Transferrin-based positron emission tomography detects MYC-positive prostate cancer

Rahul Aggarwal^{1,3*}, Spencer C. Behr^{2*}, Pamela Paris³, Charles Truillet², Matthew F.L. Parker², Loc T. Huynh², Junnian Wei², Byron Hann³, Jack Youngren¹, Jiaoti Huang⁴, Nimna Ranatunga³, Emily Chang¹, Kenneth T. Gao², Charles J. Ryan^{1,3}, Eric J. Small^{1,3}, and Michael J. Evans^{2,3,5}

- * These authors contributed equally
- 1. Department of Medicine, Division of Hematology/Oncology, University of California San Francisco, San Francisco, CA
- 2. Department of Radiology, University of California San Francisco, San Francisco, CA
- 3. UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, CA
- 4. Department of Pathology, Duke University, Durham, North Carolina
- 5. Department of Pharmaceutical Chemistry, University of California San Francisco, CA

Background: Non-invasive biomarkers that detect the activity of important oncogenic drivers could significantly improve cancer diagnosis and management. The goal of this study was to determine if ⁶⁸Ga-citrate (which binds avidly to circulating transferrin) can detect MYC positive prostate cancer tumors, since the transferrin receptor is a direct MYC target gene.

Methods: Paired imaging with ⁶⁸Ga-citrate and molecular analysis of preclinical models, human cell free DNA and clinical biopsies were conducted to test whether ⁶⁸Ga-citrate can detect MYC-positive prostate cancer.

Results: ⁶⁸Ga-citrate detects human prostate cancer models in a MYC dependent fashion. In patients with castration resistant prostate cancer, analysis of cell free DNA showed that all patients with ⁶⁸Ga-citrate avid tumors had gain of at least one MYC copy number. Moreover, biopsy of two PET avid metastases showed molecular or histological features characteristic of MYC hyperactivity.

Conclusions: These early data suggest that ⁶⁸Ga-citrate can target prostate cancer tumors with MYC hyperactivity. A larger prospective study is ongoing to demonstrate the specificity of ⁶⁸Ga-citrate for tumors with MYC hyperactivity.

Conflicts of Interest: The authors have no conflicts of interest to disclose.

Acknowledgements:

This research was supported by the Prostate Cancer Foundation Young Investigator Award (M.J.E. and R.A). This research was also supported in part by a Stand Up To Cancer Dream Team award, grant number SU2C-AACR-DT0812 (PI: E.J.S.). This research grant is administered by the American Association for Cancer Research, the scientific partner of SU2C.