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ABSTRACT 
Training datasets fundamentally impact the performance of ma-
chine learning (ML) systems. Any biases introduced during training 
(implicit or explicit) are often refected in the system’s behaviors 
leading to questions about fairness and loss of trust in the sys-
tem. Yet, information on training data is rarely communicated to 
stakeholders. In this work, we explore the concept of data-centric 
explanations for ML systems that describe the training data to 
end-users. Through a formative study, we investigate the potential 
utility of such an approach, including the information about train-
ing data that participants fnd most compelling. In a second study, 
we investigate reactions to our explanations across four diferent 
system scenarios. Our results suggest that data-centric explanations 
have the potential to impact how users judge the trustworthiness 
of a system and to assist users in assessing fairness. We discuss the 
implications of our fndings for designing explanations to support 
users’ perceptions of ML systems. 
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1 INTRODUCTION 
Artifcial Intelligence (AI) systems trained via data-driven machine 
learning (ML) algorithms have permeated society. ML systems 
are involved in a range of contexts, from targeted advertisements 
[66, 103], to product and content recommendations [4, 19, 41, 98], to 
informing decisions on matters with substantial individual and so-
cietal impacts, such as hiring [17, 39, 76], fnance [29, 56], medicine 
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[16, 40], and criminal justice [26, 43, 57]. Despite their importance 
and impact, such systems are often “black-box” by nature [82] and 
consequently are not transparent [24, 69, 81]. The lack of trans-
parency can make it difcult for end-users to interpret and under-
stand system outcomes [24, 69, 81]. The opacity of these systems 
can also hurt a user’s ability to form meaningful trust relation-
ships with machine learning systems [28, 75, 87, 89] and to hold 
the systems properly accountable for their decisions [11, 65]. 

In light of the above consequences of opaque ML-based systems, 
there is a growing body of research in the AI and HCI research 
communities on Explainable AI, with the goal of devising ways to 
increase system transparency [30, 38, 65, 69, 87, 88, 91] as well as 
to understand the impact of increased transparency on user percep-
tions of and interactions with such systems [5, 14, 20, 33, 58, 85, 104]. 
Much of this work, however, has focused on explaining outcomes 
and the properties of decisions to end-users [20, 30, 87, 88, 91], for 
example, by explaining factors that infuence a system’s behaviors, 
or by relating behaviors to information in an end-user’s profle. 
While valuable, such approaches rarely communicate information 
on the way the system was trained. Since machine learning algo-
rithms look at the patterns in the training data, the quality and 
underlying characteristics of training datasets are fundamental to 
system performance [15]. For example, if the training dataset is not 
representative of the target population, certain groups can be disad-
vantaged [3], and any biases in the training data [80] are ultimately 
refected and aggravated in the deployed system [3, 105]. For exam-
ple, when a popular word embedding tool was trained on a corpus 
of Google News articles, implicit gender biases in article coverage 
caused the system to learn similarly biased word associations (e.g., 
doctors are men and nurses are women) [6]. 

Prior work has shown that industry practitioners are well aware 
of the importance of the training datasets, often revisiting datasets 
when they notice problems with the systems [51]. Training in-
formation, however, is typically not made available to end-users 
once systems are deployed. This leads to our research questions of 
whether and how training dataset information could be communi-
cated to end-users. What types of training data information might 
be available? How should such information be presented to end-
users of varying backgrounds in machine learning? What impact 
could explanations that focus on training data have on perceived 
trust and fairness judgments of ML systems? 

To answer our research questions, we frst consulted prior work 
on training dataset documentation [44] to identify communicable 
information to end-users. We then used an iterative user-centered 
design process to develop prototype explanations that we refer to 
as data-centric explanations. The term “explanation” has been used 
broadly in the literature to characterize approaches to making sys-
tems more interpretable and transparent [5, 14, 79]. Our prototype 
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explanations aim to increase system transparency by describing 
the data used to train a system, which as described above, can 
fundamentally impact a system’s behaviors. 

In a study with 27 participants of various backgrounds, we inves-
tigated the impact of our data-centric explanations on participants’ 
trust and fairness judgments across a range of four system sce-
narios. Our participants felt that the explanations helped them 
refect on the training process, impacted their sense of trust in the 
system, and were particularly important for high-stakes systems. 
While the explanations received support from all expertise groups 
in our study, we noted subtle qualitative diferences in how machine 
learning experts and non-experts approached the explanations. For 
example, some machine learning experts questioned whether the 
information would be understandable to those without ML training, 
whereas the non-experts felt the information was both clear and 
useful. Collectively, our fndings establish data-centric explanations 
as a viable, promising approach to improving system transparency. 

To summarize, our paper makes the following contributions: 1) 
We present data-centric explanations that focus on communicat-
ing information on training datasets to end-users. 2) We present 
study fndings that show the potential for this type of data-centric 
explanation to infuence users’ perceptions of machine learning 
systems. 

2 RELATED WORK 
In this section, we review prior work on diferent approaches to 
designing explanations in machine learning systems, the efect 
of explanations on end-users’ perceptions of machine learning 
systems, and approaches to documenting training datasets. 

2.1 Approaches to Explanations in Machine 
Learning Systems 

In the feld of Explainable AI, a myriad of research has aimed at 
increasing system transparency of machine learning systems. Pop-
ular domains in this body of work include recommender systems 
[34, 64, 77, 98], healthcare applications [16, 18, 52, 93], fnance 
[12, 29, 42, 45], hiring [39, 72], and criminal justice [94, 97, 102]. 
Explanations in all these domains have aimed to make the systems 
more interpretable and to explain the outcomes to the end-users. 

