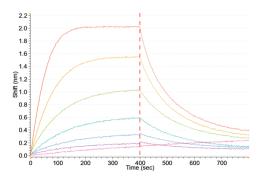
## Detection and Targeting of Genomic Fusion Derived pMHC Neoantigens in Prostate Cancer

Daniel B. Rosen<sup>1,2</sup>, Jaechan Lee<sup>1</sup>, Sarah Kang<sup>1</sup>, Nir Hacohen<sup>1,3</sup>

1 Broad Institute, Cambridge, MA 2 Brigham and Women's Hospital, Boston, MA, 3 Massachusetts General Hospital, Boston, MA

**Background:** Prostate cancer remains unresponsive to immune checkpoint blockade in unselected patients. Tumor intrinsic factors such as low tumor mutational burden, limited PD-L1 expression, and tumor extrinsic components such as an immunosuppressive microenvironment contribute to an immune-cold phenotype. Current bispecific T-cell engager (BiTE) therapies for prostate cancer target tumor-associated antigens such as PSMA or PSCA, but their expression in normal tissues raises significant risks of on-target, off-tumor toxicity and limits clinical efficacy. There is a critical need for tumor-specific antigens with a broader therapeutic window.


Gene fusions are frequent genomic events in prostate cancer, present in over 80% of patients, and are known drivers of oncogenesis. These fusions generate novel peptide—MHC complexes (pMHCs) that are both highly immunogenic and tumor-specific. Fusion-derived pMHCs are absent from normal tissues, reducing the risk of toxicity, and are retained driver events, lowering the likelihood of immune escape. Thus, fusion pMHCs represent an ideal class of targets for antibody-based immunotherapy in prostate cancer.

**Methods:** To develop BiTEs against fusion pMHC-derived tumor specific neoantigens in prostate cancer we are leveraging (1) high-throughput, in vitro nanobody screens to specifically target pMHCs, (2) identifying candidate fusion pMHC from prostate cancer models by combining RNA-seq-based fusion detection with HLA-specific epitope prediction, and (3) validating predicted candidate fusions in prostate cancer models and patients using sequencing and mass spectrometry approaches.

**Results:** We have utilized a novel, cell-free, high-throughput ribosome display system to target the public neoantigen, p53 R175 in the globally-frequent allele, HLA-A\*02:01. With a hit rate of 30% amongst E. coli expressible nanobodies, multiple candidate binders are currently being affinity matured and validated for pre-clinical efficacy (**Fig 1**). We have utilized transcriptomic and genomic sequencing to identify (a) HLA alleles present, (b) potential gene fusions and (c) peptides predicted to present on endogenous HLAs. (Fig 2). Comparing RNA-seq and Wholegenome sequencing pipelines has revealed divergent fusions (19 RNA fusions vs 266 Whole genome fusions for PRC3) indicating that many fusions are even more common, although not always expressed. Of potential binders, 17 are predicted to be weak while 7 are predicted to be strong binders, distributed across 6 different HLA – gene combinations.

**Conclusions:** pMHCs in prostate cancer represent an under-explored class of tumor specific antigens. They are targetable with new high-throughput binder screens. Furthermore, prostate cancers harbor high levels of genomic and expressed fusion proteins that are predicted to bind

to endogenous HLAs. We are now proceeding with empirically validating fusion derived pMHCs using HLA stabilization assays in prostate cancer and identifying fusion-pMHC specific binders.



**Figure 1:** Biolayer interferometry of ribosome-display selected nanobody against HLA-A\*02:01 p53 R175H. Example BLI data of candidate 23.

| (A) Allele   | (B) RNA Detected Fusions |
|--------------|--------------------------|
| HLA-A*01:196 | SMAGPTFCP2               |
| HLA-A*24:44  | SAMD8ADK                 |
| HLA-B*55:01  | KDM5BLINC01351           |
| HLA-B*56:60  | MIER2PPFIA3              |
| HLA-C*06:02  | CTNNA1AC011405.1         |
| HLA-C*01:180 | PUS7AC004917.1           |
|              | SIL1AC034243.1           |
|              | CAMK2GKIFBP              |
|              | PLOD2IQCJ                |
|              | LINC02057NDUFAF2         |
|              | SEPTIN7P2PSPH            |
|              | PLEKHA6ASAH2B            |
|              | HECTD4RPL6               |
|              | PTENMETTL18              |
|              | TVP23CCDRT4              |
|              | RPTORAC079943.2          |
|              | TTC37ARSK                |
|              | ERO1AGNG2                |
|              | KRT81KRT7                |

