
Students’ Misunderstanding of the Order of
Evaluation in Conjoined Conditions

Eliane S. Wiese
School of Computing

University of Utah
Salt Lake City, USA
eliane.wiese@utah.edu

Anna N. Rafferty
Computer Science Department

Carleton College
Northfield, USA

arafferty@carleton.edu

Garrett Moseke
School of Computing

University of Utah
Salt Lake City, USA
gmoseke@gmail.com

Abstract—Experts often use particular control flow structures
to make their code easier to read and modify, such as using the
logical operator AND to conjoin conditions rather than nesting
separate if statements. Within Boolean expressions, experts take
advantage of short-circuit evaluation by ordering their conditions
to avoid errors (such as checking that an index is within the
bounds of an array before examining the value at that index).
How well do students understand these structures? We investigate
students’ use and understanding of conjoined versus separate
conditions within a larger assessment of 125 undergraduate
students at the end of their second- and third-semester CS courses
(in algorithms & data structures and introductory software
engineering). The assessment asked students to: write code where
an edge case error could be avoided with short-circuit evaluation,
revise their code with nudges towards expert structure, and
answer comprehension questions involving code tracing. When
writing, students frequently forgot to check for a key edge case.
When that case was included, the check was often separated
in its own if-statement rather than conjoined with the other
conditions. This could indicate a stylistic choice or a belief that
the check had to be separated for functionality. Notably, students
who included all necessary conditions rarely exhibited the error
of ordering them incorrectly. However, with code comprehension,
students demonstrated significant misunderstandings about the
effects of condition ordering. Students were more accurate on
comprehension tasks with nested ifs than conjoined conditions,
and this effect was most pronounced when the ordering of the
conditions would lead to errors. When conditions were conjoined
in a single expression, only 35% of students recognized that
checking a value at an index before checking that the index
was in bounds would lead to an error. However, 54% of students
recognized the problem when the conditions were separated into
individual if-statements. This demonstrates a subtlety in code
execution that intermediate students may not have mastered and
emphasizes the challenges in assessing students’ understanding
solely via the way they write code.

Index Terms—Computer science education, Novice code com-
prehension, Programming style

I. INTRODUCTION

Two goals of teaching programming in computer science
beyond having students write code that works are for students
to understand how code is executed and to be able to read
code they did not write. That is, students need an accurate
mental model of the notional machine – an abstraction of
the system that takes code as input and produces a running
program [1], [2]. One measure of students’ understanding
comes from their choices of structures and control flows when

they write code [3]. However, code-writing skills alone may
not be an accurate measure of students’ understanding of code
execution. Students may comprehend more advanced code
structures even when they don’t write with them [4], and, as
we show here, students may not fully comprehend the code
structures that they use correctly when they write.

General theoretical frameworks in the learning sciences
provide a grounding for why code writing may not provide a
complete picture of students’ understanding. The Knowledge-
Learning-Instruction framework emphasizes that instruction
and practice must be tailored to instructional goals, with the
possibility of students learning procedural skills well but not
being able to explain the skills conceptually [5]. There is thus
the possibility that students may write functional code but be
unable to trace the execution of their code or the execution of
similar code that they did not write. Students’ application of
their knowledge may also be sensitive to context: as described
by the Knowledge in Pieces theory, small variations in the way
a question is asked may trigger students to answer differently,
using individual elements of a collection of ideas rather than
drawing from one unified set of knowledge in the same
way across contexts [6]. While this theory of learning has
traditionally been applied to the natural sciences, it is more
widely applicable to a range of domains [7].

In this paper, we examine intermediate students’ understand-
ing of code execution involving multiple Boolean expressions.
Specifically, we focus on intermediate students’ understanding
of code execution when three Boolean expressions are checked
in different orders, and if they are checked in a single if-
statement (conjoined with the logical operator &&) or three
nested if-statements (each with one condition). Using a
survey-based approach, we examine the relation between the
code students write (including choice of code structure and
ordering of the Boolean expressions), and their code tracing
with different structures and ordering of Boolean expressions.
This paper makes two contributions:

• A demonstration of intermediate CS students’ misun-
derstandings of code execution. We show that many
intermediate students give inaccurate responses to code
tracing questions involving incorrect ordering of Boolean
expressions, even though the target control structures
were taught in introductory classes. While novice pro-



grammers’ misconceptions have been studied extensively
(e.g., [8]–[11]), intermediate students’ ideas have not.

• Evidence that students may show greater proficiency and
different kinds of errors when understanding is assessed
by having students students write and revise code rather
than read others’ code. We can interpret this using the
theoretical frameworks discussed above. Students’ perfor-
mance suggests that slight changes in code presentation
can trigger differences in what knowledge students apply,
consistent with Knowledge in Pieces [7]. Large differ-
ences in the types of errors made on tasks that ostensi-
bly use the same underlying concepts are evidence for
students learning to use certain code structures without
understanding why they work, which is suggested by the
Knowledge-Learning-Instruction perspective [5].