Prior work has explored a range of explanation approaches in-
cluding: input infuence [5, 30, 102] (the degree of infuence of each 
input on the system output); sensitivity based [5, 87, 91] (how much 
the value of an input would have to difer to change the output); 
demographic-based [1, 5, 98] (aggregate statistics on the outcome 
classes for people in the same demographic categories as the deci-
sion subject); case-based [5, 14, 79] (using an example instance from 
the training data to explain the outcome); white-box [20] (showing 
the internal workings of an algorithm); and visual explanations 
[50, 60, 96] (explaining the outcomes or the model through a visual 
analytics interface). Except for case-based explanations, most of 
these approaches have focused on explaining the decision-process 
or the decision factors. Our explanations represent a new approach 
by focusing on the training data, rather than the features or indi-
vidual decisions of the systems. 

Prior work has also categorized explanations across two key 
dimensions. One pertains to their degree of specifcity [36], cate-
gorizing an explanation as either model-specifc or model-agnostic. 
Model-specifc explanations pertain to a particular model and can 
only explain that model’s decisions [16, 61, 70]. Model-agnostic 
explanations, on the other hand, can explain decisions from a range 
of ML models [87, 88], enabling a greater degree of generality. A 
second dimension relates to explanation scope in the sense of sup-
porting end-users in understanding either individual decisions (i.e., 
local explanations [35, 79, 87]) or the system as a whole (i.e., global 
explanations [1, 30]). Local explanations justify individual decisions, 
whereas global explanations describe how the whole model works. 
In comparison to local explanations, global explanations have been 
found to induce more confdence in understanding the model and 
as being helpful for fairness judgments [33]. Motivated by this prior 
work, we design data-centric explanations that are model-agnostic 
and global. 

2.2 Evaluating the Impact of Explanations 
In parallel to developing diferent explanation approaches, numer-
ous studies have investigated the impact of explanations on user 
perceptions of and interactions with machine learning systems 
[5, 14, 20, 33, 58, 59, 85, 101, 104]. 

Prior work has found that increased transparency through expla-
nations can increase user acceptance of the systems [28, 49, 59, 100]. 
However, increased transparency does not always lead to increased 
trust. While many studies have found that explanations impact 
users’ satisfaction and trust positively [9, 58, 62, 74, 84], some have 
found that explanations had no impact on trust [20, 28, 83], sug-
gesting gaps between the focus of the explanations and user needs. 
Further, the impact of explanations on trust can depend on the stated 
accuracy of the system [101], system failures [32, 37], soundness of 
the explanation [63], and the amount of information presented in 
the explanation [58]. These mixed results motivate further research 
to understand when and why diferent types of explanations impact 
trust. 

Prior work has also evaluated the impact of explanations on 
helping users judge the fairness of machine learning systems. Binns 
et al. explored people’s perception of justice in automated decision-
making for four diferent explanation approaches (input infuence, 
case-based, demographic-based, sensitivity based), fnding that all 
explanations had the potential to help people to evaluate fairness 
in the system’s decisions [5]. In a diferent study, Dodge et al. ex-
perimented with the same four explanation approaches on a single 
machine learning model [33]. They found that certain explanation 
approaches were more suited to helping users identify specifc fair-
ness issues. For example, they found that global explanations (input 
infuence, demographic-based) helped enhanced fairness perceptions 
of the model more than the other approaches and could also help 
users identify model-wide fairness issues. We were motivated by 
this work to investigate whether a global data-centric explanation 
approach can also support fairness judgments. 

2.3 Documenting Training Data 
Without a standardized way to document datasets, it is hard for 
anyone to determine the quality of a dataset and whether or not 
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Figure 1: Overview of the prototype of our data-centric explanations. The main screen, which lists the information categories, 
and provides a short description of each can be seen on the left. (A) shows an example of the Q&A format for the Collection 
category. (B), (C), (D), and (E) show the placeholders and short descriptions for the other four categories which expand to reveal 
the detailed information. To see the details of each category, please check the Supplementary Materials (Sup-D). 

it is a good ft for a machine learning system [44]. Further, un-
intentional misuse of datasets or using problematic datasets to 
train models of high-stakes applications can lead to systematic 
discrimination by the systems [6, 10, 57]. To address this problem, 
Gebru et al. proposed the concept of providing a datasheet for each 
dataset to document, for example, its motivation, creation, com-
position, intended uses, distribution, and maintenance [44]. The 
authors primarily designed this documentation for direct dataset 
users, i.e., those who develop machine learning systems, suggesting 
that dataset creators should make this documentation available to 
increase the transparency of the datasets. Many machine learning 
researchers have begun adopting this procedure when releasing 
their datasets [21, 92, 99] and this approach is starting to gain 
traction in some organizations (e.g., [2, 78]). In our work, we inves-
tigate how to communicate training datasets to a diferent audience, 
namely end-users, as opposed to machine learning specialists. We 
also investigate how such information might impact end-users’ 
perceptions of machine learning systems. 

3 DATA-CENTRIC EXPLANATIONS 
Our data-centric explanations, shown in Figure 1, provide users 
with information on a system’s training data. Our frst step in 
designing the explanations was to get a sense of the type of in-
formation that might be captured during the training process. To 
this end, we leveraged Gebru et al.’s datasheets [44], which provide 
a standardized, in-depth documentation of datasets. As described 
in the previous section, Gebru et al.’s datasheets were designed 
for machine learning specialists rather than system end-users. To 
transform this information into an appropriate form for end-users, 
we used an iterative user-centered design process. We explored and 
piloted several presentation styles, including the use of infograph-
ics, fowcharts, and diferent other ways to segment the information. 

Samples of our early sketches and low-fdelity prototypes are in-
cluded in the Supplementary Materials (see Sup-A). We also piloted 
information subsets to fnd a balance between being comprehensive 
and overwhelming. 

