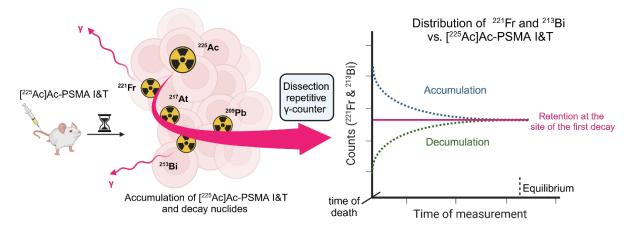
Targeted alpha-therapy with ²²⁵Ac-labeled PSMA ligands: A preclinical investigation on the fate of the decay nuclides

<u>Alexander Wurzer¹</u>, Baiqing Sun¹, Samaah Saleb², Julia Brosch-Lenz¹, Sebastian Fischer¹, Susanne Kossatz¹, Kerstin Hürkamp², Wei Bo Li², Alfred Morgenstern³, Frank Bruchertseifer³, Wolfgang Weber¹, Calogero D'Alessandria¹

1 Nuklearmedizinische Klinik und Poliklinik, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Straße 22, 81675 München, Germany.


2 Institute of Radiation Medicine, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany.

3 European Commission, Joint Research Centre, Karlsruhe, Germany.

Background: Alpha therapy with ²²⁵Ac-labeled ligands targeting the prostate-specific membrane antigen (PSMA) has emerged as a promising treatment option for advanced prostate cancer. Due to alpha recoil, the alpha-emitting progeny is released from the PSMA-targeted molecule and can undergo redistribution, contributing to off-target toxicity in dose limiting organs. In the present study, biodistribution studies of [225Ac]Ac-PSMA I&T were performed in mice, with the aim to investigate the pharmacokinetics of the radioligand compared to unbound progeny. The study was complemented by measurement of the cellular uptake and externalization kinetics of [225Ac]Ac-PSMA I&T in comparison to its ¹⁷⁷Lu-labeled analogue. Methods: In vitro studies (IC₅₀, internalization, externalization) of [²²⁵Ac]Ac-PSMA I&T and [¹⁷⁷Lu]Lu-PSMA I&T were performed on LNCaP and/or PC3Pip-cells. The lipophilicity of each radioligand was determined by the *n*-octanol/buffer method. Biodistribution studies of [²²⁵Ac]Ac-PSMA I&T (10 min, 1 h, 24 h and 7 d p.i.) were conducted on LNCaP-tumor bearing NSG and healthy C57BL/6 mice. Equilibrium uptake was determined 24 h after dissection by separate quantification of ²²¹Fr (218 keV) and ²¹³Bi (440 keV). Tissues of interest (kidneys, salivary glands and tumor) were measured immediately after dissection until reaching equilibrium by determining the timedependent activity distribution of ²²¹Fr and ²¹³Bi. Results: [²²⁵Ac]Ac-PSMA I&T demonstrated similar cell binding characteristics and cellular retention compared to [177Lu]Lu-PSMA I&T. In biodistribution studies [²²⁵Ac]Ac-PSMA I&T displayed fast clearance from the blood pool mainly via the renal system and rapid tumor uptake. In tumor-bearing animals a higher liver uptake (2 %ID/g over 7 d) was found compared to the healthy control group (< 0.7% ID/g over 7 d). No redistribution of non-bound ²²¹Fr and ²¹³Bi was measured from tumor tissue after initial radioligand uptake. Compared to equilibrium a higher ²¹³Bi-uptake was found in kidneys and salivary glands at the time point of death: At 10 min and 1 h p.i., uptake in salivary glands was 1.6-fold and 8.0-fold higher, respectively, while uptake in kidneys was 2-fold higher at both time points. Conclusion: The PSMA-targeting characteristics and pharmacokinetics of [225Ac]Ac-PSMA I&T are similar to its 177Lu-labeled analogue. The progeny of [²²⁵Ac]Ac-PSMA I&T is being trapped in tumor tissue. ²¹³Bi formed by alpha recoil was found to accumulate in salivary glands and the renal system, which could result in an increased dose to organs at risk. The effect of unbound progeny to the development of xerostomia and potential long-term side effects on the renal system warrant further investigation.

Acknowledgments: This work is supported by a CRIS Cancer - Prostate Cancer Foundation Young Investigator Award and the German Federal Office for Radiation Protection.

Disclosure: AW, SF and ME are listed as inventors in patent applications for some types of radiohybrid PSMA ligands.

Figure 1. Determination of the fate of ²²⁵Ac-progeny in biodistribution studies: Higher uptake at the time point of dissection compared to equilibrium indicates accumulation of unbound non-equilibrium nuclides within the organ. Lower uptake corresponds to a fast delocalization of the liberated progeny from the tissues after the first decay. A constant count rate indicates that the decay nuclides are remaining trapped within the analyzed organ at the site of the first decay.