An All-in-One 'Living Drug' CAR T Cell Platform for Safe and Effective Targeting of Metastatic Castration-Resistant Prostate Cancer

<u>Nour Shobaki</u>¹, Yutong Deng¹, Menelik Duey¹, Julia Nguyen¹, Martina Spiga¹, Khatuna Gabuna¹, Decheng Song¹, Ting-Jia Fan¹, Fang Liu¹, Mei Qing Ji¹, Mansi Deshmukh¹, Ethan Sun¹, Huijun Wei¹, Wei Liu¹, Andrew Rech^{1,3,4,5}, Neil Sheppard¹, Vivek Narayan^{2,3}, John Scholler¹, Carl June^{1,2,3,4,5}.

- 1 Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.
- 2 Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.
- 3 Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- 4 Parker Institute for Cancer Immunotherapy at University of Pennsylvania, Philadelphia, PA, 19104, USA.
- 5 Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA.

Background

Metastatic castration-resistant prostate cancer (mCRPC) is a lethal and treatment-refractory stage of disease, often associated with bone metastases and poor prognosis. Although chimeric antigen receptor (CAR) T cell therapy holds promise for mCRPC, clinical translation has been limited by toxicities associated with validated targets such as PSMA. In first-in-human trials of PSMA-targeted CAR T cells armored with a dominant-negative TGF- β receptor II (dnTGF β RII) (NCT03089203, NCT04227275), and the ongoing REGN5678 αPSMA×CD28 bispecific trial (NCT03972657), encouraging responses were observed but accompanied by grade ≥ 3 cytokine release syndrome (CRS), hemophagocytic lymphohistiocytosis (HLH), and immune effector cell-associated neurotoxicity syndrome (ICANS). In addition to toxicity, antigen heterogeneity—particularly the emergence of antigen-negative escape variants—remains a key barrier to durable responses.

Methods

To address these challenges, we developed a next-generation, all-in-one "living drug" CAR T cell platform with triple-armoring and dual-targeting capabilities. The construct includes: (1) a STEAP2-directed CAR to reduce on-target/off-tumor toxicity; (2) localized secretion of aPSMA×CD28 bispecific antibodies to activate bystander T cells against STEAP2-negative/PSMA-positive escape variants while minimizing systemic effects; (3) rationally tuned CD28 affinity in the bispecific to balance efficacy with reduced CRS risk; and (4) dnTGF β RII to confer resistance to immunosuppressive signaling in the tumor microenvironment (TME). Bispecific secretion is confined to NFAT-activated CAR T cells upon STEAP2 engagement, thereby restricting CD28 co-stimulation to the tumor site and expanding the therapeutic window.

We evaluated this platform *in vitro* using a panel of human prostate cancer cell lines with variable STEAP2 and PSMA expression and high TGF- β secretion, to delineate STEAP2-CAR versus aPSMA×CD28-mediated cytotoxicity. For *in vivo* assessment, we utilized subcutaneous, intravenous, and intraosseous xenograft models to simulate primary tumors, systemic dissemination, and bone metastases, respectively. A novel huPSMA knock-in (KI) mouse model was also developed to assess safety by recapitulating physiological PSMA expression.

Results

We successfully engineered multiple αPSMA×CD28 constructs within a dnTGFβRII-armored STEAP2-CAR T cell framework. Bispecific secretion was confirmed by ELISA and dual-binding assays to PSMA+ tumor cells and CD28+ T cells. Engineered T cells exhibited potent *in vitro* cytotoxicity against heterogeneous prostate cancer lines. *In vivo*, dual-function CAR T cells demonstrated robust tumor control in LNCaP (STEAP2+/PSMA+) models through both STEAP2-CAR-mediated killing and bispecific-enhanced bystander

activity. Notably, bispecific secretion alone elicited strong antitumor effects in PC3-PSMA+/STEAP2-tumors.

Conclusions

This all-in-one CAR T cell platform integrates tumor-specific targeting, dual antigen recognition, localized immune activation, and resistance to TME suppression. Our findings support its potential as a safe and effective therapeutic strategy for mCRPC and other solid tumors characterized by antigen heterogeneity and immunosuppressive barriers.

Funding Acknowledgements

This work was supported by the PCF Tactical Award 2023 and PCF YI Award 2024.

Conflicts of Interest Disclosure Statement

The authors declare no conflicts of interest related to this abstract.