Informed by pilot studies, we settled on including fve diferent 
categories of information (collection, demographics, recommended 
usage, potential issues, and general information) in our prototype 
explanations, as shown in Figure 1. Within each category, the pro-
totype employs the question-based approach used by Gebru et al. 
[44] to provide users with specifc answers to questions about train-
ing data. Figure 1 shows the questions for the collection category. 
Our pilot participants indicated that this format made the volume 
of information manageable since they could focus on the topics 
they were most interested in. The question-based approach has also 
been shown to work well in a range of prior work on explainable 
AI [71, 73, 86]. The prototype was built using web technologies 
(HTML, CSS, and JavaScript). 

4 STUDY 1: INITIAL CONCEPT 
EXPLORATION AND PROTOTYPE 
REFINEMENT 

In our frst, exploratory study, we used semi-structured interviews 
to learn about what participants generally know about machine 
learning systems and their workfows, and how they would feel 
about potential data-centric explanations from the systems. We 
used an earlier version of the prototype shown in Figure 1, which 
is provided in the Supplementary Materials (see Sup-B), to ground 
discussions. 
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4.1 Participants 
We recruited 17 participants (10 men, 7 women) by putting posters 
around a university campus and by reaching out to personal con-
tacts. We recruited participants from a range of technical and 
non-technical backgrounds: fve participants self-identifed as non-
technical and 12 self-identifed as a technical person. We targeted 
most of our recruiting on those outsides of the machine learning 
feld (15 of our participants), however, we also included two experts 
for the sake of contrast. The average age for our participants was 
28 years (SD = 8.83) with ages ranging from 19 to 57. Participants 
received $20 for their participation. This study was approved by 
our institutional research ethics board. 

4.2 Study Method and Procedure 
Our study consisted of in-person semi-structured interviews, cover-
ing questions on participants’ existing knowledge and experience 
with machine learning systems, their ideas on algorithmic fairness, 
and their thoughts on data-centric explanations. We began the study 
sessions with demographics and background questions. We asked 
our participants about their experiences of receiving decisions from 
a range of decision-making systems (e.g., ad recommendation, auto-
mated hiring, criminal justice system). We then discussed the role 
that data plays in the decisions from these systems. For most partic-
ipants, this topic came naturally into the conversation, for others 
we initiated it. We then transitioned to the information categories 
we created for our explanations. For each category, we asked about 
participants’ existing knowledge of the category and what they 
would be interested in learning more about. We then showed them 
a prototype (see Sup-B in the Supplementary Materials) and asked 
for their feedback. We also asked participants about the potential 
for this type of explanation to infuence their judgments of fairness 
and their trust in the system. To conclude the session, participants 
rated each piece of information in the prototype explanation on 
two 5-point Likert scale items: one for understandability and one 
for usefulness. We audio-recorded the interview sessions and later 
transcribed them for data analysis. 

4.3 Findings 
4.3.1 Data-Centric Explanations Seen As Worth Pursuing. Our dis-
cussions with participants revealed insights on why data-centric 
explanations are worth pursuing. All our participants reacted pos-
itively to the idea of having data-centric explanations and were 
interested in having more information about training data. We also 
asked participants if they are aware of fairness issues in machine 
learning and gave some examples of existing fairness problems. 
We were surprised that more than half of the participants (9/17) 
lacked knowledge of fairness issues. For example, the following 
participant indicates that computers are accurate, which implied 
that they would also be fair: 

“Since it is a computer [program], it should be fair. 
Because [. . .] computers are very accurate in most of 
the things. So, I believe [they were fair].” – P4 

After we discussed data-centric explanations with our partici-
pants and showed them the prototype, participants talked about 
how these types of explanations could be helpful for their trust 
in the system. Participants discussed how the explanations gave 

them ideas about the inner workings of the system and the efort 
of providing the explanations generally left a positive impression. 
Almost all participants (16/17) felt that the explanations had the 
potential to impact their trust in the system. 

“Absolutely, [having] this information increases my 
trust, unless there is missing information or error in 
the data. Then I am not gonna trust the system.” – P9 

4.3.2 Value of Explanations Qestioned by Machine Learning Ex-
perts. We saw some initial indications that user expertise might 
impact attitudes towards data-centric explanations. While we found 
that both expert and non-expert participants had positive things 
to say about having data-centric explanations, our two expert par-
ticipants also expressed some reservations. They were concerned 
that the data-centric explanations would not be understandable 
to non-experts in machine learning and would trigger additional 
questions. For example, one expert participant with experience in 
building machine learning systems mentioned that, 

“I am afraid that the general public might not under-
stand what some of the information means [talking 
about pre-processing of the data]. It may trigger addi-
tional questions for the users, and they will forward 
these questions to administrators.” – P2 

The same participant further mentioned that providing infor-
mation on the issues could cause people to complain regardless of 
actual system fairness. 

“But, some of the things in the issues may be trig-
gering. As long as they have a tab for issues, [people 
are] always going to say that this dataset is not work-
ing. [. . .] So, as a part of the explanation to the user, 
maybe it is not a good idea to have issues.” – P2 

4.3.3 Q&A Format Well Received, But Some Answers Need More 
Depth. When discussing the prototype, most participants felt that 
the information was useful and comprehensive. Most of the partici-
pants (14/17) felt that the prototype covers enough information to 
be helpful. 

"I think the explanation pretty much asked all the 
questions here about the [dataset]. Like, I pretty much 
saw everything I wanted to see for the dataset. Like 
in the demographics, I saw many distributions.” – P5 

During the interviews, we also probed on specifc design issues, 
including soliciting participants’ ideas on potential presentation 
styles other than the question-based approach presented in Figure 
1. Like in our pilots, study participants liked the question-based 
approach, feeling that it helped guide their focus to information 
that they were most interested in. 

