4. We have the equilibrium social cost:

Ce
s (α,β) = λGwQG +λEwQE(λE) +λGaG +λEaE (EC.29)

(i) In Re
0,1, we have λG = λL̂, λE = bL̂λL̂ +λĤ , and therefore ∂Ce

s (α,β)

∂α
= ∂Ce

s (α,β)

∂β
= 0.

(ii) In equilibrium regime Re
1,1, we have λG = λL̂L̃ = [αbL̂ + (1− β)(1− bL̂)]λL̂, λE = bL̂L̃λL̂L̃ +

λL̂H̃ +λĤ = [bL̂ + β(1− bL̂)]λL̂ +λĤ . We then have ∂λG
∂α

= bL̂λL̂,
∂λG
∂β

=−(1− bL̂)λL̂,
∂λE
∂α

= 0, ∂λE
∂β

=

(1− bL̂)λL̂.

In equilibrium regime Re
0,0, we have λG = λL̂+λĤL̃ = λL̂+[αbĤ +(1−β)(1−bĤ)]λĤ , λE = bL̂λL̂+

bĤL̃λĤL̃+λĤH̃ = bL̂λL̂+bĤλĤ +β(1−bĤ)λĤ . We then have ∂λG
∂α

= bĤλĤ ,
∂λG
∂β

=−(1−bĤ)λĤ ,
∂λE
∂α

=

0, ∂λE
∂β

= (1− bĤ)λĤ .

In equilibrium regime Re
1,0, we have λG = λL̂L̃+λĤL̃ = α(bL̂λL̂+bĤλĤ)+(1−β)[(1−bL̂)λL̂+(1−

bĤ)λĤ ], λE = bL̂L̃λL̂L̃ + bĤL̃λĤL̃ +λL̂H̃ +λĤH̃ = bL̂λL̂ + bĤλĤ +β[(1− bL̂)λL̂ + (1− bĤ)λĤ ]. We then

have ∂λG
∂α

= bL̂λL̂+ bĤλĤ ,
∂λG
∂β

=−[(1− bL̂)λL̂+(1− bĤ)λĤ ], ∂λE
∂α

= 0, ∂λE
∂β

= (1− bL̂)λL̂+(1− bĤ)λĤ .
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Hence, in Re
1,1,R

e
0,0 and Re

1,0, we have ∂λG
∂α

> 0, ∂λE
∂α

= 0, and therefore ∂Ce
s (α,β)

∂α
> 0. On the other

hand, we have ∂λG
∂β

< 0, ∂λE
∂β

> 0, and ∂λG
∂β

+ ∂λE
∂β

= 0. Since an arrival to an ED is more costly than

an arrival to a GP, i.e., aG+wQG <ME(λH) as implied by Assumption 1 (i), we have ∂Ce
s (α,β)

∂β
> 0.

(iii) In Re
(0,1),1 and Re

(0,1),0, we have

∂Ce
s (α,β)

∂β
=
∂Ce

s (α,β, f
e
L̂H̃

)

∂β
+
∂Ce

s (α,β, f
e
L̂H̃

)

∂f e
L̂H̃

∂f e
L̂H̃

∂β

= [
∂Ce

s (α,β, f
e
L̂H̃

)

∂β

∂2Φ(f e
L̂H̃

)

∂f e2
L̂H̃

−
∂Ce

s (α,β, f
e
L̂H̃

)

∂f e
L̂H̃

∂2Φ(f e
L̂H̃

)

∂f e
L̂H̃
∂β

]/
∂2Φ(f e

L̂H̃
)

∂f e2
L̂H̃

(EC.30)

In Re
(0,1),1, we have

∂Ce
s (α,β, f

e
L̂H̃

)

∂β
= f e

L̂H̃
(1− bL̂)λL̂[aE +wQE(λE) +λEw

∂QE(λE)

∂λE
− aG−wQG]> 0 (EC.31)

and

∂Ce
s (α,β, f

e
L̂H̃

)

∂f e
L̂H̃

=−[(1−α)bL̂ +β(1− bL̂)]λL̂(aG +wQG) +β(1− bL̂)λL̂[aE +wQE(λE) +λEw
∂QE(λE)