II. PRIOR WORK

Students’ understanding of conjoined conditions and short-
circuit evaluation is understudied. Research on misconceptions
in programming often focus on novice programmers, and
therefore address simpler if-statements, with single condi-
tions (e.g., [8]–[11]). Initial work with the Readability and
Intelligibility of Code Examples (RICE) survey examined
intermediate CS students’ comprehension of code that used
nested if-statements vs. code that conjoined all conditions
within one if-statement [4]. While those results indicate
that intermediate students can comprehend both structures
equally, and that they perceive the single if-statement as more
readable, the particular code examples used conditions that
could be checked in any order [4]. A follow-up study with
18 students examined code samples where the ordering of the
conditions affected the code execution, finding that the single
if-statement reduced comprehension [12]. Our study builds
on this line of work by replicating the main elements of that
study while also incorporating new questions and using a much
larger sample size.

III. METHODS

This data was collected as part of a study conducted at
a large research university in the Mountain West of the
United States. The study was conducted at the end of the
school semester. Students were recruited from two CS courses,
and completed the self-paced assessment questions online.
Questions were generally presented individually, and students
could not return to previously-answered questions. Of the
assessment items relevant for this analysis, all students saw the
same questions in the same order. The study design, including
data collection plan, and hypotheses were preregistered at OSF
(https://osf.io/gzxmf/?pid=74fcw).

A. Participants

Students were recruited from the Data Structures and
Algorithms course and an introductory course on Software
Engineering (respectively, the second and third programming-
intensive courses in the CS major sequence). All of these

Write a function that takes two ints as input and returns a
String. The first and last line are provided for you.

• When the first input divided by the second is 5 or
larger, AND the first input is bigger than 10, return
the String “Ok”.

• Otherwise, return the String “Not Ok”.
Hint: Be careful to avoid an exception caused by dividing
by 0.
Examples:
Input Returned
36, 6 “Ok”
6, 36 “Not Ok”
2, 0 “Not Ok”

Fig. 1. Code writing task with sample input-output pairs. The method
signature (first line) and closing brace (last line) were provided.

students received instruction on compound Boolean expres-
sions, including at least brief discussion of short-circuit evalua-
tion, in a prerequisite course on object-oriented programming.
Students in Software Engineering were offered extra credit
for completing the assessment, and 119 participated (out of
approximately 200 enrolled). Since the instructor for the Data
Structures and Algorithms class did not want to offer extra
credit, students in that class were compensated $5 for partici-
pating, and 24 did so (out of approximately 300 enrolled). The
assessment had several types of questions (including writing
and comprehension). Following our preregistered plan, we
excluded from the dataset the 18 students who skipped more
than one question of a given type. Of the 125 students included
in the dataset, 114 were from Software Engineering and 11
were from Data Structures and Algorithms.

B. Materials

Our assessment questions are adapted from the Readability
and Intelligibility of Code Examples (RICE) survey [4], [12].
This analysis focuses on items that target if-statements with
multiple conditions, specifically examining two factors: the
ordering of the conditions (when one order correctly handles
edge cases and the other order does not), and if the conditions
are conjoined in one if-statement or separated into individual
if-statements. This analysis examines three kinds of ques-
tions: (1) writing, (2) revision of the student’s own written
code in response to feedback, and (3) comprehension. Students
saw the writing task first, then the comprehension questions.
The survey included automated evaluation of students’ written
code, and students whose code was flagged for revision saw
those revision prompts at the end of the survey.

The writing task (figure 1) explicitly asks students to check
two conditions on two inputs (ints): if the quotient is 5 or
larger, and if the first input is bigger than 10. A hint reminds
students to avoid a divide-by-0 exception in their code. Three
sample input-output pairs show the desired functionality, in-
cluding when the divisor is 0. Students wrote their code in an

https://osf.io/gzxmf/?pid=74fcw


open-response text box. There was no functionality to compile
or run the code from within the survey. At the end of the
survey (after the comprehension questions), students who had
not used expert structure were prompted to revise their code.

The survey software allowed for branching based on pattern
matching from regular expressions, and this was used to flag
students’ code on the writing task for later revision. Code was
flagged if there was more than one if, or if the code was
missing the pattern “!=0”. If the code was flagged, students
were given a set of revision opportunities. The first opportunity
presented the student’s original code with the original question
prompt, with the instructions “Copy your code into the box
below and try to improve the code’s style. If you see any other
errors, please fix them.” This instruction did not offer hints or
new information, and was intended to measure improvement
simply from drawing students’ attention back to their code. If
the code was still flagged after this revision chance, students
were given specific hints. The hints said “We detected at least
one of these things about your code: the code has more than
one if; the code seems like it might throw an exception if
the second input is 0 (note, there are a few ways to avoid
this exception, and the survey doesn’t recognize all of them –
just double check).” Students then indicated, with a multiple-
choice question, if they could edit their code to follow the
hints, if they didn’t know how to do so, or if their code was
actually fine. Based on that response, there was a final round of
branching: students who said they could follow the hints were
asked to do so; students who said they could not follow the
hints were shown an example for a similar problem (Figure 7);
students who indicated that their code was fine were moved
on to the next section of the survey.

