Extracellular Domain Shedding of TROP2 Activates EGFR Signaling to Drive Prostate Cancer Metastasis

hiqin Liu^{1,2†}, En-Chi Hsu^{3†}, Merve Aslan³, Fernando Garcia-Marques³, Michelle Shen¹, Alifiani B. Hartono¹, Francisco Solano¹, Kewei Le¹, Hyeonji Hwang¹, Chung S. Lee¹, Abel Bermudez³, Rosalie Nolley⁴, Donna M. Peehl⁵, James D. Brooks⁴, Michael A. Liss⁶, Sharon J. Pitteri³, and Tanya Stoyanova^{1,7*}

¹ Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, CA, USA. ² Department of General Surgery, Xiangya Hospital, Central South University, Changsha, Hunan Province, P.R. China. ³Department of Radiology, Stanford University, Stanford, CA, USA. ⁴ Department of Urology, Stanford University, Stanford, CA, USA. ⁵Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA. ⁶ Department of Urology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA. ⁷ Department of Urology, University of California Los Angeles, Los Angeles, CA, USA.

† These authors contributed equally

Background, Methods, Results, Conclusion: Metastasis is the main cause of prostate cancerassociated deaths, highlighting the urgent need to determine the mechanisms underlying prostate cancer progression. TROP2 (TACSTD2, Trop-2, Trop2) is an oncogenic transmembrane surface protein that is highly expressed in metastatic prostate cancer. Naturally occurring cleavage of TROP2 leads to a release of the TROP2 extracellular domain (TECD) into the extracellular environment. In this study, we report that TECD is detected in media from prostate cancer cells and serum from patients with clinically significant prostate cancer. Furthermore, our study reveals an important functional role of TECD in prostate cancer metastasis. We found that while shed TECD does not affect prostate cancer cell and tumor growth, it increases cell migration, invasion, metastatic colonization, and spontaneous metastasis both in vitro and in vivo. TECD interactome and proteomic studies reveal that TECD binds to epidermal growth factor receptor (EGFR) and shed TECD modulates a set of proteins associated with invasion, migration, mTOR signaling, and epithelial-to-mesenchymal transition. Furthermore, elevated shed TECD increases EGFR phosphorylation, resulting in the activation of the EGFR-PI3K-AKT-mTOR pathway in prostate cancer. EGFR inhibitors suppress the invasive ability of prostate cancer cells driven by TECD overexpression, further supporting the key role of EGFR in TECD-mediated prostate cancer progression. Our study reveals a new function of TECD in driving prostate cancer progression and uncovers new mechanisms of TECD function through EGFR.

Funding Acknowledgements:

This study was supported by the National Institutes of Health/National Cancer Institute (NCI) R37CA240822. T.S. is supported by the National Institutes of Health (NIH)/National Cancer Institute (NCI) (R37CA240822, R01CA244281, R01CA287669 and R01CA274978), Worldwide Cancer Research and the United States Department of Defense (Award Numbers HT9425-23-1-1034 and HT9425-24-1-0396). J.D.B. is supported by NIH CA245595 and NIH CA196387. S.J.P is supported by NIH CA196387. S. L. is supported by the United States Department of Defense (Award Number: HT9425-25-1-0049) and the UCLA Jonsson Comprehensive Cancer Center. A.B.H. is supported by the United States Department of Defense (Award Number HT9425-23-1-0237). D.M.P. is supported by (NCI) R37CA240822. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Cancer Institute or Department of Defense.

Conflicts of Interest Disclosure Statement: The authors declare no conflicts of interest