∂λE
]

= β(1− bL̂)λL̂[λEw
∂QE(λE)

∂λE
− [λHw

∂QE(λE)

∂λE

∣∣∣∣
λH

+wQE(λH)−wQE(bL̂λL̂ +λĤ)]+]

>β(1− bL̂)λL̂[λEw
∂QE(λE)

∂λE
−λHw

∂QE(λE)

∂λE

∣∣∣∣
λH

]

> 0
(EC.32)

where the second equality is given by Proposition 2 and EC.10. We then have

∂Ce
s (α,β, f

e
L̂H̃

)

∂β

∂2Φ(f e
L̂H̃

)

∂f e2
L̂H̃

−
∂Ce

s (α,β, f
e
L̂H̃

)

∂f e
L̂H̃

∂2Φ(f e
L̂H̃

)

∂f e
L̂H̃
∂β

= β[(1− bL̂)λL̂]2(C1C2−C3C4) (EC.33)

where

C1 = f e
L̂H̃
β(1− bL̂)λL̂w

∂QE(λE)

∂λE
> 0

C2 = aE +wQE(λE) +λEw
∂QE(λE)

∂λE
− aG−wQG > 0

C3 = λEw
∂QE(λE)

∂λE
− [λHw

∂QE(λE)

∂λE

∣∣∣∣
λH

+wQE(λH)−wQE(bL̂λL̂ +λĤ)]+ > 0

C4 = aE + [λHw
∂QE(λE)

∂λE

∣∣∣∣
λH

+wQE(λH)−wQE(bL̂λL̂ +λĤ)]+ +wQE(λE)

+ f e
L̂H̃
β(1− bL̂)λL̂w

∂QE(λE)

∂λE
− aG−wQG > 0

Define

C5 = (bL̂λL̂ +λĤ)w
∂QE(λE)

∂λE
− [λHw

∂QE(λE)

∂λE

∣∣∣∣
λH

+wQE(λH)−wQE(bL̂λL̂ +λĤ)]+ > 0
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We then have C3 =C1 +C5 and C4 =C2−C5. Hence we have C1C2−C3C4 =C1C2−(C1 +C5)(C2−

C5) = (C1−C2 +C5)C5, with

C1−C2 +C5 = aG+wQG−aE−wQE(λE)− [λHw
∂QE(λE)

∂λE

∣∣∣∣
λH

+wQE(λH)−wQE(bL̂λL̂+λĤ)]+ < 0

Hence, we have C1C2 −C3C4 < 0. Since we have
∂2Φ(fe

L̂H̃
)

∂fe2
ĤL̃

> 0 by EC.12, we have ∂Ce
s (α,β)

∂β
< 0 in

Re
(0,1),1.

In Re
(0,1),0, we have

∂Ce
s (α,β, f

e
L̂H̃

)

∂β
= [f e

L̂H̃
(1− bL̂)λL̂ + (1− bĤ)λĤ ][aE +wQE(λE) +λEw

∂QE(λE)

∂λE
− aG−wQG]> 0

(EC.34)

and

∂Ce
s (α,β, f

e
L̂H̃

)

∂f e
L̂H̃

=−[(1−α)bL̂ +β(1− bL̂)]λL̂(aG +wQG) +β(1− bL̂)λL̂[aE +wQE(λE) +λEw
∂QE(λE)

∂λE
]

= β(1− bL̂)λL̂[λEw
∂QE(λE)

∂λE
− [λHw

∂QE(λE)

∂λE

∣∣∣∣
λH

+wQE(λH)−wQE(bL̂λL̂ +λĤ)]+]

> 0
(EC.35)

where the second equality is given by Proposition 2 and EC.10. We then have

∂Ce
s (α,β, f

e
L̂H̃

)

∂β

∂2Φ(f e
L̂H̃

)

∂f e2
L̂H̃

−
∂Ce

s (α,β, f
e
L̂H̃

)

∂f e
L̂H̃

∂2Φ(f e
L̂H̃

)

