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Background  

The three-dimensional (3D) genome organization directly impacts diverse nuclear processes such as 

transcription, DNA repair, and replication. Therefore, it is crucial to understand how and which distal 

regulatory element (in the linear genomic distance) interacts with its target gene in the  3D space. There 

are several experimental methods used to measure the 3D genome interactions, like Hi-C (1), ChIA-PET 

(2), and others. However, they are costly, time-consuming, and, more importantly, they require millions 

of cells to perform the experiment, which makes them unsuitable for use with patient biopsies. Thus, it is 

essential to introduce the machine learning techniques to help solve this problem. 

Methods 

Performing RNA-seq and ATAC-seq experiments requires a smaller number of cells than those needed for 

ChIP-seq experiments (3). Thus, they are more suitable for use with human biopsies. In our model, we 

use normalized ATAC-seq read count and gene expression FPKM values, in addition to genomic distance, 

to predict the interaction strength between two distal ATAC-seq peaks with at least one of them 

overlapping with a gene. We trained a gradient boosting regression model on the GM12878 ENCODE cell 

line and did many experiments to validate the quality of the model. 

Results 

To measure the performance of our model, we predicted the RNA Pol II ChIA-PET interactions of the 

HepG2 and K562 cell lines. We obtained high Pearson correlation values between original and predicted 

interactions. Then, we predicted the interactions between AR+ and NE+ upregulated genes (4, 5) and 

the ATAC-seq peaks within the 1 Mbp neighborhood of the genes’ TSS. We found that the interactions 

between AR+ upregulated genes and their enhancers are significantly stronger than those between the 

NE+ upregulated genes and their enhancers in the AR+NE- mCRPC samples. Similarly, we found the 

interactions overlapping with the NE+ upregulated genes stronger in the AR-NE+ samples. We also 

calculated super-enhancers (SEs) from mCRPC PDX H3K27ac ChIP-seq samples (6) and identified genes 

with which they interact.  

Conclusion 

We proposed a method for predicting RNA Pol II-associated interactions between genes and their distal 

regulatory regions. Our method showed good performance in predicting the interaction strength of 

different cell lines. In addition, it performed well in predicting interactions of mCRPC patient samples. 
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