Spatially organized lymphocytic microenvironments in high grade primary prostate tumors
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Background

Prostate cancer (PCa) is often considered immunologically “cold”, yet H&E, IHC, and multiplexed IF consistently reveal
tumor-infiltrating lymphocytes in primary PCa. Spatial architecture can also shape antitumor immunity. For instance,
tertiary lymphoid structures (TLS) are predictive for ICI response in multiple solid tumors. However, not all immune
aggregates represent tumor-directed immune responses, and clear criteria to detect meaningful immune aggregates are
needed. We therefore used highly multiplexed immunofluorescence with quantitative spatial methods to analyze immune
organization in 29 treatment-naive PCa, enriched for high-grade disease.

Methods

We performed 21-marker cyclic immunofluorescence (CyCIF) on 29 radical prostatectomy samples, comprising 15 low-
grade (LGG; Gleason < 3+4) and 14 high-grade (HGG; Gleason > 4+4) PCa. This yielded over 20 million spatially
resolved cells. We then detected over 500 B and T-cell immune clusters and analyzed their association with tumor grade
and key T and B-cell subtypes.

Results

Across 29 prostatectomies and 99 tumor domains, we observed an increase in tumor-infiltrating lymphocytes by Gleason
grade. B-cell density varied ~100-fold (~5-500 cells/mm2) and was higher in HGG than LGG PCa (p=0.006). In HGG, B-
cell density was comparable to dMMR colorectal cancer. CD8* T-cell density averaged 71 vs 135 cells/mm2 in LGG vs HGG
but remained ~2-5x lower than pMMR/dMMR CRC. CD4* T-cells were also increased in HGG (p=0.046).

We identified 257 B-cell-enriched clusters (BICs) and quantified their organization, from loose collections to organized
aggregates. Our approach (ICAT) was compared against blinded expert pathology review. By either expert or quantitative
analysis, morphologically mature BICs were ~4x more prevalent in HGG (P=0.0001) than in LGG. Ki67* B cells and
CD21*/CD23* follicular dendritic cells were significantly enriched in HGG. These are hallmarks of functional germinal
centers and supportive of bona fide TLS-like biology within prostate tumors.

Within immune clusters, PD-1*CD8* T-cells were ~5x more prevalent in HGG vs LGG (p=2.4%x10¢), and TCF1* PD-1* Tpex
cells were ~7x higher (p=1.1x10¢). Across HGG BICs, TCF1+* T-cells correlated with ICAT cluster morphology scores
(P=5.42x10"%) and positively correlated with Ki67* B-cells (p=1.29x108; R2=0.25). Cytotoxic CD8+PD-1*GZMB* T-cells
comprised up to 0.9% of all T-cells and were significantly more abundant in HGG (higher GZMB* fraction among CD8* T-
cells, P=0.002; CD8*GZMB* among all T-cells, P=0.01), with a trend toward closer <2 uym tumor contact in HGG
(P=0.068).

Conclusions

We have identified that a subset of high-grade tumor contains abundant and well-organized immune clusters that carry
the spatial and cell phenotypic hallmarks of TLSes. These tumors are further enriched in key T-cell effector subtypes
suggestive of an active tumor-immune response. These results provide a quantitative basis for cross-study comparison of
spatial immune features. Whether this immune-active subset of high-grade primary PCa is actionable with ICI or by
emerging immunotherapy strategies warrants further investigation.
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Figure 1: a) CyCIF image with selected markers shown; white dashed line separates the tumor and stroma compartment.
b) Infiltration of the B cells, CD4 T cells, and CD8 T cells per mm? by Gleason grade c) Density of intratumoral CD20* T
cells (cells per mm2) by Gleason grade. The one-sided Mann-Whitney U test P value compares high- vs low-grade disease;
dashed lines indicate median reference densities in colorectal cancer as indicated. Point-wise one-sided Wilcoxon test P
values for adjacent grade comparisons are indicated. d) H&E (top) and CyCIF (bottom) of exemplar BICs with (left) and
without (right) a Ki67* proliferative germinal center. E) BIC ICAT scores stratified by pathologist classification. F)
Representative CyCIF image highlighting increased exhaustion and progenitor-exhausted cell states adjacent to a BIC.
TCF1* PD-1* CD8 T cells and TCF1 PD-1* CD8 T cells are indicated by right-pointing green arrows and left-pointing red
arrows, respectively. The B-cell area is encircled by a white dashed line.