∂f e
L̂H̃
∂β

= β[(1− bL̂)λL̂]2(C1C2−C3C4) (EC.36)

where

C1 = β[f e
L̂H̃

(1− bL̂)λL̂ + (1− bĤ)λĤ ]w
∂QE(λE)

∂λE
> 0

C2 = aE +wQE(λE) +λEw
∂QE(λE)

∂λE
− aG−wQG > 0

C3 = λEw
∂QE(λE)

∂λE
− [λHw

∂QE(λE)

∂λE

∣∣∣∣
λH

+wQE(λH)−wQE(bL̂λL̂ +λĤ)]+ > 0

C4 = aE + [λHw
∂QE(λE)

∂λE

∣∣∣∣
λH

+wQE(λH)−wQE(bL̂λL̂ +λĤ)]+ +wQE(λE)

+β[f e
L̂H̃

(1− bL̂)λL̂ + (1− bĤ)λĤ ]w
∂QE(λE)

∂λE
− aG−wQG > 0

Define

C5 = λHw
∂QE(λE)

∂λE
− [λHw

∂QE(λE)

∂λE

∣∣∣∣
λH

+wQE(λH)−wQE(bL̂λL̂ +λĤ)]+ > 0
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We then have C3 =C1 +C5 and C4 =C2−C5. Hence we have C1C2−C3C4 =C1C2−(C1 +C5)(C2−
C5) = (C1−C2 +C5)C5, with

C1−C2 +C5 = aG+wQG−aE−wQE(λE)− [λHw
∂QE(λE)

∂λE

∣∣∣∣
λH

+wQE(λH)−wQE(bL̂λL̂+λĤ)]+ < 0

Hence, we have C1C2 −C3C4 < 0. Since we have
∂2Φ(fe

L̂H̃
)

∂fe2
ĤL̃

> 0 by EC.17, we have ∂Ce
s (α,β)

∂β
< 0 in

Re
(0,1),0.

(iv) In Re
0,(0,1) and Re

1,(0,1), we have

∂Ce
s (α,β)

∂α
=
∂Ce

s (α,β, f
e
ĤL̃

)

∂α
+
∂Ce

s (α,β, f
e
ĤL̃

)

∂f e
ĤL̃

∂f e
ĤL̃

∂α

= [
∂Ce

s (α,β, f
e
ĤL̃

)

∂α

∂2Φ(f e
ĤL̃

)

∂f e2
ĤL̃

−
∂Ce

s (α,β, f
e
ĤL̃

)

∂f e
ĤL̃

∂2Φ(f e
ĤL̃

)

∂f e
ĤL̃
∂α

]/
∂2Φ(f e

ĤL̃
)

∂f e2
ĤL̃

(EC.37)

In Re
0,(0,1), we have

∂Ce
s (α,β, f

e
ĤL̃

)

∂α
= (1− f e

ĤL̃
)bĤλĤ [aG +wQG]> 0 (EC.38)

and

∂Ce
s (α,β, f

e
ĤL̃

)

∂f e
ĤL̃

=−[αbĤ + (1−β)(1− bĤ)]λĤ(aG +wQG)

+ (1−β)(1− bĤ)λĤ [aE +wQE(λE) +λEw
∂QE(λE)

∂λE
]

= (1−β)(1− bĤ)λĤ [λEw
∂QE(λE)

∂λE

− [λHw
∂QE(λE)

∂λE

∣∣∣∣
λH

+wQE(λH)−wQE(bL̂λL̂ +λĤ)]+]

> 0

(EC.39)

where the second equality is given by Proposition 2 and EC.22. Since we have
∂2Φ(fe

ĤL̃
)

∂fe2
ĤL̃

> 0 by

EC.24 and
∂2Φ(fe

ĤL̃
)

∂fe
ĤL̃

∂α
< 0 by EC.25, we have ∂Ce

s (α,β)

∂α
> 0 in Re

0,(0,1).