| Fusion Name    | HLA allele     | Fusion Peptide<br>Tested | Binding<br>Category |
|----------------|----------------|--------------------------|---------------------|
| CAMK2G         | HLA-           |                          |                     |
| KIFBP 11       | C06:02         | KKSDGGVKL                | WB                  |
| CAMK2G         | HLA-           |                          |                     |
| KIFBP 11       | A01:196        | KSDGGVKLL                | WB                  |
| CAMK2G         | HLA-           |                          |                     |
| KIFBP 11       | C06:02         | KSDGGVKLL                | WB                  |
| HECTD4         | HLA-           |                          |                     |
| RPL6 17        | A01:196        | DLEDLWSSIEFLY            | WB                  |
| HECTD4         | HLA-           |                          |                     |
| RPL6 17        | A01:196        | LEDLWSSIEFLY             | WB                  |
| PLOD2          | HLA-           |                          |                     |
| IQCJ_12        | B55:01         | IPTGRTEKI                | WB                  |
| PLOD2          | HLA-           |                          |                     |
| IQCJ_12        | B56:60         | IPTGRTEKI                | SB                  |
| PLOD2          | HLA-           | II TORTER                | 35                  |
| IQCJ_12        | B55:01         | IPTGRTEKIA               | WB                  |
| PLOD2          | HLA-           | II TORTERIA              | WB                  |
| IQCJ_12        | B55:01         | KPSSIPTGR                | WB                  |
| PLOD2          | HLA-           | KI SSII TGIK             | WD                  |
| IQCJ_12        | B55:01         | KPSSIPTGRT               | WB                  |
| 1Qω_12         | HLA-           | IN SSI TON               | VVD                 |
| SAMD8ADK 2     | B56:60         | SPTRTAEGF                | SB                  |
| SAMO ADIX_Z    | HLA-           | 31 TRIALGI               | 36                  |
| SAMD8ADK 2     | B56:60         | SPTRTAEGFF               | WB                  |
| SAMO ADIC_Z    | HLA-           | SITICIALOIT              | VVD                 |
| SAMD8ADK 2     | B56:60         | SPTRTAEGFFL              | WB                  |
| SAMO ADIC_Z    | HLA-           | SITICIALOTTE             | VVD                 |
| SAMD8ADK_2     | B55:01         | TAEGFFLTV                | WB                  |
| SAMO ADIC_Z    | HLA-           | TALOTTETV                | VVD                 |
| SAMD8ADK 2     | C06:02         | TRTAEGFFL                | SB                  |
| SAMO ADIC_Z    | HLA-           | TRIALGITE                | 36                  |
| SAMD8ADK 5     | A01:196        | RTAEEAATF                | WB                  |
| שא סטויואכ     | HLA-           | KIALLAAII                | VVD                 |
| SAMD8ADK 5     | B55:01         | SPTRTAEEA                | SB                  |
| אויוסט־־אטוג_ט | HLA-           | SFIRIALLA                | 30                  |
| SAMD8ADK 5     | B56:60         | SPTRTAEEA                | WB                  |
| אויוסט־אטוג_ט  | HLA-           | SFIRIALLA                | VVD                 |
| SAMD8ADK 5     | B55:01         | SPTRTAEEAA               | SB                  |
| SAMDO-ADK_S    |                | SFIRIALLAA               | 30                  |
| SAMD8ADK 5     | HLA-<br>B56:60 | SPTRTAEEAA               | WB                  |
| אטאי־סטויואכ_5 |                | SPIRIACEAA               | VVD                 |
| CAMDO ADIZ E   | HLA-           | COTOTACEAATE             | WB                  |
| SAMD8ADK_5     | B56:60         | SPTRTAEEAATF             | VVD                 |
| SMAGP          | HLA-           | CDDCMCNOC                | MD                  |
| TFCP2_1        | B55:01         | SPRGWCVQG                | WB                  |

| SMAGP   | HLA-   |           |    |
|---------|--------|-----------|----|
| TFCP2_1 | B55:01 | TPSPRGWCV | SB |
| SMAGP   | HLA-   |           |    |
| TFCP2_1 | B56:60 | TPSPRGWCV | SB |

**Figure 2:** HLA, fusion and peptide results for a sample prostate cancer cell line (PRC3) with (a) RNA-seq derived HLA detected alleles (b) RNA-seq derived fusion events (STAR -Fusion), (c) predicted binders to HLA alleles (MHC-Netpan 4.1)

## **Funding Acknowledgements:**

Research reported in this abstract was supported by Prostate Cancer Foundation – Young Investigator award under award number 24YOUN03.

## **Conflicts of Interest Disclosure Statement:**

I have no conflict of interest to report.