A few participants (3/17), however, felt that the information 
provided in the prototype was a bit shallow and it lacked depth to 
be useful. 

“I feel like the answers [. . .] are way too short and 
not detailed enough. [. . .] It probably needs to be bit 
more detailed and technical.” – P15 

Based on the above feedback, we revised the prototype to include 
more depth in the answers when possible, which resulted in us 
adding more detail to almost all answers in the prototype. For 
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example, in the early version of the prototype, the answer to the 
question “how many instances are in the dataset?” was “13,233 face 
images of 5749 individuals”. Figure 1A shows the additional detail 
that we added on how the instances consisted of single/multiple 
images of individuals. As a second example, for the question “how 
the data was labeled?”, the original answer was “Image labels were 
obtained from external sources”. We expanded this answer to include 
information on the labeling process and data labelers as follows: 
“Each image is accompanied by a label indicating the facial expression 
of the person in an image. The expression in each image in the dataset 
was determined by an operator by looking at the face images and the 
context of the photographs”. 

We also used questionnaire responses to look for opportunities 
to either clarify the answers or discard the questions altogether. 
We ended up discarding 3 questions (information on the dataset 
creators, funding source, and maintenance information) from our 
original prototype, where participants indicated they understood 
the information but rated it low on usefulness. The prototype in 
Figure 1 depicts the revised version. 

5 STUDY 2: INVESTIGATING THE UTILITY OF
THE EXPLANATIONS ACROSS A RANGE OF 
SCENARIOS 

 

Our frst study showed some support for the concept of data-centric 
explanations and we were able to use the feedback to refne our pro-
totype to the version depicted in Figure 1. In our second study, we 
investigate how our data-centric explanations impact trust and fair-
ness judgments across a range of potential automated systems sce-
narios and training data characteristics. Given some of the expertise 
diferences that we observed in our exploratory study, we were also 
interested in understanding potential diferences in participant’s 
perceptions related to their backgrounds in machine learning. 

5.1 Participants 
To explore the role of user expertise in machine learning, we sought 
to include a range of backgrounds in our study. Specially, we re-
cruited participants across three potential expertise dimensions, 
which we defned as follows 

i. Expert: People who have prior ML experience (e.g., took at 
least one ML course) 

ii. Intermediate: People from a Computer Science or Engineer-
ing background, but no specifc ML experience 

iii. Beginner: People from non-engineering and non-CS back-
grounds, without prior experience with ML 

We recruited 30 participants for our study by posting adver-
tisements on diferent online platforms (e.g., Reddit, Twitter) and 
through snowball sampling. Three participants did not complete 
the full study (i.e., they did not view all explanations presented to 
them), leaving us with 27 participants (15 men, 12 women). Par-
ticipants were between 18 and 54 years old (mean: 28.7, SD = 8.9). 
Participants had a range of educational backgrounds. For example, 7 
participants had completed high school, 9 had completed an under-
graduate degree, and 11 had completed a professional or a master’s 
degree. Among our participant pool, we had 9 experts (5 men, 4 
women), 8 intermediates (5 men, 3 women), and 10 beginners (5 

men, 5 women) according to our defnitions above. Participants 
received $20 for their participation. The study was approved by our 
research ethics board. 

5.2 Study Design 
Our study design included two main factors: 

i. Participant Expertise: Expert vs. Intermediate vs. Beginner 
ii. Training Data Characteristics: Red Flags vs. Balanced 

The frst factor, participant expertise, was as defned in the pre-
vious section. We also included a second, within-subjects factor, 
where we manipulated characteristics of the training data presented 
in the explanations. In our study, participants interacted with our 
explanations in the context of four diferent scenarios, representing 
a range of possible use cases for automated systems. In two sce-
narios, the explanations showed training data with clear red fags. 
In the other two scenarios, the explanations depicted relatively 
balanced training data. Following a growing body of research show-
ing that users respond positively to having explanations present 
[5, 14, 20], and many similar studies without a control condition 
[33, 58, 63], we did not include a no-explanation condition in our 
study. Instead, our design prioritized the breadth of scenarios over 
comparison to a control condition. 

5.3 Automated System Scenarios and 
Data-Centric Explanations 

Participants interacted with four diferent explanations, which col-
lectively covered a range of automated system application scenarios. 
These scenarios are listed in Table 1 (for more details on the scenar-
ios as presented to participants, see Sup-C in the Supplementary 
Materials). Explanations for two of the scenarios (Predictive Bail 
Decisions and Facial Expression Recognition) showed obvious red 
fags in the training data. For example, the demographics distribu-
tions (e.g., gender, race) were fairly imbalanced, the sample sizes 
were fairly small, and prior issues were mentioned with the datasets. 
For the remaining two scenarios (Automated Admission Decisions 
and Automated Speech Recognition), the explanations presented 
relatively balanced training data. 

To help generate realistic data-centric explanations for each 
scenario, we consulted reference datasets for bail decisions [67], la-
beled faces in the wild [53], graduate admissions [106], and speaker 
recognition [23]. We adjusted this information as needed, for ex-
ample, to generate potential red fags. For missing information, we 
either generated fctitious data in a manner consistent with the 
other explanations or listed the information as being “unknown”. 

5.4 Study Procedure 
Our study sessions took place online, using a video-conferencing 
platform of the participant’s choice. We began the study session 
by asking participants some introductory demographic questions, 
including questions on their experiences with computer systems 
and machine learning. We then presented the four scenarios to our 
participants, one at a time using Qualtrics [107]. After seeing each 
scenario description, participants were presented the data-centric 
explanation (which would open in a diferent window) and asked 
to go through the explanation to explore the degree to which the 
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Table 1: Scenarios used in the study. 

