Bypass kinase pathways lead to acquired CDK4/6 inhibitor resistance

Renée de Leeuw¹, Christopher M. McNair¹, Matthew J. Schiewer¹, Neermala P. Neupane¹, Michael A. Augello¹, Zhen Li², Larry Cheng^{2,3,4}, Akihiro Yoshida⁵, J. Alan Diehl⁵, E. Starr Hazard^{6,7}, Sean M. Courtney^{6,8}, Gary Hardiman^{6,9}, Maha Hussain¹⁰, Justin M. Drake^{2,3,4,11}, Wm. Kevin Kelly¹², Karen E. Knudsen^{1,12,13}

¹Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA

²Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, 08901, USA

³Graduate Program in Cellular and Molecular Pharmacology, Graduate School of Biomedical Sciences, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA

⁴Graduate Program in Quantitative Biomedicine, Graduate School-New Brunswick, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA.

⁵Department of Biochemistry and Molecular Biology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA

⁶Center for Genomic Medicine Bioinformatics, Medical University of South Carolina (MUSC), Charleston, SC 29425, USA

⁷Library Science and Informatics, Medical University of South Carolina, Charleston, SC 29425, USA

⁸Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29425, USA

⁹Departments of Medicine and Public Health Sciences, Medical University of South Carolina, Charleston, SC 29425, USA

¹⁰Department of Medicine, Division of Hematology and Oncology, Feinberg School of Medicine, Robert H. Lurie Cancer Center, Northwestern University, Chicago, IL 60611, USA

¹¹Department of Medicine, Division of Medical Oncology, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA

¹²Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA

¹³Departments of Urology and Radiation Oncology, Sidney Kimmel Cancer Center, Thomas Jefferon University, Philadelphia, PA19107, USA

Abstract

<u>Background</u>: Cyclin Dependent Kinase-4/6 (CDK4/6) kinase inhibitors have shown clinical benefit in treatment of solid tumor types, including breast cancer. However, resistance is common, and the underpinning mechanisms of action are not well understood. Given the dependence of CDK4/6 inhibitors on retinoblastoma tumor suppressor (RB) function for activity, this class of agents may be particularly effective in tumor types for which RB loss is infrequent or occurs late in tumor progression.

<u>Methods:</u> Here, models of acquired palbociclib resistance were generated in early stage, RB positive cancers, and assessed via unbiased global gene expression and phosphoproteomic profiling.

Results: Acquired palbociclib resistance resulted in cross-resistance to other CDK4/6 inhibitors under clinical testing. Furthermore, cells showing acquired resistance exhibited aggressive *in vitro* and *in vivo* phenotypes without genetic loss of RB or RB pathway members, including enhanced proliferative capacity, migratory potential, and characteristics of epithelial to mesenchymal transition. Further analyses through integration of RNA sequencing and phospho-proteomics identified activation of the MAPK signaling pathway as a mediator of CDK4/6 inhibitor resistance, capable of bypassing CDK4/6 activity. However, this altered kinase dependence resulted in sensitization to MEK inhibitors, suggestive of new clinical opportunities in CDK4/6 resistant tumors.

<u>Conclusions:</u> The studies herein not only identify activation of the MAPK pathway as capable of bypassing the CDK4/6 requirement and promoting aggressive tumor characteristics, but nominate MEK inhibitors as potential mechanisms to treat or prevent CDK4/6 inhibitor resistance.

Financial support: Prostate Cancer foundation Young Investigator Awards (RdL 2016, JMD 2015), Prostate Cancer Foundation Challenge Award (WKK, KEK), Novartis (JAD, KEK), RO1CA093237 (JAD), National Institute of General Medical Sciences of the National Institutes of Health T32 GM008339 (LCC), Department of Defense Prostate Cancer Research Program W81XWH-15-1-0236 (JMD), New Jersey Health Foundation grant (JMD).

Conflicts of interest: The authors declare no potential conflicts of interest.