RNA Epitranscriptomic editing Screening Identifies Functional m⁶A Sites in Prostate Cancer

<u>Xin Xu</u>¹, Helen Zhu^{1,2}, Yujuan Wang¹, Magnus Lam^{1,2}, Wenqin Luo¹, Mona Teng^{1,2}, Hansen He^{1,2}
¹Princess Margaret Cancer Center; ²University of Toronto.

Background: Epitranscriptomic modifications such as N6-methyladenosine (m⁶A) are increasingly recognized as critical regulators of cancer biology. While individual m6A regulators and sites have been linked to tumor progression, a systematic functional interrogation of m6A modifications in prostate cancer has been lacking.

Methods:

We developed an RNA epitranscriptomic-editing screening platform by combining dCasRx-*METTL3* with a pooled sgRNA library of 12,000 guides targeting 2,120 clinically relevant m⁶A sites derived from prostate tumors and cell lines. This high-throughput approach enabled transcriptome-wide assessment of functional m⁶A modifications.

Results:

Our screening identified 360 sgRNAs with significant effects on cell proliferation, with validation confirming the reproducibility of key hits. Among these, *CHD9* emerged as the top candidate, where m⁶A modification at its last exon enhanced protein translation through recognition by YTHDF1/3 readers. Functional studies revealed that CHD9 acts as a tumor suppressor: silencing or demethylation accelerated cell proliferation and tumor growth in vitro and in vivo, while higher *CHD9* expression correlated with favorable prognosis in patient cohorts.

Conclusions:

This study represents the first transcriptome-wide functional screening of m⁶A modifications in prostate cancer, uncovering *CHD9* as a novel tumor suppressor regulated at the epitranscriptomic level. Our findings establish RNA epitranscriptomic-editing as a powerful tool for systematically identifying functional RNA modifications, with broad implications for targeting cancer vulnerabilities.

Funding Acknowledgements:

This work was supported by the Princess Margaret Cancer Foundation (886012001223 to H.H.H.), Canadian Cancer Society (TAG2018-2061), CIHR operating grants (142246, 152863, 152864 and 159567 to H.H.H.), Terry Fox New Frontiers Program Project Grant (PPG19-1090 and PPG23-1124 to H.H.H.). H.H.H. holds Tier 1 Canada Research Chair in RNA Medicine. X.X. was supported by the Prostate Cancer Foundation Young Investigator Award (21YOUN06). H.Z. was supported by a CIHR Doctoral Award.

Conflicts of Interest:

The authors disclose no conflicts.