Scenario Overview of the scenario 

Predictive Bail Decisions A system that calculates re-ofense risk for a defendant and recommends bail decision. 
Facial Expression Recognition A system that recognizes the facial expression of a person from a given image. 
Automated Admission Decisions A system that assesses student application and recommends admission decision. 
Automated Speech Recognition A system that recognizes the identities of individuals from speech clips. 

Figure 2: Study procedure 

explanation communicated information on the training dataset 
information to them and whether or not they found it helpful. 
One full explanation example can be found in the Supplementary 
Materials (see Sup-D). Our pilot testing revealed that participants 
need some initial direction on what to do with the explanation 
once opened. After the participants were done looking at the data-
centric explanation for a scenario, they completed a questionnaire 
consisting of Likert-scale questions (7pt scale). The questionnaire, 
which can be found in the Supplementary Materials (see Sup-E), 
aimed to measure trust in the system, perceptions of system fairness, 
as well as how much the explanations helped them to get ideas 
about the system and refect on the data. We adapted existing scales 
to measure trust [55] and fairness [5, 25]. As shown in Figure 2, 
this process was repeated for all four scenarios. Participants on 
average spent 30 min 51 sec (SD = 13 min 44 sec) looking at the 
explanations for the four scenarios and providing responses to the 
questionnaires. We randomized the order of the scenarios across 
participants to mitigate potential order efects. 

We concluded the study session with a 40-60 min semi-structured 
interview, where we solicited further information from partici-
pants on their experiences with machine learning systems, and 
their perceptions of the data-centric explanations. Throughout the 
interviews, we probed on issues surrounding trust, fairness, and 
characteristics of the system scenarios and training data. The entire 
session took approximately 90 minutes. 

5.5 Data Collection and Analysis 
We collected both quantitative data (from the post-scenario ques-
tionnaires) and qualitative data (from the post-session interviews). 
For the quantitative data, we used the non-parametric Kruskal-
Wallis H test to analyze the impact of Expertise (a between-subject 
factor with 3 levels) and the Wilcoxon signed-rank test to analyze 
the impact of Training Data Characteristics (a within-subject fac-
tor with 2 levels). We used p=0.05 as our threshold for statistical 
signifcance. To analyze our interview data, we frst transcribed all 

the interview sessions. We then conducted bottom-up afnity dia-
gramming [27] on participant quotes from the interview transcripts. 
Two researchers were involved in the data analysis. The researcher 
who conducted the interviews created the initial afnity diagrams, 
coding the resulting clusters using an open coding scheme. The two 
researchers then collaboratively looked for themes in the coded 
data. We did several iterations of this analysis, revisiting the raw 
data frequently. 

6 FINDINGS 
We frst provide an overview of how expertise and training data 
characteristics impacted participants’ perceptions of the systems 
and the data-centric explanations according to the questionnaire 
data. We then present fndings from our interviews that provide 
further insights into how and why the explanations impacted their 
trust and sense of fairness. 

6.1 Questionnaire Data 
6.1.1 Impact of Expertise. As Table 2 illustrates, Expertise did not 
signifcantly impact any of the measures in our questionnaire for 
any of the training dataset characteristics. 

The data indicate that irrespective of participants’ backgrounds 
in machine learning or technology, participants rated the explana-
tions highly in terms of getting ideas about the data and refecting 
on the training process. For the other measures, the scores were 
in the medium range (e.g., around 4-5 on a 7-point Likert-scale) 
for each expertise level. As shown in Figure 3, the scores were 
comparatively low for scenarios where the explanations revealed 
potential problems with training data (red fag scenarios) and high 
for scenarios with more balanced training data. 

6.1.2 Impact of Training Dataset Characteristics. We also analyzed 
the questionnaire responses to see if characteristics of the train-
ing data impacted participants’ perceptions of the system and the 
utility of the explanations. Table 3 shows that participants had 
signifcantly more trust in the system, felt that the system was 
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Table 2: Median (IQR) values for the Likert-Scale questionnaire responses by Expertise level. Since some measures combine 
multiple questionnaire items, we also provide the scale range (Low-High). 

Scale Range Beginner Intermediate Expert H Sig 

Trust in the system 6.00-42.00 28.00 (7.13) 26.75 (8.00) 31.50 (7.00) 2.146 0.342 
Fairness in the system 4.00-28.00 17.75 (8.50) 17.50 (5.50) 21.50 (3.00) 2.089 0.352 
Perception of fair training 1.00-7.00 5.00 (2.38) 3.75 (1.63) 5.50 (1.00) 3.636 0.162 
Comfort in the system 1.00-7.00 3.75 (2.75) 4.00 (1.88) 5.00 (2.25) 1.622 0.444 
Ideas about the data by the 1.00-7.00 6.00 (1.00) 5.75 (1.38) 6.00 (1.25) 1.796 0.407 
explanation 
Refect on the training process by 1.00-7.00 6.00 (1.13) 5.75 (3.00) 6.00 (1.25) 0.218 0.897 
the explanation 

Figure 3: Median values for each of the measures for the expertise groups across balanced and red fags scenario. The scale 
range for each of the measures is same as described in Table 2. 

Table 3: Median (IQR) values for the Likert-Scale questionnaire responses according to Training Data Characteristics. Since 
some measures combine multiple questionnaire items, we also provide the scale range (Low-High). 