For the comprehension questions, students were first given
a description of the task that the code was intended to
accomplish, shown in figure 2. The task involves comparing
an inputted character to a character in a specific position in a
String. If the given position is out of range, the method should
return the input character. Accomplishing this task requires
checking the character at the specified position in the String,
but must first ensure that the position is valid. The desired
behavior for invalid positions is shown with specific examples
for positions that are too small and too large (the last two
examples in figure 2).

For this task description, students were asked two kinds of
comprehension questions: (1) given a code sample, does the
code accomplish the task? and (2) given a specific input, what
is the output for that code sample? Comprehension questions
were presented on different pages that had to be completed
in order. Students could not return to previously-answered
pages. The first page showed the task description (figure 2),
and the first code sample (figure 3), and asked if the code
accomplished the task (yes or no). This first code sample
checked three conditions (if the position was too small, if
the inputted character was greater than the character at the
target position in the String, and if the position was too big).
However, this code sample checks if the position is too big
after attempting to access the character at that position, which

Decide if the code below accomplishes this task:
Task: The function takes as input a String (word) a char
(letter) and an int (position), and returns a char.

• Return the letter at the inputted position for the in-
putted word IF that letter is larger than the inputted
letter.

• Otherwise, return the given letter.

Examples:
Input Desired Return
“Word”, ‘A’, 0 ‘W’
“Word”, ‘Z’, 0 ‘Z’
“Word”, ‘A’, -1 ‘A’
“Word”, ‘A’, 10 ‘A’

Fig. 2. Task and sample input-output pairs for the code comprehension items.

Fig. 3. The first code sample in this sequence. All conditions are conjoined
with && in a single if. The target character is accessed before checking if
the position is in range, causing an exception when the position is too big.

will cause an exception if the position is indeed too big.
Therefore, the code sample does not accomplish the task. The
next question page showed the code sample again (figure 3),
and asked what the output would be for specific inputs: (1)
“Word”, ‘A’, 0 and (2) “Word”, ‘A’, 10. The options for both
questions were: ‘A’, ‘W’, Something else (with open-response
box), and Throws an exception.

The next question page repeated the task description and
presented the rest of the code samples (figures 4, 5, and
6), again asking if each sample accomplished the task. The
last page of this comprehension set again presented the code
samples in figures 4, 5, and 6, and asked what the output would
be for the input “Word”, ‘A’, 10. The multiple-choice options
were ‘A’, ‘W’, Something else (with open-response box), and
Throws an exception.

Fig. 4. The second code sample in this sequence. All conditions are conjoined
with && in a single if. Checking that the position is in range happens
before the target character is accessed. Short-circuit evaluation will avoid an
exception when the position is out of range.



Fig. 5. The third code sample in this sequence. Each condition is in its own
if. The ordering of the conditions matches the code in Fig. 4

Fig. 6. The fourth code sample in this sequence. Each condition is in its own
if. The ordering of the conditions matches the code in Fig. 3, and will throw
an exception if the position is too large.

Fig. 7. Code examples shown to students who did not know how to revise
their own code to use only one if and to avoid a divide-by-0 exception. The
example shows three different code structures with the same functionality.

TABLE I
STRUCTURES AND APPROACHES FOR WRITING AND REVISION

Initial Revision Revision 2 Revision 2 w/
Writing Chance w/ Hints Hints & Examples

No 0-check 57 18 1 0
Has 0-checks: 68 30 71 7
- One if 17 15 58 6
- Two ifs 44 15 12 1
- Three ifs 2 0 0 0
- No division 1 0 0 0
- Try-catch 4 0 1 0
0-check order:
- correct 62 28 60 6
- incorrect 1 2 10 1
Note: All 125 students are included for Initial Writing. Students who
revised their code after it was flagged are included in the subsequent
columns. Students had two opportunities to revise (the Revision Chance
with no new information, and then either a revision after hints alone or
after hints and examples). The columns are not cumulative.

TABLE II
USE OF CONJOINING WHEN WRITING CODE

Initial Revision Revision 2 Revision 2 w/
Writing Chance w/ Hints Hints & Examples

All conjoined 17 15 58 6
Two conjoined 45 15 13 1
No conjoining 1 0 0 0
Note: Entries are counts of code structures. Counts include only those
student answers that explicitly checked for zero without using try-catch.

IV. RESULTS

All 125 participants in our sample answered the code-
writing question. The comprehension tasks included 9 individ-
ual questions (each of the four code samples had a question
on overall functionality and output for an edge-case input; the
first code sample had one additional question on the output
for a non-edge-case input). Three questions were each skipped
once (by three different students); otherwise, all students in the
sample answered all questions. We discuss response rates to
the revision task in that section (below).

