Longitudinal Profiling of Circulating Tumor DNA Reveals the Evolutionary Dynamics of Metastatic Prostate Cancer during Serial Therapy

Ping Xu^{1,2}, Yuehui Zhao^{1,3}, Naveen Ramesh^{2,3}, Emi Sei¹, Min Hu³, Shanshan Bai¹, Patricia Troncoso⁴, Ana Aparicio⁵, Christopher Logothetis⁵, Paul Corn⁵, Nicholas Navin^{1,3,6,8} and Amado J. Zurita⁵

Affiliations:

- 1. Department of Systems Biology, UT MD Anderson Cancer Center, Houston, Texas.
- 2. Graduate School of Biomedical Sciences, UT MD Anderson Cancer Center, Houston, Texas.
- 3. Department of Genetics, UT MD Anderson Cancer Center, Houston, Texas.
- 4. Department of Pathology, UT MD Anderson Cancer Center, Houston, Texas.
- 5. Department of Genitourinary Medical Oncology, UT MD Anderson Cancer Center, Houston, Texas.
- 6. Department of Bioinformatics and Computational Biology, UT MD Anderson Cancer Center, Houston, Texas.

Background:

Metastatic castration resistant prostate cancer (mCRPC) is highly heterogeneous and evolves under therapeutic pressure. Serial tissue biopsies, especially from bone metastases, are invasive and often impractical, limiting real time molecular monitoring. Plasma circulating tumor DNA (ctDNA) offers a minimally invasive alternative that can capture tumor genomic alterations and their clonal dynamics over time. We posited that longitudinal, genome wide ctDNA profiling could resolve treatment specific evolutionary trajectories and reveal resistance associated subclones across commonly used therapies, including androgen signaling inhibitors (ASI) and taxane chemotherapy.

Methods:

We enrolled 60 mCRPC patients receiving serial systemic therapy. For each patient, we analyzed 2 to 7 longitudinal plasma ctDNA samples collected pre-treatment, on-treatment, and at progression across ASI and/or taxanes. We performed genome-wide copy number profiling and exome sequencing, reconstructed clonal substructure, and tracked subclone frequencies over time. To quantify temporal changes, we devised an Evolutionary Dynamic Index (EDI) summarizing the magnitude and direction of subclonal shifts across treatment intervals.

Results:

Longitudinal ctDNA profiling resolved patient specific evolutionary histories and identified therapy linked selection. Overall, treatment with ASI produced greater subclonal selection than taxanes by EDI. At progression, emergent subclones after ASI frequently harbored alterations in PTEN, FANCA, and RB1, whereas CTCF aberrations were enriched following chemotherapy. Genome wide ctDNA measurements captured known drivers (e.g., AR/MYC amplification, TP53 mutation, PTEN loss) and enabled detection of both resistant subclones that expanded on therapy and sensitive subclones that diminished. The EDI provided a compact, quantitative readout of clonal remodeling, differentiating stable disease from rapid evolutionary change during treatment.

Conclusions:

Serial genome wide profiling of ctDNA can noninvasively delineate clonal architecture and evolutionary dynamics in mCRPC across multiple lines of therapy. Our findings highlight therapy specific resistance mechanisms (PTEN/FANCA/RB1 after ASI; CTCF after taxanes) and support the use of ctDNA-based dynamics, including the EDI, as a framework for treatment monitoring and for optimizing sequencing of ASI and chemotherapy in advanced prostate cancer.

Funding Acknowledgements:

This work was supported by the MD Anderson Cancer Center Prostate Cancer Moon Shot Program. The work was also supported by grants to N.E. Navin from the NIH NCI (RO1CA240526 and RO1CA236864) and the Cancer Prevention and Research Institute of Texas Single Cell Genomics Core (RP180684). N.E.

Navin is an American Association for the Advancement of Science (AAAS) Fellow, AAAS Wachtel Scholar, Damon-Runyon Rachleff Innovator, and Jack and Beverly Randall Innovator. This study was supported by the MD Anderson Sequencing Core Facility grant (CA016672) and Histopathology Core (P30CA016672), the Don and Nancy Powell Foundation, the Gayle Gibson Fund, and the Prostate Cancer Foundation/Movember Global Action Plan (GAP) Program (to A.J. Zurita). Y. Zhao is funded by the Prostate Cancer Foundation Young Investigator Award, MD Anderson Odyssey Fellowship, and Cancer Prevention and Research Institute of Texas Research Training Program (RP170067). N. Ramesh is a Graduate Scholar in the CPRIT Training Program (RP210028).

Conflicts of Interest Disclosure Statement:

The authors declare no potential conflicts of interest.