Scale Range Balanced training Training data with Z Sig 
data red fags 

Trust in the system 6.00-42.00 31.00 (7.00) 26.50 (9.00) 3.635 0.00028 
Fairness in the system 4.00-28.00 22.50 (6.50) 17.50 (7.50) 3.945 0.00008 
Perception of fair training 1.00-7.00 5.00 (2.00) 4.50 (3.00) 2.652 0.008 
Comfort in the system 1.00-7.00 5.00 (2.00) 4.00 (2.00) 2.538 0.011 
Ideas about the data by the explanation 1.00-7.00 6.00 (0.50) 6.00 (1.50) -0.265 0.791 
Refect on the training process by the 1.00-7.00 6.00 (1.00) 6.00 (1.50) -0.619 0.536 
explanation 

fairer, and were more comfortable with the system when the ex-
planations indicated relatively balanced training data than when 
the explanations showed some potential red fags. Training Data 
Characteristics, however, did not signifcantly impact participants’ 
perceived utility of the explanations. Participants rated the explana-
tions highly in terms of giving them a sense of the data and helping 
them refect on the nature of the training process, regardless of 
whether or not the explanations revealed potential problems. 

6.2 Interview Findings 
Findings from our interviews provide insights into how and why 
the data-centric explanations impacted participants’ trust and their 
judgment of fairness in the systems. We also describe commonalities 
and diferences that we observed across the diferent expertise 
groupings. In the quotes below, “E” = Expert, “I” = Intermediate, 
and “B” = Beginner. 
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6.2.1 Data-Centric Explanations Impact Trust In The System. All 27 
participants, regardless of machine learning expertise or technical 
background, indicated in the interviews that the data-centric ex-
planations impacted the degree to which they trusted the systems 
described in the scenarios. 

A small group of participants (5/27) felt that the mere presence 
of the explanations was enough to have positive impacts on their 
levels of trust. These participants saw the explanations as an efort 
made by the organization to ensure transparency, which ultimately 
improved their confdence that the systems themselves were trust-
worthy. 

“I actually trust [the systems] more now that I have 
[seen the explanations]. Because, now that I have read 
it, I think the explanations were transparent. I trust 
these explanations and they are trying to tell the truth 
of how they got everything. So yeah, I’d trust it more 
because they released this information” – P7-I 

The remaining participants (22/27) reported that the specifc 
contents of the explanations impacted their trust. As the following 
quote illustrates, these participants described how they used the 
information presented in the explanations to assess whether or not 
they should trust the systems. 

“Well, I appreciate the disclosure [through the ex-
planation]. Systems like this would get high marks 
for being transparent. However, just being honest 
about your specs, doesn’t mean that they’re necessar-
ily good specs. So, it’s good that they reveal that they 
had a 3.7% margin of error, [but] that’s a very high 
margin of error with something as facial recognition. 
That’s unacceptable. So, is it good or bad? I mean, yes, 
it’s good. But it doesn’t make me necessarily trust the 
system more. It depends on the information they’re 
providing.” – P30-B 

A couple of participants explicitly mentioned that the data-
centric explanations revealed problems in the systems that they 
would not have been aware of otherwise: 

“I think if I did not have the explanations, the results 
would seem more reliable. Because, I had no idea about 
the distribution of gender, country, and [others]. I had 
no idea how the data [was] collected, by whom, or by 
computer or manually. Also, I had no idea about the 
percentage of errors that were in the collected data. 
So, I think the explanations helped me to have a more 
in-depth idea about the evaluation and the results.” – 
P3-I 

One participant also mentioned that they generally expect these 
types of systems to be sophisticated and accurate, but that the infor-
mation in explanations suggested otherwise. In the quote below, the 
participant describes how they were surprised to see Mechanical 
Turk being used for data processing – they had assumed this type 
of processing would have been done by an algorithm. This lack of 
perceived sophistication impacted their trust negatively. 

“[Without the explanation], I probably would feel 
more trust, more confdent in the system, just be-
cause I wouldn’t have a question on how the data is 

associated with the results. And I wouldn’t think they 
used Amazon Mechanical Turk [in data processing]. I 
would just kind of feel like oh, they must have come 
up with something really nifty computer algorithm 
that did [the preprocessing].” – P26-I 

6.2.2 Training Data Demographics Perceived As Most Influential. 
Nearly all our participants (25/27) found value in the demographic 
information of our data-centric explanations (Fig-1: B) and two-
thirds of the participants (18/27) mentioned training data demo-
graphics as the most infuential aspect of the explanations. 

“Demographic information is the most helpful be-
cause it basically just gives a broad overview of what 
data has been used to train the system.” – P29-B 

Several participants (12/27) reported that the distribution in 
the demographics helped them get a clear picture of the potential 
biases in the training data. We noticed that regardless of expertise, 
these participants were able to identify biases in the data from the 
demographic information. 

“And I found the bar graphs [in the demographics] a 
good kind of thumbnail representation, it was more 
meaningful to see it that way. Because you could im-
mediately spot over inherent bias, whether it was 
mainly white people, or mainly men, or mainly one 
country or so on.” – P30-B 

“[What I understood from] the overall explanation 
is whether the data will be [able] to give accurate 
results. [. . .] Taking the example of the admission 
one, most of the candidates are from Canada. So, I can 
assume that the model you will train will be biased 
towards the Canadian students. So, the chances of 
errors, I can easily predict [that] from the data and 
the visualization as well.” – P12-E 

Two expert participants mentioned that they could situate their 
own demographic within the distribution to gauge whether or not 
the system would work for them. 