A. Writing Results

The writing task required students to check two conditions
described explicitly in the problem statement (the size of the
first input and the size of the quotient of the first and second
input) and one condition referenced in a hint provided with

TABLE III
TREATING THE ZERO-CHECK AS A SPECIAL CASE

Initial Revision Revision 2 Revision 2 w/
Writing Chance w/ Hints Hints & Examples

Isolated 36 14 10 1
Joined 8 1 2 0
Note: Entries are counts of code structures that included two conditions
conjoined but not all three conditions conjoined. Isolated means the check
for zero was in its own condition while Joined indicates the check for zero
was conjoined with one other condition.



if(num2 == 0){

return "Not Ok";

}

else if(num1/num2 >= 5 && num1 > 35){

return "Ok";

}

else{
return "Not Ok";

}

Listing 1: Student code writing response, using an isolated
zero-check. The other two conditions are conjoined with the
AND operator. This coding pattern indicates that students can
use && to conjoin conditions, but seem to think about the
zero-check differently from the other conditions.

the problem (that the divisor was not 0). Of the 125 students,
one wrote code that only checked the size of the quotient; 56
checked the two explicit conditions, but did not check if the
divisor was 0 (these categories are combined as No 0-check
in Table I); one checked if the divisor was 0 and the size of
the first input (but did not perform the division to check the
quotient, No division in Table I); and 67 checked all three
conditions (or handled exceptions through try-catch blocks).
Of the 67 students who checked all three conditions, only 17
of them (14% of our sample) did so with expert structure,
conjoining the three conditions within one if (One if in
Table I). 46 students checked all three conditions but used
more than one if (Two and Three ifs in Table I). Table I
also shows that 98% of students who checked that the divisor
was 0 and performed the division did so in the correct order
(last two lines, including all 63 students who checked for
0, performed the division, and did not use try-catch). This
included all students who conjoined all three conditions.

Structure Table II shows three types of structures among
the 63 students who addressed all three conditions without try-
catch: one expert (all conjoined in one if-statement, 17/63),
and two novice (one condition per if-statement, with no con-
joining 1/63; and conjoining conditions within if-statements,
45/63). The low rate of expert structure is consistent with the
preregistered hypotheses. Notably, one of the students who
used three if-statements did so with conjoined conditions,
including an unnecessary check of whether the dividend was
0 in addition to the divisor. Further, three students conjoined
conditions while using try-catch, resulting in only 2/67 who
checked all conditions but did not use the logical operators
AND or OR. Therefore, while novice structures were used
by 75% of the 67 students who checked all three conditions,
97% of these students demonstrated the ability to use Boolean
operators to conjoin conditions.

Approach. As a whole, the students treated the expression
that checked if the divisor was 0 (the zero-check) differently
from the other two conditions: of the 57 students who only
checked two of the three conditions, the zero-check was
overwhelmingly the one left out (56/57). Even the students
who checked all three conditions approached the zero-check

differently than the other two. Among the 47 students who
used two if-statements and a zero-check, 36 students isolated
the zero-check in one if-statement and conjoined the other
two in another if-statement; only 8 conjoined the zero-
check with one of the other conditions (Isolated vs. Joined
in Table III). The prevalence of isolating the zero-check could
indicate a desire to separate this “error” case from the more
typical cases.

Discussion: Writing Results. While the initial RICE results
presented conjoined conditions as an alternative to nested
ifs [4], these results show that students are more likely to use
an in-between structure, conjoining some conditions but not all
of them. Therefore, the lack of conjoining all three conditions
seems not to be due to a lack of knowledge of the syntax for
Boolean operators. While it could stem from unfamiliarity with
short circuit execution, that hypothesis is not consistent with
the comprehension results (discussed below). Based only on
this code generated by the students, we cannot assess whether
students believe the zero-check must be separated in this way
for functionality or if it is a stylistic choice that they believe
enhances the readability of their code. Listing 1 shows one
example of a student separating the zero-check. This code,
like many of the examples with multiple conditions, uses
if-else (others use sequential ifs). This leads to some
code duplication (e.g., return ‘‘Not Ok’’), but avoids
the need to trace through nested ifs or to consider the order
of execution of conjoined conditions (since the conditions
which are conjoined could be evaluated in either order). Again,
increased code duplication combined with structures that may
be easier for students to trace may be a stylistic choice or a
choice driven by uncertainty about how to use alternatives.
Overall, these results show that while neglecting the zero-
check was a common error (46%, 57/125), and isolating the
zero-check was a common strategy (29%, 36/125), the error
of mis-ordering the zero-check was extremely rare (1/125).

