ABI1 as liquid biopsy biomarker of ARPI resistance

Kate Livingston^{1,2,3}, Kevin M. Lin ^{1,2,3}, Xiang Li^{1,2,3}, Baylee A. Porter^{1,2,3}, Fan Zhang⁴, Maria A. Ortiz^{1,2,3}, Eva Corey⁵, Martin E. Gleave⁴, Gennady Bratslavsky^{1,2,3}, Adam Sowalsky⁶, and Leszek Kotula^{1,2,3#}

- ¹ Department of Urology and ² Department of Biochemistry and Molecular Biology,
- ³ Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY 13210
- ⁴ Vancouver Prostate Centre, Vancouver, BC, Canada V6H 3Z6
- ⁵ Department of Urology, University of Washington, Seattle, WA 98195
- ⁶ Laboratory of Genitourinary Cancer Pathogenesis, National Cancer Institute, Bethesda, MD.

Background: Prostate cancer remains a major global health challenge. While next-generation anti-androgen therapies targeting the androgen receptor (AR) pathway have improved outcomes, resistance inevitably develops, driving progression to lethal disease. We previously identified ABI1 as an AR-regulated gene, and analysis of paired tumor biopsies before and after enzalutamide treatment revealed selective upregulation of ABI1 Exon 4. Because Exon 4 critically regulates ABI1's transcriptional function, we hypothesize that it plays a central role in mediating resistance to AR-targeted therapies. Importantly, we detected ABI1 Exon 4 in both saliva and blood, highlighting its potential as a novel liquid biopsy biomarker for real-time, non-invasive monitoring of treatment resistance.

Methods: ABI1 Exon 4 expression was assessed across prostate cancer models, including tumors, patient-derived xenografts (PDXs), organoids (PDOs), and established prostate cancer cell lines representing CRPC and NEPC (RNA-seq). Functional studies compared transcriptional activity in ABI1 CRISPR knockout (KO) lines versus ABI1-rescued lines expressing or lacking Exon 4, with additional evaluation under anti-AR inhibitor treatment.

Results: ABI1 Exon 4 was consistently enriched in tumors treated with enzalutamide, a finding recapitulated in vitro following enzalutamide and apalutamide exposure. Among 125 PDXs/PDOs derived from patients receiving neoadjuvant therapy (goserelin plus enzalutamide), ABI1 Exon 4 expression was significantly elevated in AR-independent phenotypes, including treatment-induced NEPC, double-negative PCa, and AMPC. Increased Exon 4 expression correlated with SRRM4, the splicing factor driving ABI1 alternative splicing. Transcriptomic analyses revealed that ABI1 Exon 4 deregulation reshaped diverse cancer-related pathways, including stress response (FOS, NME1, FUS, NEAT1), tumor growth, angiogenesis, and cell–cell communication. Notably, ABI1 Exon 4 regulated KLK3/PSA expression—even under AR blockade—underscoring the limitations of PSA as a treatment response marker. Crucially, ABI1 Exon 4 transcripts were readily detectable in saliva and blood, demonstrating feasibility for a non-invasive liquid biopsy assay to track emergence of resistance.

Conclusions: ABI1 Exon 4 functions as a critical driver of transcriptional reprogramming and AR-independent resistance in prostate cancer. Its detection in saliva and blood establishes the foundation for a liquid biopsy assay with the potential to revolutionize monitoring of treatment resistance and guide precision therapy.

Conflicts of Interest Disclosure Statement. Authors declare no conflict of interest.

Funding Acknowledgements. DoD Award No. HT94252410044, R21CA260381, Joyce Curry Pancreatic Cancer Fund, Upstate Foundation and Upstate Cancer Pilot Grant (LK).

[#] Poster presenter