Tumor transcriptome-wide expression classifiers predict treatment sensitivity in advanced prostate cancers

Emily Grist^{1,22}, Peter Dutey-Magni^{2,22}, Marina A. Parry^{1,22}, Larissa Mendes^{1,22}, Ashwin Sachdeva^{3,4}, James A. Proudfoot⁵, Anis A. Hamid⁶, Mazlina Ismail¹, Sarah Howlett¹, Stefanie Friedrich¹, Lia DePaula Oliveira⁷, Laura Murphy², Christopher Brawley², Oluwademilade Dairo⁷, Sharanpreet Lall¹, Yang Liu⁵, Daniel Wetterskog¹, Anna Wingate¹, Karolina Nowakowska¹, Leila Zakka¹, Claire L. Amos², Nafisah B. Atako², Victoria Wang⁸, Hannah L. Rush^{2,9}, Robert J. Jones¹⁰, Hing Leung¹⁰, William R. Cross¹¹, Silke Gillessen¹², Chris C. Parker¹³, Teresa Marafioti¹, Alfonso Urbanucci¹⁴, Matthew Fittall¹, Edward M. Schaeffer¹⁵, Daniel E. Spratt¹⁶, David Waugh¹⁷, Thomas Powles¹⁸, Matthew R. Sydes², Felix Y. Feng^{19§}, Daniel M. Berney¹⁸, Mahesh K.B. Parmar², Noel W. Clarke^{3,4}, Elai Davicioni⁵, Tamara L. Lotan⁷, Christopher J. Sweeney²⁰, Louise C. Brown², Nicholas D. James¹³, Gerhardt Attard^{1,21,23}

Affiliations

- ¹Cancer Institute, University College London; London, UK
- ²MRC Clinical Trials Unit at University College London, Institute of Clinical Trials and Methodology, University College London; London, UK
- ³The University of Manchester; Manchester, UK
- ⁴The Christie Hospital NHS Foundation Trust; Manchester, UK
- ⁵Veracyte, Inc; San Diego, USA
- ⁶Memorial Sloan Kettering Cancer Center; New York, USA
- ⁷Johns Hopkins School of Medicine; Baltimore, Maryland
- ⁸Dana-Farber Cancer Institute; Boston, USA
- ⁹Guy's and St Thomas' NHS Foundation Trust; London, UK
- ¹⁰University of Glasgow, Beatson West of Scotland Cancer Centre; Glasgow, UK
- ¹¹St James's University Hospital; Leeds, UK
- ¹²Istituto Oncologico della Svizzera Italiana, EOC; Bellinzona, Switzerland
- ¹³The Royal Marsden NHS Foundation Trust and The Institute of Cancer Research; London, UK
- ¹⁴ Prostate Cancer Research Center, Tampere University; Tampere, Finland
- ¹⁵Northwestern University Feinberg School of Medicine; Chicago, USA
- ¹⁶University Hospitals Seidman Cancer Center, Case Western Reserve University; Cleveland, USA
- ¹⁷University of South Australia; Adelaide, Australia
- ¹⁸Barts Cancer Institute, Queen Mary University of London; London, UK
- ¹⁹University of California San Francisco; San Francisco, USA
- ²⁰South Australian Immunogenomics Cancer Institute, University of Adelaide; Adelaide, Australia
- ²¹University College London Hospitals; London, UK
- ²²Contributed equally
- ²³Lead contact

Background

Advanced prostate cancers respond to hormone therapy but outcomes vary and no predictive tests exist for informed upfront treatment selection. To identify novel biomarker-treatment pairings, we examined associations between biological pathways and 14-year survival outcomes of patients randomized in practice-changing Phase 3 trials (testing docetaxel or abiraterone).