B. Revision results

Students revised their code at the end of the survey, after
the comprehension questions. With chances for revision, a
significant number of students were able to revise their code
to follow an expert structure, including a check for zero
(Table II); students were more successful than expected in
the preregistered hypotheses, where we predicted fewer than
40% of students would be successful. When students who
wrote non-expert structured code were given the chance to
revise (and subsequent hints and examples, if needed), many
incorporated a zero-check, and most of them ordered it cor-
rectly. Results for the original writing and for the revision
phases are show in Table I. For all tables, note that once
students wrote expert structured code, they were not prompted
to revise further. Also, the tables are not cumulative: the
columns for revision show the structures that students used at
that time point, and only for students who made some change
to their previous code (beyond whitespace). The larger overall
numbers for the Revision 2 columns compared to the Revision
Chance column show that many students did not revise their



code until they were shown hints for how to do so. 48 revised
their code in some way at the first opportunity for revision,
when they were not given specific hints. Two of these 48
students submitted code that checked for zero but still could
throw an exception due to dividing by zero, either due to
placing the check for 0 after the division or using boolean-
OR to combine a check for zero and a division (rather than
boolean-AND).

At revision 2, when students were explicitly told that one
reason their code might have been flagged is that “it might
throw an exception if the second input is 0,” more students who
had initially neglected the zero-check proceeded to incorporate
it. While checking for zero at the wrong point in code
execution was slightly more common at revision 2 (14% of
students, 11/79 submissions), it was still not the norm. One
of those 11 students exhibited that error on the initial writing
task. Of the other 10, seven of them had not included a zero-
check initially. Three students had included a zero-check in
their initial writing, and had correctly placed it before the
division, albeit in a separate if-statement. These three students
introduced the ordering error when they conjoined all of the
conditions in one if-statement.

Discussion: Revision Results. Many of the initial sub-
missions for the writing question (46%) left out the zero-
check, which may have artificially reduced the error of mis-
ordering that check. The revision results show that students
can incorporate the zero-check, and that most students are
not writing code that exhibits the type of ordering error
examined in the comprehension questions. Further, given that
by Revision 2 many students were revising their code to join
all three conditions together (Table II), students appear to
know that the check for zero should precede the division:
if students were not considering the placement of the check
relative to the other conditions, and ordering it randomly,
it would result in an ordering error about half of the time.
However, it is notable that some students who had the correct
ordering of conditions when the zero-check was isolated did
not maintain that order when they conjoined it with the
other conditions, indicating that they did not realize why that
ordering was significant. The writing and revision results alone
cannot tell us whether students understand the consequences of
alternative placements of the check; students could be sensitive
to the placement of the condition when writing their own code
while not knowing that this is a functional rather than stylistic
necessity.

C. Comprehension results

Comprehension questions presented four methods that each
checked three conditions, crossing code structure (conjoined
in one if vs. separated in individual if-statements) with con-
dition ordering (correct ordering to avoid errors by checking
that the index is in range before checking the value at that
index vs. wrong ordering that does the reverse). As shown in
Table IV, student performance on the comprehension questions
varied depending on both factors.

Ordering. 91% of students correctly identified that the code
would accomplish the task when the code used correct order-
ing. In contrast, only 45% of students correctly recognized
the code would not accomplish the task when the code used
the wrong ordering (Table IV). This is slightly less than the
54% of students who, for the initial writing submission, wrote
code that addressed the edge case of dividing by zero; note,
however, that students were explicitly reminded to handle
this edge case in the writing question. On the comprehension
questions, an edge case was provided with the input-output
examples given with the task description, but students were
not explicitly told to consider specific errors in the code.

When asked to identify the output for a specific edge case,
89% of students answered correctly for the correct ordering,
while only 57% answered correctly for wrong ordering. This
suggests that the issue is not simply that students are ignoring
the possibility of edge cases. To test the reliability of these
differences for each of the two question types, we used
logistic regression with mixed effects, with fixed effects for
the ordering of the conditions and whether the code separated
the conditions in two ifs or conjoined them, and a random
factor for student; the reliability and direction of effects is
not impacted by whether an interaction factor is included, and
because the models without interaction factors had lower BIC,
we do not include the interaction in our analyses. The impact
of order was statistically reliable both when students were
asked whether the code accomplished the task (coefficient
for wrong order: −1.55, t(497) = 10.6, p < .0001) and
when students were asked to identify the output for a given
input (coefficient for wrong order: −1.07, t(497) = 8.15,
p < .0001).

Structure. While the impact of whether or not the condi-
tions were conjoined was smaller than the impact of ordering,
students were more likely to be correct when the conditions
were separated than when conjoined. 74% of students cor-
rectly identified whether the code would accomplish the task
with separate conditions, compared to 62% when conditions
were conjoined (coefficient for conjoined conditions: −0.44,
t(497) = 3.61, p < .001). This difference persisted when
students were asked to identify the output for a given input,
with 80% of students answering correctly when conditions
were separated and 66% answering correctly when conditions
were conjoined (coefficient for conjoined conditions: −0.51,
t(497) = 4.31, p < .0001).