“If I look at the [explanation] after I am rejected for 
admission and I look at like okay, so they are using 
this particular [dataset] to reject or accept any partic-
ular student. Then I would look at the demographics 
section and on that section I would decide, if I’m from 
India and the data set contains only 1% of the Indians, 
so, there will be something in your mind like okay, 
their model is not trained or they do not have the 
data related to the Indians. So, that may be the case.” 
– P12-E 

Along with the demographic information, our participants con-
sidered two other categories important. The frst was collection 
information (Fig-1: A), mentioned by several participants (14/27) as 
providing key information on sample size and how the data was 
gathered: 

“I fnd the sample size [to be really important]. So, 
nothing else really matters unless you have a good 
amount of data. You could say [that the] gender was 
completely equal, however, the sample size [is] of 100 
people. I can’t really trust it until your sample size is 
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great amount. And then after that, you know, I look 
at other stuf. But frst, I want to look at sample size.” 
– P15-B 

“Collections was an obvious choice [for being the 
most important information] because I would like to 
know how the data was collected, who the collectors 
were, what was the labeling process. Because data 
forms the base of everything that the machine learn-
ing system has, that will defne how it was collected, 
how it was graded, how it was labeled, how it was 
classifed. [So] that gives you a full overview, like how 
the data was put into the machine learning model.” – 
P16-B 

Other participants (16/27) indicated that error information (Fig-1: 
D) impacted their confdence in the system: 

“Let’s say there’s no errors or not much errors [in 
the data]. That defnitely makes me more confdent. I 
think that the one with the bail decisions, that [had a] 
kind of pretty high error rate. And so that defnitely 
gives you less confdence in the system.” - P19-E 

6.2.3 Data-Centric Explanations Are More Important In High Stakes 
Scenarios Compared To Low Stakes. Participants discussed how 
the stakes and the importance of the systems impacted their per-
ception of data-centric explanations. All participants wanted the 
explanations to be available when dealing with high-stakes sce-
narios, mentioning that these systems contribute to life-impacting 
decisions, with consequences of biased systems being more severe. 

“[The] Amazon recommendation where you bought 
such and such, it’s such a simple thing [and] the result 
of following Amazon’s recommendation doesn’t hurt 
anybody except me and my wallet a little bit. The 
stakes are so low. Who cares, right? But in this case, 
it’s about admitting a student in a university or not. 
You’re afecting their future. Same with the criminals 
[in predictive bail]. You’re afecting their future. So, 
yeah that’s why [I would be more interested in the 
explanation for these two scenarios].” - P26-I 

Some participants (11/27) also mentioned that the importance of 
the system would impact how carefully or deeply they would look 
at the explanations. 

“I would like to have the option [to have the expla-
nation for every system]. [. . .] For higher sensitive 
applications, I would defnitely look at the [explana-
tion] and read carefully.” – P27-I 

For low-stakes situations (e.g., social media, ads, video recom-
mendations), the majority of our participants (22/27) did not feel 
that the explanations were necessary, however, some participants 
(5/27) reported they would still like to have the explanation avail-
able, or at least a simplifed version of it. These fndings support 
results from prior work showing that explanations might not be 
valued for low-impact systems [8]. 

6.2.4 Data-Centric Explanations Help Participants’ Assess Fairness 
But Are Not Enough. Most of our participants (21/27), again re-
gardless of expertise, mentioned that the data-centric explanations 

helped them judge the systems’ fairness at least to some extent. 
Participants mentioned that knowing the diversity in the data from 
the demographics (Fig-1: B), and whether there are any fatal faws 
in the system from the error information (Fig-1: D) were most 
helpful in this regard. The quotes below illustrate both a beginner 
and an expert perspective. While the expert quote uses more ML 
terminology, both speak to similar issues. 

“Looking at like how much data they have, how 
many people they pull that information from and 
where they’re from, and stuf to make sure it’s diverse 
enough would help me know that’s fair. And then 
even looking at the errors would help me know that’s 
fair too.” – P20-B 

“If I’m looking at the information you have provided 
in the explanations, I may doubt the fairness of the 
system. Because, in all the training data, the categories 
in them were not equal. For example, if gender is really 
important for the training set, I would like to have an 
equal number of males and females.” – P2-E 

Some participants (6/27), on the other hand, indicated that the 
data-centric explanations were not sufcient to judge fairness. 
Three of these participants, all of whom were experts, wanted 
information on the decision process, including the factors afecting 
the system’s decisions. The other 3 participants (1 beginner, 2 in-
termediates) did not have concrete ideas of what they thought was 
missing. 

6.2.5 Many Commonalities Across Expertise Groups, But With Nu-
anced Diferences. We saw many similarities in how the diferent 
expertise groups responded to our explanations. Regardless of par-
ticipants’ ML training or technical background, our qualitative data 
suggest that the data-centric explanations impacted participants’ 
sense of trust in the machine learning systems described in our 
scenarios. Further, participants in all expertise categories reported 
that they could identify potential biases in the data from the de-
mographic information presented in the explanations and all were 
eager to have the explanations available in higher stakes situations. 
Participants, again regardless of their expertise, felt that the ex-
planations helped them to judge system fairness to at least some 
extent. 

We did, however, see some nuanced diferences in how partici-
pants’ machine learning backgrounds impacted how they felt about 
our data-centric explanations. As we reported above, some expert 
participants wanted information on the decision factors in addition 
to the data-centric explanations to judge system fairness, whereas 
the non-expert participants did not have specifc requests for addi-
tional information. 

Interestingly, some experts (4/9) felt that the explanations would 
be more useful for those with machine learning expertise. The 
following quote illustrates this sentiment: 

“I think if a user does not have any machine learning 
background or cs background, they will fnd it hard 
at frst, [. . .] because they will not be clear about the 
training data, like what is called training data, how it 
is trained, [this] will go over their head. [So] it would 
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be complicated at the beginning, but in the long run, 
they will adjust with it.” – P8-E 

No intermediates or beginners, however, expressed this concern. 
In fact, other than one participant who mentioned that the expla-
nations were a little difcult to follow given that English was not 
their frst language, all our participants reported the explanations 
to be easy to understand. 

