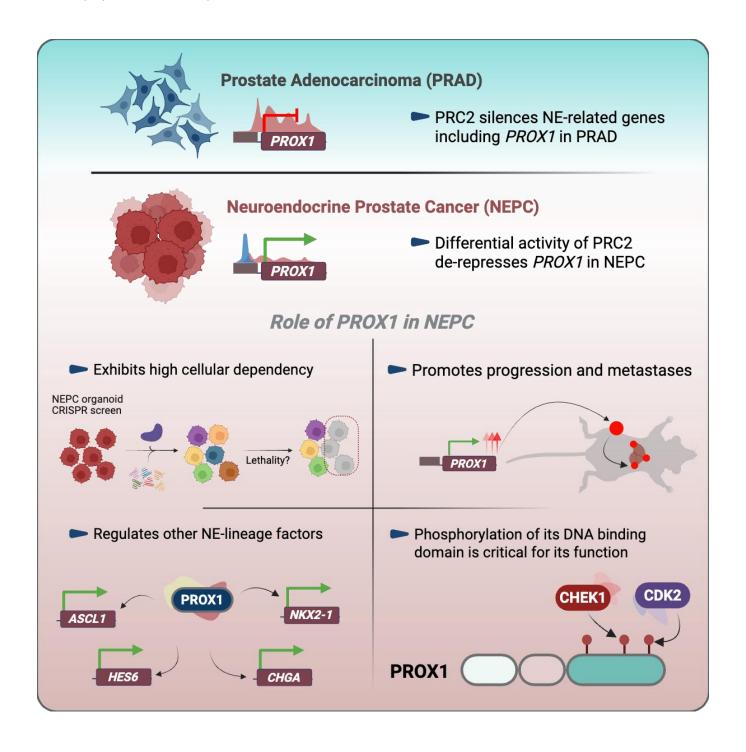
Modulation Of Chromatin Bivalency Facilitates Prostate Cancer Lineage Plasticity

<u>Varadha Balaji Venkadakrishnan</u>^{1,2}, Nathaniel C. E. Voss¹, Richa Singh³, Nicole Traphagen, James Neiswender², Lisa Brenner², Keira Prenza Sosa¹, Kenny Weng¹, Francisca Vazquez², Myles Brown, David S. Rickman³, and Himisha Beltran^{1,2}

¹Dana-Farber Cancer Institute ²The Broad Institute of MIT and Harvard ³Weill Cornell Medicine

Prostate cancer lineage plasticity, characterized by histologic transformation of prostate adenocarcinoma (PRAD) to neuroendocrine prostate cancer (NEPC), is an emerging mechanism of treatment resistance. NEPC accounts for up to 15% of treatment-resistant prostate cancers and is associated with poor prognosis, highlighting an unmet need for new therapies. NEPC lineage reprogramming is primarily driven by epigenetic dysregulation including differential activity of histone and DNA methyltransferases. EZH2, the catalytic component of the Polycomb repressive complex 2 (Polycomb), is overexpressed in most treatment-resistant prostate cancers and is implicated as a driver of disease progression. In this study, we define the differential, lineage-specific action of Polycomb in both PRAD and NEPC subtypes to better understand its role in modulating differentiation and lineage plasticity, and to identify novel targetable drivers of NEPC.

Epigenetic H3K27me3 CUT&Tag profiling of treatment-resistant PRAD (n=9) and NEPC (n=9) rapid autopsy clinical samples revealed that Polycomb targets, including NE-lineage transcription factors, are de-repressed in NEPC. Mechanistically, Polycomb modulates H3K4/K27me3 bivalent genes, leading to the upregulation of NEPC-associated transcriptional drivers (e.g., *ASCL1*) and neuronal gene programs which facilitate forward differentiation following EZH2 targeting in NEPC patient-derived organoid/xenograft models. Notably, we identified prospero-homeobox 1 (PROX1) as an understudied cell-fate determining transcription factor that is epigenetically de-repression by differential Polycomb activity. Integrative H3K27ac CUT&RUN and Capture Hi-C analyses revealed potential enhancers of *PROX1* in NEPC that may be regulated by ASCL1.


We sought to functionally characterize the role of PROX1 in NEPC. An unbiased CRISPR screen in two NEPC patient-derived organoid models demonstrated high cellular dependency for *PROX1*; knockout of *PROX1* impeded tumor growth in NEPC models, while overexpression of *PROX1* in PRAD promoted tumor growth and spontaneous metastases. Transcriptomic and cistromic analyses across models of CRPC and NEPC pointed to PROX1 regulation of neuroendocrine-lineage transcriptional programs. Immunoprecipitation followed by mass spectrometry identified three novel phosphorylated sites in the DNA-binding domain of PROX1 that are critical for its stability and function. *In silico* analyses of these phosphorylation sites predicted CHEK1 and CDK2 asmpotential upstream kinases which could be exploited for therapeutic targeting of PROX1.

Our findings provide insights into the potential role for bivalent promoters in Polycomb-mediated lineage reprogramming, which may facilitate forward differentiation in NEPC upon EZH2 inhibition. Further investigation of de-repressed candidates defines the role of PROX1 as a driver of NEPC and a potential therapeutic target.

Funding: Prostate Cancer Foundation Young Investigator Award (V.B.V.), DoD PCRP Early Investigator Research Award (V.B.V., R.S., S.K.), National Cancer Center Postdoctoral Fellowship Award (V.B.V.), NIH NCI R37 1R37CA241486-01A1 (H.B.), NIH-NCI WCM Prostate Cancer SPORE P50 CA211024-01A1 (D.S.R., H.B.), NIH-NCI DF/HCC Prostate Cancer SPORE P50 CA272390-01 (H.B.), NIH NCI R01 1R01CA230913 (D.S.R.).

<u>Conflict of interest</u>: H.B. has served as consultant/advisory board member for Janssen, Astra Zeneca, Merck, Pfizer, Amgen, Bayer, Novartis, Daiichi Sankyo, and has received research funding (to institution) from Janssen,

Bristol Myers Squibb, Circle Pharma, Daiichi Sankyo, Novartis. F.V. receives research support from the Dependency Map Consortium, Riva Therapeutics, Bristol Myers Squibb, Merck, Illumina, and Deerfield Management. F.V. is on the scientific advisory board of GSK, is a consultant and holds equity in Riva Therapeutics and is a co-founder and holds equity in Jumble Therapeutics.