Discussion: Comprehension results. Conjoined conditions
and incorrect ordering both impaired students’ code compre-
hension. In particular, many students did not recognize that
placing a validity check for an index after trying to access that
index would result in an error. This issue was more pronounced
when conditions were conjoined, with only 35% of students
correctly identifying that the code did not accomplish the task
and 46% of students identifying that the code would raise
an error on a given edge case input. Students may not have
been considering specific edge cases when asked if the code
accomplished the given task. Asking students to identify the
output for a specific edge-case input did improve performance



TABLE IV
ACCURACY ON COMPREHENSION QUESTIONS

Identifying whether code accomplishes the task Identifying output for a given edge-case input
Correct ordering Wrong ordering All Correct ordering Wrong ordering All

Conjoined 89% (111/125) 35% (44/125) 62% (155/250) 86% (107/125) 46% (57/125) 66% (164/250)
Separated 93% (116/125) 54% (68/125) 74% (184/250) 93%(116/125) 68% (85/125) 80% (201/250)
All 91% (227/250) 45% (112/250) 68% (339/500) 89% (223/250) 57% (142/250) 73% (365/500)

on the code samples with incorrect ordering. However, the
same overall effects of conjoining and ordering persisted. The
pattern of errors is not consistent with a straightforward lack
of knowledge of short-circuit evaluation. If students simply
did not recognize short-circuit evaluation, they would have
indicated that both code samples with conjoined conditions
would result in errors.

V. COMBINED DISCUSSION

The pattern of results across the writing task and the
comprehension task suggests that students’ understanding of
code execution with Boolean expressions is very context-
sensitive. In particular, students were very unlikely to mis-
order conditions in the initial writing task (1 did so, out of 63
who included a zero-check). Ironically, incidence of this error
rose when students were given hints to improve their code.
However, even the 14% rate of students who wrote with that
error on Revision 2 is much less than the 43% of students who
did not understand the impact of that error on the input-output
comprehension task. Students seem to avoid this error when
they write, but without a full understanding of what exactly
they are avoiding.

When writing code, students may order it in a particular
way based on their ideas of functionality, readability, or both.
If students believe that the ordering is mainly about readability
rather than functionality, they may order their code correctly
without considering the impact of order on functionality at
all. In that case, students would write correctly, but would
not necessary comprehend code that was ordered differently.
This indicates that writing code is not a complete assessment,
and additional tasks like code reading are needed to fully
assess students’ code comprehension. Further, if students don’t
make this error themselves, they may be missing practice
opportunities for recognizing it and fixing it.

The high degree of context-sensitivity and the seeming in-
consistency between students’ actions in different contexts are
aligned with the Knowledge-in-Pieces (KiP) framework [7].
In particular, KiP posits that different elements of students’
mental models are triggered by different contexts (e.g., a
physics student may say that a ball thrown in the air only
has the force of gravity acting on it, but when asked about the
peak of the toss, invents a second force) [7]. In applying KiP
to a programming context, Lewis emphasizes the importance
of students’ growing realization of what they should be paying
attention to as a factor that mediates learning (e.g., attention
to state while debugging) [13]. Within this framework, while
students are writing, they may be focusing on their own

categorization of different types of conditions. Specifically,
students may characterize conditions as “regular” checks or
“error” checks while they write. However, if this categorization
is not conceptually connected to an understanding of code
execution, it will not be useful during code comprehension.

A catch-all for flawed mental models of program execution
is the “superbug” that the computer will make intelligent
choices, manifesting here as the implicit belief that the
conditions will be evaluated in an appropriate order [14].
Alternatively, students might have a flawed mental model that
doesn’t rely on smart ordering of execution but focuses on
the underlying logic of a condition rather than how it will
be executed. When all conditions are joined with Boolean-
AND, one condition being false will make the whole statement
false. Reading the code in search of a false condition, ignoring
the possibility of an error interrupting program execution, is
consistent with students’ pattern of accuracy on the compre-
hension questions. In this hypothesis, student choices are con-
sistent with an incorrect mental model of the notional machine
that executes their code [2]. In particular, this error pertains to
when code is evaluated, a challenging issue for students across
languages. For example, when tracing code in Lisp, students
must consider whether arguments are evaluated when they are
passed or only when actually used; in most contexts, each
argument is evaluated before being passed to a function, but for
special forms, a different evaluation pattern occurs. Because
Lisp is a functional programming language, misunderstandings
about evaluation cannot be easily traced to line ordering, and
some work has found that explicit practice that highlights
the evaluation model can improve understanding and lead to
greater proficiency in programming [15]. Our results suggest
that the challenges of understanding the evaluation model are
not limited to functional programming languages, and explicit
instruction on when each part of the code is evaluated might be
beneficial even in imperative and object-oriented programming
paradigms.