In Re
1,(0,1), we have

∂Ce
s (α,β, f

e
ĤL̃

)

∂α
= [bL̂λL̂ + (1− f e

ĤL̃
)bĤλĤ ][aG +wQG]> 0 (EC.40)

and

∂Ce
s (α,β, f

e
ĤL̃

)

∂f e
ĤL̃

=−[αbĤ + (1−β)(1− bĤ)]λĤ(aG +wQG)

+ (1−β)(1− bĤ)λĤ [aE +wQE(λE) +λEw
∂QE(λE)

∂λE
]

= (1−β)(1− bĤ)λĤ [λEw
∂QE(λE)

∂λE

− [λHw
∂QE(λE)

∂λE

∣∣∣∣
λH

+wQE(λH)−wQE(bL̂λL̂ +λĤ)]+]

> 0

(EC.41)
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where the second equality is given by Proposition 2 and EC.22. Since we have
∂2Φ(fe

ĤL̃
)

∂fe2
ĤL̃

> 0 by

EC.27 and
∂2Φ(fe

ĤL̃
)

∂fe
ĤL̃

∂α
< 0 by EC.28, we have ∂Ce

s (α,β)

∂α
> 0 in Re

0,(0,1). �

Proof of Proposition 5. We have R(0,1),1 on the left of and being adjunct to R0,1 by Proposi-

tion 3. In addition, we have Ce
s (α,β) = Cs(fL̂ = 0, fĤ = 1) in R0,1, and ∂Ce

s (α,β)

∂β
< 0 in Re

(0,1),1 by

Proposition 4 (iii). Hence, it follows that ∃ α,β in Re
(0,1),1 s.t. Ce

s (α,β)>Cs(fL̂ = 0, fĤ = 1). �

EC.2.5. Proofs for Section 7

Proof of Proposition 6. We first prove f∗
L̂L̃

= 0, f∗
ĤH̃

= 1,∀ α,β s.t. α≥ 0, β ≥ 0, α+β ≤ 1.

Suppose fL̂L̃ ∈ [0,1], fL̂H̃ = 1, fĤL̃ = 1, fĤH̃ = 1. Then we have

λG = (1− fL̂L̃)λL̂L̃ = (1− fL̂L̃)[αbL̂ + (1−β)(1− bL̂)]λL̂

λE = (1− fL̂L̃)bL̂L̃λL̂L̃ + fL̂L̃λL̂L̃ +λL̂H̃ +λĤ = [bL̂ +β(1− bL̂)]λL̂ + fL̂L̃(1−β)(1− bL̂)λL̂ +λĤ

Hence we have

∂Cs(fL̂L̃)

∂fL̂L̃
=−[αbL̂ + (1−β)(1− bL̂)]λL̂(aG +wQG)

+ (1−β)(1− bL̂)λL̂[aE +wQE(λE) +λEw
∂QE(λE)

∂λE
]

= [αbL̂ + (1−β)(1− bL̂)]λL̂[(1− bL̂L̃)(aE +wQE(λE) +λEw
∂QE(λE)

∂λE
)− (aG +wQG)]

≥ [αbL̂ + (1−β)(1− bL̂)]λL̂[(1− bL̂L̃)ME(λH)− (aG +wQG)]

≥ [αbL̂ + (1−β)(1− bL̂)]λL̂[(1− bL̂)ME(λH)− (aG +wQG)]

≥ 0

Hence we have f∗
L̂L̃

= 0.

On the other hand, suppose fL̂L̃ = 0, fL̂H̃ = 0, fĤL̃ = 0, fĤH̃ =∈ [0,1]. Then we have

λG = λL̂ +λĤL̃ + (1− fĤH̃)λĤH̃ = λL̂ +λĤ − fĤH̃ [(1−α)bĤ +β(1− bĤ)]λĤ

λE = bL̂λL̂ + bĤL̃λĤL̃ + (1− fĤH̃)bĤH̃λĤH̃ + fĤH̃λĤH̃ = bL̂λL̂ + bĤλĤ + fĤH̃β(1− bĤ)λĤ

Hence we have

∂Cs(fĤH̃)

∂fĤH̃
=−[(1−α)bĤ +β(1− bĤ)]λĤ(aG +wQG)

+β(1− bĤ)λĤ [aE +wQE(λE) +λEw
∂QE(λE)

∂λE
]

= [(1−α)bĤ +β(1− bĤ)]λĤ [(1− bĤH̃)(aE +wQE(λE) +λEw
∂QE(λE)

∂λE
)− (aG +wQG)]

≤ [(1−α)bĤ +β(1− bĤ)]λĤ [(1− bĤH̃)ME(bL̂λL̂ +λĤ)− (aG +wQG)]

≤ [(1−α)bĤ +β(1− bĤ)]λĤ [(1− bĤ)ME(bL̂λL̂ +λĤ)− (aG +wQG)]

≤ 0
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Hence we have f∗
ĤH̃

= 1.

