Actinium-225 Radioimmunotherapy in Delta-like Ligand 3 NEPC tumor model.

Salomon Tendler*, Tran T. Hoang*, David Bauer, Aidan Ingham, Lukas Carter, Alexa Michel, Robert De Gregorio, John T. Poirier, Lisa Bodei, Charles M. Rudin, Michael J Morris, Jason S. Lewis *Co-first author

Introduction:

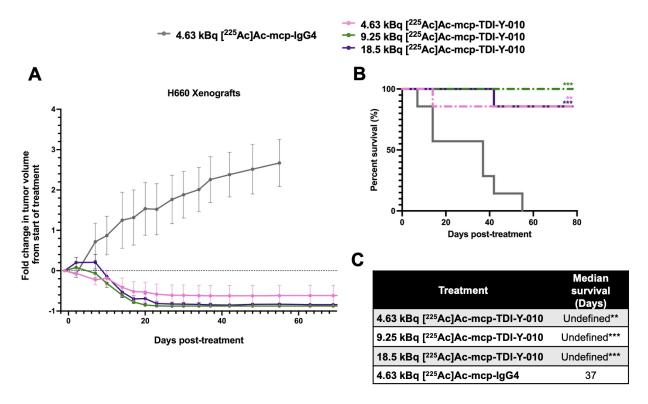
We evaluated the anti-DLL3 monoclonal antibody TDI-Y-010 labeled with Actinium-225 for targeted alpha therapy in DLL3-expressing PDX models neuroendocrine prostate cancer (NEPC), using macropa-based chelators optimized for ²²⁵Ac.

Methods:

Ex vivo biodistribution studies were conducted to evaluate the uptake of [²²⁵Ac]Ac-mcp-TDI-Y-010 and to determine appropriate therapeutic dosing. Based on the dosimetry data, therapeutic efficacy study was conducted in male nude mice bearing NCI-H660 NEPC xenografts, with administered doses of 4.63, 9.25, and 18.5 kBq.

Results:

[225 Ac]Ac-Macropa-TDI-Y-010 achieved radiochemical yields >98 %. Dosimetry analyses suggested that the bone marrow was at risk for toxicity from higher doses of [225 Ac]Ac-Macropa-TDI-Y-010. In the H660 NEPC model, complete responses were observed in the lowest dose, 4.63 kBq of [225 Ac]Ac-Macropa-PEG₄-TDI-Y-010, along with 9.25 kBq and 18.5 kBq doses. In addition, median survival was also significantly extended for the [225 Ac]Ac-mcp-TDI-Y-010 cohorts in the NEPC model compared to the 37-day median survival for [225 Ac]Ac-mcp-IgG4 (** $^{$


Conclusion:

[²²⁵Ac]Ac-Macropa-TDI-Y-010 induced complete responses at all tested doses in a DLL3-expressing NEPC model, supporting its potential for clinical translation in targeted alpha therapy.

Disclosures: ST, JSL, CMR, JSL, and MSKCC have patent on TDI-Y-010.

Funding Acknowledgements: PCF YIA Investigator Award 2024 (ST)

Figures:

Figure 3. (A) The average fold change in tumor volumes of male mice bearing H660 xenografts after treatment (error bars indicate SD; n = 7 per cohort) **(B)** Percent survival of male mice bearing H660 xenografts following treatment. Log-rank tests were performed comparing each treatment to the $[^{225}\text{Ac}]\text{Ac-mcp-IgG4}$ cohort (n = 7 per cohort; ** P = 0.002 for 4.63 kBq $[^{225}\text{Ac}]\text{Ac-mcp-TDI-Y-010}$ cohort, *** P = 0.0001 for 9.25 kBq $[^{225}\text{Ac}]\text{Ac-mcp-TDI-Y-010}$ cohort, *** P = 0.0006 for 18.5 kBq $[^{225}\text{Ac}]\text{Ac-mcp-TDI-Y-010}$ cohort) **(C)** median survival of male mice bearing H660 xenografts following treatment. Log-rank tests were performed comparing each treatment to the $[^{225}\text{Ac}]\text{Ac-mcp-IgG4}$ cohort (n = 7 per cohort; ** P = 0.002 for 4.63 kBq $[^{225}\text{Ac}]\text{Ac-mcp-TDI-Y-010}$ cohort, *** P = 0.0001 for 9.25 kBq $[^{225}\text{Ac}]\text{Ac-mcp-TDI-Y-010}$ cohort, *** P = 0.0001 for 9.25 kBq $[^{225}\text{Ac}]\text{Ac-mcp-TDI-Y-010}$ cohort, *** P = 0.0006 for 18.5 kBq $[^{225}\text{Ac}]\text{Ac-mcp-TDI-Y-010}$ cohort). SD, standard deviation.