We did not observe any obvious diferences in our data between 
intermediate and beginner participants. One reason is likely related 
to our expertise defnitions, where we distinguished between be-
ginner and intermediate participants based on their Engineering 
/ Computer Science background. We found, however, that some 
beginners were more knowledgeable about machine learning than 
intermediates based on workplace interactions or from the news 
media. 

7 DISCUSSION 
Our results from a study with 27 participants suggest that data-
centric explanations have the potential to help people develop an 
informed sense of trust in machine learning systems. In our study, 
participants’ trust was impacted positively when the training data 
seemed balanced and negatively when the explanations revealed 
problems. Like prior work, we found that participants cared most 
about the explanations for high-stakes system scenarios [8]. Fu-
ture work should investigate other system traits that might impact 
explanation utility, such as system failures [32, 37] and the stated 
accuracy of a system [101]. 

Participants indicated that the explanations also impacted their 
sense of system fairness, but to a lesser extent. They felt less conf-
dent in judging fairness without more information on the decision 
process. This indicates that our explanations could serve as com-
plements to established explanation approaches that explain the 
outcomes and the properties of a decision [20, 30, 87, 88, 91]. How 
users might prioritize data-centric explanations vs. feature-oriented 
explanations is an important area of future work. We also acknowl-
edge that fairness is a social and ethical concept, and that per-
ceptions of fairness are multi-dimensional and context-dependent 
[46, 47, 68]. While we measured fairness using scales used in prior 
work [5, 54], a more comprehensive treatment of this construct is 
needed. Specifc metrics for fairness that have been proposed in 
prior work [22, 48] could serve as a useful starting point in this 
direction. 

Our qualitative fndings suggest a potential mismatch between 
machine learning designers’ expectations and end-users’ interests 
and capabilities. Some participants with experience in building ma-
chine learning systems expressed concerns about the data-centric 
explanations being too complicated for end-users, yet we did not 
observe the non-experts having difculty with the information. 
It would be interesting to explore the issue further. For example, 
are machine-learning practitioners underestimating the capabili-
ties and interests of their target user populations? How do these 
preconceptions infuence the information that machine learning 
practitioners are willing to release about the systems they create? 

For some of the non-expert participants, we observed individ-
ual diferences with respect to existing positions on algorithmic 
decisions and machine learning systems. For example, a couple of 

participants expressed general distrust towards machine learning 
systems, while some other participants seemed to have inherent 
trust, feeling that computers are rarely wrong. We found these par-
ticipants less receptive to the data-centric explanations, suggesting 
the potential for confrmation bias. This is in line with prior fndings 
that users’ individual prior positions on machine learning fairness 
and personal characteristics (e.g., locus of control [90], need for 
cognition [13], visual literacy [7]) can have a signifcant infuence 
on their perceptions of explanations from the system [33, 77]. Fu-
ture work should investigate ways to characterize these types of 
diferences more systemically for data-centric explanations. Along 
these lines, future work should also explore ways to better charac-
terize prior machine learning knowledge and experience. To help 
recruit a range of participants, we used a simple objective measure 
of technical background to include what we categorized as both 
novices and intermediates. While this approach did seem to help 
diversify our sample, we did not see clear diferences between these 
two groups in their attitudes towards the explanations. We suspect 
that prior exposure to machine learning concepts (e.g., from the 
media) might be a more informative distinguishing characteristic. 
Future work could, therefore, consider developing and using a more 
comprehensive pre-screening questionnaire. 

Our study’s scenario-based approach, a commonly used method 
to study user perceptions of machine learning systems [5, 47, 73, 95, 
104], allowed participants to refect on a range of potential scenarios 
that were grounded in real-world examples. A limitation of this 
method, however, is that because the scenarios were hypothetical 
and did not impact the participants personally, they likely lacked the 
consequences and the signifcance of real-world decisions. Further, 
since the explanations were not based on existing documentation 
from actual machine learning models, the explanations themselves 
might have lacked some degree of ecological validity. Given that 
prior work has suggested that simulating explanations can impact 
the generalizability of study fndings [5], additional studies are 
needed to understand how users might respond to the explanations 
in-situ, where they have more direct interactions with real systems 
and/or the systems’ outputs. 

A second key limitation of our study is its lack of behavioral, 
objective data, with our study instead relying on Likert-scale self-
reports and qualitative interview data. In moving towards more 
ecologically valid studies that elicit behavioral data in addition to 
subjective responses, a challenge will be sufcient availability of and 
access to real-world systems with documented datasets. We hope 
that our fndings will motivate more dataset creators to document 
their datasets and more ML developers to make this information 
available. Finally, while our study did not reveal signifcant quan-
titative diferences in our questionnaire data based on participant 
expertise, it is possible that some of these efects might reach sig-
nifcance with a larger sample. Future work should therefore also 
explore the generalizability of our fndings to a larger number of 
participants. 

Our study scenarios asked participants to take on the role of the 
end-user of machine learning systems – somebody who would be 
directly interacting with the systems’ output. Moving forward, it 
would be interesting to explore other potential audiences for these 
types of data-centric explanations. One potential audience could 
be journalists, who have often criticized machine learning systems 
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for their black-box nature [67, 97], and prior research has argued 
that journalists play a vital role in communicating information on 
algorithms to the general public [31]. It would also be interesting to 
explore the impact on those who make system acquisition decisions 
in companies or organizations, to see whether explanations on 
training data might infuence their ultimate purchasing decisions. 

8 CONCLUSION 
We presented data-centric explanations that focus on providing end-
users with information on the training data of machine learning 
systems. From a study with 27 participants of diferent backgrounds 
and machine learning expertise, we showed that data-centric ex-
planations can help people to get insights into the system, refect 
on the training data, and infuence their assessments of trust and 
fairness. Our work is an important step forward in the general 
direction of aiming to bridge the gap between those who create 
machine learning systems and those afected by them. 
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