Evaluation of AI-based and Genomic Prognostic Markers for the Prediction of Grade Progression in the Prostate Cancer Active Surveillance Setting

Archan Khandekar¹, Hassan Muhammad², Chao Feng², Parag Jain², Wei Huang³, Hirak S. Basu², Adam Williams¹, Sujit Nair⁴, Dimple Chakravarty⁴, Rajat Roy², George Wilding³, Ashutosh Tewari⁴, Dipen J Parekh¹, Sanoj Punnen¹

Affiliations:

- Desai Sethi Urology Institute, University of Miami, Miami, FL¹
- PATHOMIQ Inc., Cupertino, CA²
- Department of Pathology and Laboratory Medicine, University of Wisconsin–Madison, Madison, WI³
- Icahn School of Medicine at Mount Sinai, New York, NY⁴

Background

Active surveillance (AS) is a preferred strategy for men with very-low, low, or favorable-intermediate risk prostate cancer, but accurately predicting which patients will experience grade progression remains a critical challenge. Gleason grading is limited by sampling error and interobserver variability. Genomic assays and MRI provide additional insights, yet robust biopsy-based predictors are lacking. We evaluated PATHOMIQ_PRAD, a slide-based AI histology score, and compared it to the Decipher genomic classifier for prognostic prediction in the Miami Active Surveillance Trial (MAST).

Methods

MAST prospectively enrolled 205 men with very-low to favorable-intermediate risk prostate cancer. All diagnostic and confirmatory biopsies were digitized. Of these, 147 patients had PATHOMIQ_PRAD scores, and 106 had both PATHOMIQ_PRAD and Decipher genomic classifier results. The primary endpoint was Gleason grade progression ($GG1 \rightarrow \geq 2$ or $GG2 \rightarrow \geq 3$), with treatment for volume progression modeled as a competing risk. Associations were assessed using Fine—Gray regression. Cutoff analyses (0.55 for PATHOMIQ_PRAD, 0.60 for Decipher) and multivariable models including age, PSA density, and PI-RADS were performed.

Results

Median age was 62 years (IQR 56–68), median PSA was 5.0 ng/mL (IQR 3.7–7.0). PATHOMIQ_PRAD was independently associated with grade progression (sHR per SD: 1.74, 95% CI: 1.28–2.37, p<0.001). High-risk patients by PATHOMIQ_PRAD cutoff had a nearly three-fold greater hazard of upgrade (sHR: 2.74, 95% CI: 1.61–4.95, p<0.001). In multivariate models including Decipher, PATHOMIQ_PRAD remained an independent predictor (sHR: 1.91, 95% CI: 1.03–3.65, p=0.049). PATHOMIQ_PRAD achieved 72.7%

accuracy in identifying patients harboring occult higher-grade disease when restricted to GG1+2 biopsies.

Conclusions

PATHOMIQ_PRAD, a biopsy-based AI histology score, provides clinically meaningful, independent prognostic information in the AS setting and complements MRI and genomic testing. Incorporation of PATHOMIQ_PRAD may refine biopsy scheduling, guide earlier intervention for higher-risk men, and improve precision in AS management. Multicenter prospective validation is ongoing.

Funding Acknowledgements

This study was supported by PATHOMIQ Inc., University of Miami Desai Sethi Urology Institute, and National Cancer Institute of the National Institutes of Health under Award Number P30CA240139 (SCCC); and 1R01CA272766). SP is also funded in part through the Paps Corps Champions for Cancer Research Endowed Chair in Solid Tumor Research.

Conflicts of Interest Disclosure Statement

Some authors are affiliated with PATHOMIQ Inc. and have financial interests in the development of AI-based pathology tools. All other authors declare no conflicts of interest.