Circulating tumour DNA (ctDNA) based detection of genetic immune escape in advanced prostate cancer (aPCa)

Aslı D. Munzur¹, Jack V.W. Bacon¹, Gillian Vandekerkhove¹, Gráinne Donnellan¹, Cecily Q. Bernales¹, Jenny N. Tran², Franz Fenninger², Karen R. Sherwood², Alexander W. Wyatt^{1,3}, Nicolette M. Fonseca^{4,5}

¹Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Canada; ²Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada; ³Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, British Columbia, Canada; ⁴Department of Biochemistry and Microbiology, University of Victoria, Canada; ⁵Department of Basic and Translational Research, Deeley Research Centre, BC Cancer, Victoria, Canada

Background: T-cell recognition of neoantigens presented by the Major Histocompatibility Complex Class I molecules (MHC Class I) is essential for anti-tumour immunity. Loss of MHC Class I expression therefore represents a mechanism of immune evasion in aPCa, with implications for the efficacy of T-cell based immunotherapies. However, the genomic events contributing to MHC Class I loss, particularly loss of heterozygosity (LOH) of the polymorphic *HLA-A*, *HLA-B* and *HLA-C* genes, remain poorly defined. Furthermore, ctDNA has not been investigated as an analyte for tracking tumour-specific HLA alterations, as current approaches rely on whole genome or exome sequencing of tissue.

Methods: We developed a targeted DNA sequencing panel (ImmGen) to capture 6597 unique *HLA-A, HLA-B* and *HLA-C* alleles. Probe design was optimised using machine learning applied to the IMGT-HLA database (v3.10). HLA genotyping and HLA-LOH detection was performed using published tools and validated in select cases with targeted NGS-based clinical grade HLA genotyping (Holotype HLA, v2 Omixon).

Results: We assembled a cohort of 40 aPC patients with cell-free DNA (n=28), tumour tissue (n=17) and matched germline DNA (n=40). ImmGen achieved 90% HLA allele concordance (216/240) across 3 HLA genotyping tools, versus 79% (90/114) via exome sequencing (where available). In 19 patients with available Holotype HLA results, ImmGen HLA types were 100% concordant. Germline HLA homozygosity was detected in 39% of patients (16/40). HLA-LOH was detected in ctDNA (>30% purity) and tissue from 33% (8/24) and 35% (6/17) of patients respectively.

Conclusions: Our results demonstrate that HLA-LOH can be detected non-invasively and in real-time using cost-effective targeted sequencing of ctDNA.

Funding Acknowledgements: This work was primarily funded by grants awarded to A.W.W. N.M.F is supported by a Prostate Cancer Foundation Young Investigator Award. Other funding support was provided by the Canadian Institutes of Health Research, the University of Victoria and BC Cancer Foundation.

Conflict of Interest Disclosure: A.W.W. has consulted or served in an advisory role for Janssen, Astellas Pharma, AstraZeneca, Merck, Bayer, Pfizer and EMD Serono, and received research funding from Promontory Therapeutics (institutional), ESSA Pharma (institutional) and Tyra Biosciences (institutional). The remaining authors declare no competing interests.