The high accuracy of student responses for correctly-ordered
conditions demonstrates that students were able to identify the
overall purpose of the code and perform some code tracing.
However, the low accuracy on the comprehension questions
that raised errors and the differences in accuracy between
separated and conjoined conditions both suggest that students
may be missing important details about code execution even
by the time they reach intermediate CS classes. While many
instructors include code reading in their classes, they are
likely to assume that students have mastered if-statements
and Boolean conjoining by the end of the first CS course,



meaning it may come up in examples but is unlikely to be the
core targeted concept in activities in later courses. Yet, our
results suggest a need for more emphasis on these details of
code execution.

One of the challenges of both conjoined conditions and
nested if statements is that the order of execution is not
strictly linear. While there has been limited study of students’
comprehension of nested ifs, Wiegand et al. investigated
introductory students’ performance on identifying the output
of nested ifs and tracing their execution [16]. Surprisingly,
students performed better when identifying the output of a
nested if statement compared to an if-else statement,
which Wiegand et al. attributed to challenges with the control
flow not being strictly linear: students had to ignore the else
when predicting the output for the if (given the particular
questions asked). However, Wiegand et al. also found that
tracing nested if statements was challenging and suggested
that the correct identification of output for nested ifs might
be due to the answers being relatively easy to guess. Our work
provides further evidence that tracing and identifying output
for at least some types of nested if statements is challenging,
and the differences in accuracy between questions with the
same code structure is evidence that understanding for nested
ifs may not be monolithic and may be overestimated based
on features of the assessment.

VI. IMPLICATIONS FOR INSTRUCTIONAL DESIGN

Interpreting these results using the lens of the Knowledge-
Learning-Instruction (KLI) framework [5] suggests instruc-
tional implications. KLI breaks student knowledge into small
chunks, known as knowledge components. Writing code versus
comprehending code may rely on different knowledge compo-
nents, explaining why students avoided ordering errors in their
writing but were tripped up by them in code comprehension.
The KLI framework posits that knowledge components consist
of an action and a condition of applicability [5], such as when
code requires an error check, put it first. This kind of decision
can be tacit, meaning that students may perform actions
consistent with a hypothesized knowledge component without
being able to explain why they are doing it. Instruction,
therefore, should focus on the knowledge components needed
for code comprehension in addition to those for code writing.

Instructional strategies could include more practice with
code tracing, especially with examples where the conditions
are ordered incorrectly. This could be appropriate in an intro-
ductory class when students first learn about compound logical
expressions, but also in a data structures class when students
need to perform a null check before some other operation.
Emphasizing the topic again in authentic data structures con-
texts may help students recognize the applicability of the topic
for their own code. Instruction can specifically highlight the
importance of the correct ordering, and the distinctions among
how the code executes when the conditions are in different
orders. Further, these results suggest that making sense of
the specific order of execution for both correct and incorrect
code may be an important instructional activity, especially

because students may write correctly without understanding
what makes their code correct.

VII. LIMITATIONS

Several limitations are inherent in the study methodology.
The survey was explicitly a research instrument, and compen-
sation or extra credit were not based on performance. It is
possible that the survey results, overall, may underestimate
students’ abilities if they were not motivated to try hard.
Further, the survey platform did not allow students to compile
or test their written code. Results from the code writing
and revision task, therefore, will not be representative of
students’ performance when they have such tools. While we
interpret the frequency of the isolated zero-check to indicate
that students think about it differently than the other con-
ditions, we cannot confirm this interpretation without direct
explanations from the students. Similarly, while the pattern of
comprehension difficulties indicates that both condition order
and structure affect comprehension, our data cannot confirm
students’ thinking about code execution in each case. Finally,
this study does not firmly establish condition ordering as a
difficulty that affects code writing or code comprehension
outside of a research setting. Future work should: elicit student
explanations for their code writing choices; examine students’
mental models of code execution; and determine what kinds
of misunderstandings around code execution affect students’
learning or their performance on real-world tasks.

VIII. CONCLUSION

This paper presents a study of 125 intermediate computer
science students and their writing and comprehension of
code that checks multiple Boolean conditions, in cases where
the ordering of those conditions can cause or avoid errors.
Comprehension tasks examine two factors, and reveal that both
the ordering of the conditions and the structure of the code
(conjoined conditions vs. nested ifs) affect comprehension.
Specifically, it is much harder for students to identify what
the code does, both in general and for a given input, when the
ordering of conditions causes errors on edge cases. Notably,
this is an error that rarely came up in the code-writing task,
indicating that students may use correct coding practices in
their writing without fully understanding why they are neces-
sary. In particular, this identified comprehension difficulty may
be representative of a larger category: the order of execution
within a single line of code. This work demonstrates that even
intermediate students in their second and third programming-
intensive classes may not fully understand these nuances
of execution, and that proficiency with code-writing is not
an accurate predictor of code comprehension. Further, this
work suggests that students would benefit from instruction
around errors, even if they are unlikely to make them, because
identifying and explaining them can illuminate students’ own
mental models of code execution.

