Joint Biochemical & Genetic Prostate Cancer Risk Stratification

Nicole Zeltser*^{1,2}, Roni Haas*^{1,2}, Christine Ibilibor³, Jonathan Gelfond⁴, Martin Goros⁴, Teresa L. Johnson-Pais⁵, Ian M. Thompson⁶, Tyler M. Seibert⁷, Robin J. Leach⁸, Paul C. Boutros^{2,3,9,10,#}, Michael A. Liss^{5,#}

- ¹Department of Human Genetics, University of California, Los Angeles, USA
- ²Jonsson Comprehensive Cancer Center, University of California, Los Angeles, USA
- ³Department of Urology, University of Virginia, Charlottesville, VA
- ⁴Department of Population Health Sciences, University of Texas Health Science Center, San Antonio, TX
- ⁵Department of Urology, University of Texas Health Science Center, San Antonio, TX
- ⁶The Children's Hospital of San Antonio Foundation and CHRISTUS Health, San Antonio, TX
- ⁷Departments of Radiation Medicine, Radiology, Urology ,and Bioengineering, University of California San Diego, La Jolla, CA
- ⁸Department of Cell Systems and Anatomy, University of Texas Health Science Center, San Antonio, TX
- ⁹Institute for Precision Health, University of California, Los Angeles, USA

ABSTRACT

Background and Objective: Overdiagnosis of prostate cancer (PC) through prostate-specific antigen (PSA) testing at short intervals remains common. While baseline serum PSA abundance < 1 ng/mL warrants infrequent screening, it is critical to foster advanced diagnostic practices for men with baseline serum PSA ≥ 1 ng/mL, who are at higher risk for clinically significant disease. We investigated whether common germline variants could enhance screening recommendations in men with PSA ≥ 1 ng/mL.

Methods: Polygenic hazard scores for the risk of prostate cancer diagnosis (PHS290) were computed in a diverse, matched, prospective cohort of 310 men with baseline PSA \geq 1 ng/mL with or without PC. Regression models were used to predict prostate cancer clinical risk groups with PHS290, while incorporating clinical covariates.

Key Findings: PHS290 stratified individuals with PSA ≥ 1 ng/mL into risk groups and identified men with intermediate- & high-risk PC. In a case-control analysis, PHS290 distinguished clinically significant PC from men with low-grade and no prostate cancer combined. In a time-to-event analysis, PHS290 was significantly associated with increased hazard of clinically significant PC.

Conclusions and Clinical Implications: Our study demonstrates the potential of genetic scores to advance screening guidance. The prostate cancer risk stratification capabilities of molecular biomarkers in tiered screening strategies merit further study in large cohorts and incorporation into baseline risk calculators.

^{*}Contributed Equally

¹⁰Department of Urology, University of California, Los Angeles, USA

Conflicts of Interest:

P.C.B. sits on the Scientific Advisory Boards of BioSymetrics Inc and Intersect Diagnostics Inc., and formerly sat on that of Sage Bionetworks. T.M.S. reports honoraria from Varian Medical Systems, WebMD, GE Healthcare, and Janssen; he has an equity interest in CorTechs Labs, Inc. and serves on its Scientific Advisory Board; he receives research funding from GE Healthcare through the University of California San Diego. These companies might potentially benefit from the research results. The terms of this arrangement have been reviewed and approved by the University of California San Diego in accordance with its conflict-of-interest policies. All other authors declare they have no conflicts of interest.

Funding Acknowledgements:

Research reported in this publication was supported by the National Cancer Institute of the National Institutes of Health under Award Number R01CA279667. This research was supported in part by funding from the National Cancer Institute (U01CA086402, U01CA096492 and P30CA054174). Genotyping was performed using institutional funds from the Department of Urology at the University of Texas Health San Antonio. Christine Ibilibor has received research support through the University of Texas Health Science Center at San Antonio Cancer Prevention and Research Institute of Texas Research Training Award (RP170345). Roni Haas is supported by EMBO Postdoctoral Fellowship ALTF 1131-2021 and the Prostate Cancer Foundation Young Investigator Award 22YOUN32. Nicole Zeltser was supported by the NIH through awards T32HG002536 and F31CA281168. Paul C. Boutros was supported by the NIH through awards P30CA016042, U01CA214194, U2CCA271894 and R01CA270108. This work was supported by a Prostate Cancer Foundation Special Challenge Award to PCB (Award ID #: 20CHAS01) made possible by the generosity of Mr. Larry Ruvo. Roni Haas, Tyler M. Seibert and Paul C. Boutros are supported by the Prostate Cancer Foundation (23CHAL12), and the U.S. Department of Defense (DOD/CDMRP PC220521).