Methods

We whole transcriptome profiled prostate tumor index cores using a clinical test (Veracyte), from patients (pts) randomized to the docetaxel (doce) and abiraterone (abi) phase III STAMPEDE trial comparisons. We generated transcriptome-wide expression signatures and immunohistochemistry scores for Ki-67 and PTEN, from 1523 patients (832 metastatic). We followed a pre-defined statistical analysis plan to fit Cox models individually in metastatic (M1) and very high-risk non-metastatic (M0) pts, adjusted for age, WHO PS, pre-ADT PSA, Gleason score, T-stage, N stage (N0, N1), metastatic volume if M1 (CHAARTED definition, high [M1HV] or low [M1LV]). Likelihood ratio tests were used to test the hypotheses that doce effect was larger in Decipher score high vs lower. Primary endpoint was OS. Updated OS (Feb 2024) included record linkage to national datasets. Hazard ratios (HR) provided with 95% confidence intervals.

Results

Tumor androgen receptor signaling associated with longer survival, whilst increased proliferation predicted shorter survival. In a pre-specified analysis, the Decipher score (DS) was both prognostic and predicted survival benefit from doce for metastatic cancers. DS was prognostic: each 0.1 increment increased the hazard of death by 11% (HR = 1.11 [1.06-1.16], p<0.001) for M1, 9% (HR = 1.10 [1.02-1.18], p = 0.012) for M0. DS predicted doce efficacy in M1: high DS, HR = 0.64 [0.48-0.86]; lower DS, HR = 0.96 [0.71-1.30]. This interaction effect was statistically significant (p=0.039). The effect was consistent in M1LV (high DS, HR = 0.53 [0.32-0.88]; lower DS, HR = 0.78 [0.47-1.30]) and M1HV (high DS, HR = 0.72 [0.49-1.07]; lower DS, HR = 1.16 [0.77-1.74]). In M0 there was no evidence of an interaction effect (p=0.302; high DS, HR = 0.75 [0.44-1.28]; lower DS, HR = 1.04 [0.68-1.59]).

Additionally, transcriptome-based classification of PTEN inactivation identified tumors more likely to have PTEN protein loss ($p=4x10^{-37}$). PTEN inactivity associated with shorter OS in pts allocated ADT+abi (HR=1.56, 95%CI: 1.06-2.31) but not in pts allocated ADT+doce (HR=0.93, 95%CI: 0.70-1.24). We found strong evidence (p=0.002) of an interaction between PTEN inactivation and doce sensitivity: PTEN inactive pts benefited from doce (HR=0.57, 95% CI 0.42-0.76) unlike PTEN active pts (HR=1.05, 95% CI 0.77-1.43), this was consistent across M1LV and M1HV. Immunohistochemistry PTEN protein loss was not predictive of doce benefit.

Conclusion

Transcriptome classifiers predict docetaxel benefit and could be clinically-implemented for improved patient management.

Funding acknowledgements

The STAMPEDE trial was funded by Cancer Research UK's Clinical Research Committee (formerly the Clinical Trials Advisory Awards Committee) with educational grants from Novartis, Sanofi-Aventis, Pfizer, Janssen Pharma NV, Astellas and Clovis Oncology. Sanofi-Aventis, Janssen and Novartis provided free drug for the conduct of the trials included in this study. The MRC Clinical Trials Unit at UCL receives core funding from the Medical Research Council. These analyses were funded by Prostate Cancer UK, The John Black Charitable Foundation, The Prostate Cancer Foundation, Prostate Cancer Research, the National Institutes of Health, Department of Defence US, the Benioff Initiative (FYF), the UK National Institute for Health Research funding to the UCL Hospital's Biomedical Research Centre and Cancer Research UK funding to the City of London Centre. Transcriptome profiling was contributed by Veracyte, Inc (San Francisco, CA, USA).

Conflicts of interest and disclosures

Veracyte owns intellectual property and know-how on a number of the transcriptome signatures described herein so could gain commercially from clinical implementation of this study's results and UCL could receive a share of commercial revenue for its contribution to this study, author affiliations to UCL are outlined above. Emily Grist, Yang Liu, James Proudfoot, Elai Davicioni, Peter Dutey-Magni, and Gerhardt Attard have patent applications and/or registrations related to this work.