REFERENCES

[1] B. Du Boulay, “Some difficulties of learning to program,” Journal of
Educational Computing Research, vol. 2, no. 1, pp. 57–73, 1986.



[2] J. Sorva, “Notional machines and introductory programming education.”
ACM Transactions on Computing Education, vol. 13, no. 2, p. n2, 2013.

[3] J. Whalley, T. Clear, P. Robbins, and E. Thompson, “Salient elements
in novice solutions to code writing problems,” Conferences in Research
and Practice in Information Technology Series, vol. 114, pp. 37–45,
2011.

[4] E. S. Wiese, A. N. Rafferty, and A. Fox, “Linking Code Readability,
Structure, and Comprehension among Novices: It’s Complicated,” in
Proceedings of the 41st ACM/IEEE International Conference on Soft-
ware Engineering, 2019.

[5] K. R. Koedinger, A. T. Corbett, and C. Perfetti, “The knowledge-
learning-instruction framework: Bridging the science-practice chasm to
enhance robust student learning,” Cognitive science, vol. 36, no. 5, pp.
757–798, 2012.

[6] A. A. diSessa, “Toward an epistemology of physics,” Cognition and
Instruction, vol. 10, no. 2/3, pp. 105–225, 1993. [Online]. Available:
http://www.jstor.org/stable/3233725

[7] A A. diSessa, “A friendly introduction to “knowledge in pieces”:
Modeling types of knowledge and their roles in learning,” in Invited
Lectures from the 13th International Congress on Mathematical Edu-
cation, G. Kaiser, H. Forgasz, M. Graven, A. Kuzniak, E. Simmt, and
B. Xu, Eds. Springer, Cham, 2018, pp. 65–84.

[8] P. Bayman and R. E. Mayer, “A diagnosis of beginning programmers’
misconceptions of basic programming statements,” Commun. ACM,
vol. 26, no. 9, p. 677–679, Sep. 1983. [Online]. Available:
https://doi.org/10.1145/358172.358408

[9] Y. Qian, S. Hambrusch, A. Yadav, S. Gretter, and Y. Li, “Teachers’
perceptions of student misconceptions in introductory programming,”
Journal of Educational Computing Research, vol. 58, no. 2, pp. 364–397,
2020. [Online]. Available: https://doi.org/10.1177/0735633119845413

[10] M. Hristova, A. Misra, M. Rutter, and R. Mercuri, “Identifying
and correcting java programming errors for introductory computer
science students,” in Proceedings of the 34th SIGCSE Technical
Symposium on Computer Science Education, ser. SIGCSE ’03. New
York, NY, USA: ACM, 2003, pp. 153–156. [Online]. Available:
http://doi.acm.org/10.1145/611892.611956

[11] Y. Qian and J. Lehman, “Students’ misconceptions and other difficulties
in introductory programming: A literature review,” ACM Trans.
Comput. Educ., vol. 18, no. 1, Oct. 2017. [Online]. Available:
https://doi.org/10.1145/3077618

[12] E. S. Wiese, A. N. Rafferty, D. M. Kopta, and J. M. Anderson,
“Replicating novices’ struggles with coding style,” in Proceedings of
the 27th International Conference on Program Comprehension. IEEE
Press, 2019, pp. 13–18.

[13] C. M. Lewis, “The importance of students’ attention to program
state: A case study of debugging behavior,” in Proceedings of the
Ninth Annual International Conference on International Computing
Education Research, ser. ICER ’12. New York, NY, USA: Association
for Computing Machinery, 2012, p. 127–134. [Online]. Available:
https://doi.org/10.1145/2361276.2361301

[14] R. D. Pea, “Language-independent conceptual “bugs” in novice pro-
gramming,” Journal of educational computing research, vol. 2, no. 1,
pp. 25–36, 1986.

[15] L. M. Mann, M. C. Linn, and M. Clancy, “Can tracing tools contribute
to programming proficiency? the lisp evaluation modeler,” Interactive
Learning Environments, vol. 4, no. 1, pp. 096–113, 1994.

[16] R. P. Wiegand, A. Bucci, A. N. Kumar, J. L. Albert, and A. Gaspar,
“A data-driven analysis of informatively hard concepts in introductory
programming,” in Proceedings of the 47th ACM Technical Symposium
on Computing Science Education, 2016, pp. 370–375.

http://www.jstor.org/stable/3233725
https://doi.org/10.1145/358172.358408
https://doi.org/10.1177/0735633119845413
http://doi.acm.org/10.1145/611892.611956
https://doi.org/10.1145/3077618
https://doi.org/10.1145/2361276.2361301

	Introduction
	Prior Work
	Methods
	Participants
	Materials

	Results
	Writing Results
	Revision results
	Comprehension results

	Combined Discussion
	Implications for Instructional Design
	Limitations
	Conclusion
	References

