Molecular Glue Degraders of AR/AR-V7: A Paradigm Shift in the Treatment of Advanced Prostate Cancer

<u>CheukMan Cherie Au¹</u>, Michelle Naidoo¹, Catrina Estrella¹, Kiran Kumari Sahu¹, Prerna Vatsa¹, Ying Wang², Zhao Wang², David M. Nanus^{1,3}, Urko del Castillo¹, Paraskevi Giannakakou^{1,3}

Department of Medicine, Weill Cornell Medical College, New York, United States
Baylor College of Medicine, Houston, Texas, United States
Meyer Cancer Center, Weill Cornell Medical College, New York, United States

Metastatic castration-resistant prostate cancer (mCRPC) remains a uniformly lethal malignancy, **driven by persistent dependence on androgen receptor (AR) signaling**. Over 90% of therapies target the AR ligand-binding domain (LBD). However, selective pressure from these agents inevitably leads to progression and resistance. Expression of AR splice variants, most notably AR-V7, which lack the LBD and are constitutively active, is a key resistance mechanism. Clinically, AR-V7 is strongly associated with resistance to enzalutamide and abiraterone and is detected in >75% of advanced mCRPC cases, yet no inhibitors exist—**underscoring a profound unmet need**.

To address this, we conducted a high-throughput screen of 170,000 compounds and identified **a first-in-class dual degrader of AR-V7 and AR with a novel chemotype**. Medicinal chemistry/SAR optimization yielded potent leads (IC50 <10 nM) with favorable drug-like properties. Mechanistic studies confirmed rapid degradation of AR-V7/AR via the ubiquitin-proteasome pathway, dependent on Cullin-RING ligase activity. A CRISPR-based E3 ligase screen implicated the DDB1–RBX1–Cullin-RING complex, consistent with a molecular glue mechanism. Global proteomics demonstrated excellent depth (entire proteome of ~10,000 proteins) and strong selectivity: AR/AR-V7 ranked among the top 1% of downregulated proteins, while sparing all nuclear receptors and avoiding liabilities of prior PROTAC-based AR degraders—highlighting excellent specificity and clinical developability.

Using thermal shift assays, AR truncation mutants, and Cryo-EM, we mapped compound binding to the N-terminal domain (NTD), specifically the TAU1/AF-1 subdomain—the first demonstration of small-molecule engagement of this "undruggable" region. Lead compounds reversed enzalutamide resistance and inhibited all clinically validated drugresistant AR isoforms, including LBD-domain mutations. In vivo, PK-optimized leads suppressed tumor growth in enzalutamide-resistant xenografts, outperformed ARV-110, the only AR-PROTAC degrader in clinical trials, by >10-fold, and showed excellent tolerability.

Taken together, these data establish our compounds as **first-in-class dual AR/AR-V7 molecular glue degraders** with a novel NTD-targeted mechanism and strong preclinical activity. Unlike all existing AR-directed therapies that target the LBD, this approach degrades AR and AR-V7 simultaneously, directly addressing the clinical challenge of treatment resistance. By enabling dual degradation of AR (the initiating oncogenic driver) and AR-V7 (the lethal, resistant variant), this strategy has the potential to transform outcomes in both hormone-sensitive and advanced prostate cancer.

Funding Acknowledgement: This work was supported by grants from the National Cancer Institute (NCI) Grant NIH T32 CA062948 (2020-2022) (C C Au), NIH-NCI Dual Fast Track phase I STTR/Phase II SBIR 1R42CA290913-01 (2024-2027) (C C Au), First place of 2020 eBiomedical Business Plan Challenge (C C Au and P Giannakakou), The Daedalus Fund for Innovation award (P Giannakakou), The SPORE DRP award (P Giannakakou), DOD Grant W81XWH-19-1-0666 (P Giannakakou).

I have the following relevant financial relationships to disclose: Co-founder of ARMA BIO, Corp