PARP-1 regulates DNA repair factor availability

Matthew J. Schiewer^{1,7}, Amy C. Mandigo^{1,7}, Nicolas Gordon^{1,7}, Fangjin Huang¹², Sanchaika Gaur¹², Renée de Leeuw^{1,7}, Shuang G. Zhao⁸, Joseph Evans⁸, Sumin Han⁸, Theodore Parsons^{5,7}, Ruth Birbe⁹, Peter McCue^{5,7}, Christopher McNair^{1,7}, Saswati N. Chand^{1,7}, Ylenia Cendon-Florez^{1,7}, Peter Gallagher^{1,7}, Jennifer J. McCann^{1,7}, Neermala Poudel Neupane^{1,7}, Ayesha A. Shafi^{1,7}, Emanuela Dylgjeri^{1,7}, Lucas J. Brand^{1,7}, Tapio Visakorpi¹⁰, Ganesh V. Raj¹¹, Costas D. Lallas^{2,7}, Edouard J. Trabulsi^{2,7}, Leonard G. Gomella^{2,7}, Adam P. Dicker^{3,7}, Wm. Kevin Kelly^{4,7}, Benjamin E. Leiby^{6,7}, Beatrice Knudsen¹², Felix Y. Feng¹³, and Karen E. Knudsen^{1,2,3,4,7}

Departments of Cancer Biology¹, Urology², Radiation Oncology³, Medical Oncology⁴, Pathology⁵, Pharmacology and Experimental Therapeutics⁶, and Sidney Kimmel Cancer Center⁷, Thomas Jefferson University. Department of Radiation Oncology, University of Michigan⁸. Cooper University Health⁹, University of Tampere¹⁰. UT Southwestern¹¹. Cedars-Sinai Medical Center¹². Departments of Radiation Oncology, Urology, and Medicine, University of California, San Francisco¹³.

Background: PARP-1 holds major functions on chromatin, DNA damage repair and transcriptional regulation, both of which are relevant in the context of cancer. Methods and Results: Here, unbiased transcriptional profiling revealed the downstream transcriptional profile of PARP-1 enzymatic activity. Further investigation of the PARP-1-regulated transcriptome and secondary strategies for assessing PARP-1 activity in patient tissues revealed that PARP-1 activity was unexpectedly enriched as a function of disease progression and was associated with poor outcome independent of DNA double-strand breaks, suggesting that enhanced PARP-1 activity may promote aggressive phenotypes. Mechanistic investigation revealed that active PARP-1 served to enhance E2F1 transcription factor activity, and specifically promoted E2F1-mediated induction of DNA repair factors involved in homologous recombination (HR). Conversely, PARP-1 inhibition reduced HR factor availability and thus acted to induce or enhance "BRCA-ness". Conclusions: These observations bring new understanding of PARP-1 function in cancer and have significant ramifications on predicting PARP-1 inhibitor function in the clinical setting.

Conflict of Interest: The authors declare no conflicts of interest

Funding Acknowledgement: PCF YI Awards (MJS, RdL, AAS), PCF Challenge Award (WKK, FYF, KEK)