Now we have

C∗s (α,β) = λGwQG +λEwQE(λE) +λGaG +λEaE (EC.42)

where

λG = λL̂L̃ + (1− f∗
L̂H̃

)λL̂H̃ + (1− f∗
ĤL̃

)λĤL̃

= λL̂− f∗L̂H̃ [(1−α)bL̂ +β(1− bL̂)]λL̂ + (1− f∗
ĤL̃

)[αbĤ + (1−β)(1− bĤ)]λĤ

λE = bL̂L̃λL̂L̃ + (1− f∗
L̂H̃

)bL̂H̃λL̂H̃ + f∗
L̂H̃
λL̂H̃ + (1− f∗

ĤL̃
)bĤL̃λĤL̃ + f∗

ĤL̃
λĤL̃ +λĤH̃

= bL̂λL̂ + f∗
L̂H̃
β(1− bL̂)λL̂ + bĤλĤ + f∗

ĤL̃
(1−β)(1− bĤ)λĤ +β(1− bĤ)λĤ

We have

∂C∗s (α,β)

∂α
=
∂C∗s (α,β, f∗

L̂H̃
, f∗
ĤL̃

)

∂α
+
∂C∗s (α,β, f∗

L̂H̃
, f∗
ĤL̃

)

∂f∗
L̂H̃

∂f∗
L̂H̃

∂α
+
∂C∗s (α,β, f∗

L̂H̃
, f∗
ĤL̃

)

∂f∗
ĤL̃

∂f∗
ĤL̃

∂α
(EC.43)

In Re
0,1,R

e
1,1,R

e
0,0 and Re

1,0, we have
∂f∗

L̂H̃
∂α

= 0 and
∂f∗

ĤL̃
∂α

= 0. In Re
(0,1),1 and Re

(0,1),0, we have
∂C∗s (α,β,f∗

L̂H̃
,f∗

ĤL̃
)

∂f∗
L̂H̃

= 0 and
∂f∗

ĤL̃
∂α

= 0. In Re
0,(0,1) and Re

1,(0,1), we have
∂f∗

L̂H̃
∂α

= 0 and
∂C∗s (α,β,f∗

L̂H̃
,f∗

ĤL̃
)

∂f∗
ĤL̃

= 0.

Hence, we have

∂C∗s (α,β)

∂α
=
∂C∗s (α,β, f∗

L̂H̃
, f∗
ĤL̃

)

∂α
= [f∗

L̂H̃
bL̂λL̂ + (1− f∗

ĤL̃
)bĤλĤ ](aG +wQG)≥ 0 (EC.44)

Similarly, we have

∂C∗s (α,β)

∂β
=
∂C∗s (α,β, f∗

L̂H̃
, f∗
ĤL̃

)

∂β
+
∂C∗s (α,β, f∗

L̂H̃
, f∗
ĤL̃

)

∂f∗
L̂H̃

∂f∗
L̂H̃

∂β
+
∂C∗s (α,β, f∗

L̂H̃
, f∗
ĤL̃

)

∂f∗
ĤL̃

∂f∗
ĤL̃

∂β
(EC.45)

In Re
0,1,R

e
1,1,R

e
0,0 and Re

1,0, we have
∂f∗

L̂H̃
∂β

= 0 and
∂f∗

ĤL̃
∂β

= 0. In Re
(0,1),1 and Re

(0,1),0, we have
∂C∗s (α,β,f∗

L̂H̃
,f∗

ĤL̃
)

∂f∗
L̂H̃

= 0 and
∂f∗

ĤL̃
∂β

= 0. In Re
0,(0,1) and Re

1,(0,1), we have
∂f∗

L̂H̃
∂β

= 0 and
∂C∗s (α,β,f∗

L̂H̃
,f∗

ĤL̃
)

∂f∗
ĤL̃

= 0.

Hence, we have

∂C∗s (α,β)

∂β
=
∂C∗s (α,β, f∗

L̂H̃
, f∗
ĤL̃

)

∂β

= [f∗
L̂H̃
bL̂λL̂ + (1− f∗

ĤL̃
)bĤλĤ ][aE +wQE(λE) +λEw

∂QE(λE)

∂λE
− aG−wQG]

≥ 0

(EC.46)

When α+β = 1, we have bL̂L̃ = bL̂H̃ = bL̂ and bĤL̃ = bĤH̃ = bĤ , and therefore C∗s (α,β) =Cs(fL̂ =

0, fĤ = 1). In addition, we have ∂C∗s (α,β)

∂α
≥ 0 and ∂C∗s (α,β)

∂β
≥ 0. Hence, we have C∗s (α,β)≤Cs(fL̂ =

0, fĤ = 1),∀ α,β s.t. α≥ 0, β ≥ 0, α+β ≤ 1. �
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Proof of Proposition 7. Given fL̂L̃ = 0 and fĤH̃ = 1, we have

λG = λL̂L̃ + (1− fL̂H̃)λL̂H̃ + (1− fĤL̃)λĤL̃

= λL̂− fL̂H̃ [(1−α)bL̂ +β(1− bL̂)]λL̂ + (1− fĤL̃)[αbĤ + (1−β)(1− bĤ)]λĤ

λE = bL̂L̃λL̂L̃ + (1− fL̂H̃)bL̂H̃λL̂H̃ + fL̂H̃λL̂H̃ + (1− fĤL̃)bĤL̃λĤL̃ + fĤL̃λĤL̃ +λĤH̃

= bL̂λL̂ + fL̂H̃β(1− bL̂)λL̂ + bĤλĤ + fĤL̃(1−β)(1− bĤ)λĤ +β(1− bĤ)λĤ

The social cost is

Cs(α,β) = λGwQG +λEwQE(λE) +λGaG +λEaE (EC.47)

We then have

∂Cs(α,β)

∂fL̂H̃
=−[(1−α)bL̂ +β(1− bL̂)]λL̂(aG +wQG)

+β(1− bL̂)λL̂[aE +wQE(λE) +λEw
∂QE(λE)

∂λE
]

(EC.48)

and

∂Cs(α,β)

∂fĤL̃
=−[αbĤ + (1−β)(1− bĤ)]λĤ(aG +wQG)

+ (1−β)(1− bĤ)λĤ [aE +wQE(λE) +λEw
∂QE(λE)

∂λE
]

(EC.49)

On the other hand, we have the potential function

Φ(α,β) =

∫ λG

0

wQGdx+

∫ λE

0

wQE(x)dx+λGpG +λEpE (EC.50)

where the equilibrium patient flow under pG and pE is given by

∂Φ(α,β)

∂fL̂H̃
=−[(1−α)bL̂ +β(1− bL̂)]λL̂(aG +wQG) +β(1− bL̂)λL̂[pE +wQE(λE)] (EC.51)

and

∂Φ(α,β)

∂fĤL̃
=−[αbĤ + (1−β)(1− bĤ)]λĤ(aG +wQG) + (1−β)(1− bĤ)λĤ [pE +wQE(λE)] (EC.52)

Comparing EC.48 with EC.51 and EC.49 with EC.52, we can see that optimal patient flow can be

induced by setting pG = aG and pE = aE + ∂QE(λE)

∂λE
. Hence, we have p̃∗G(α,β) = aG = p̂∗G. In addition,

when we have f∗
L̂H̃
∈ (0,1) or f∗

ĤL̃
∈ (0,1), pE = aE + ∂QE(λE)

∂λE
is the minimum associated expected

ED fee for p̃∗G(α,β) = aG, and therefore we have p̃∗E(α,β) = aE + ∂QE(λE)

∂λE
> p̂∗E. �
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